

CellAdvisorTM
JD700B Series FW3.075
User's Guide

CellAdvisorTM JD700B Series FW3.075

User's Guide

JD785B/JD745B Base Station Analyzer JD786B/JD746B RF Analyzer JD788B/JD748B Signal Analyzer

Notice

Every effort was made to ensure that the information in this document was accurate at the time of release. However, information is subject to change without notice, and Viavi Solutions reserves the right to provide an addendum to this document with information not available at the time that this document was created.

Copyright/Trademarks

© Copyright 2017 Viavi Solutions Inc. All rights reserved. No part of this guide may be reproduced or transmitted, electronically or otherwise, without written permission of the publisher. Viavi Solutions, the Viavi logo, CellAdvisor, RANAdvisor TrueSite, StrataSync, and EZ-Cal are trademarks of Viavi Solutions Inc. ("Viavi"). All trademarks and registered trademarks are the property of their respective companies.

Google Maps and Google Earth are either trademarks or registered trademarks of Google in the United States and/or other countries.

Bluetooth is a trademark or a registered trademark of Bluetooth Special Interest Group (SIG) Inc. in the United States and/or other countries.

Android is a trademark or a registered trademark of Google in the United States and/or other countries.

iOS is a trademark or a registered trademark of Apple Inc. in the United States and/or other countries.

Windows and Windows 7 are either trademarks or registered trademarks of Microsoft Corporation in the United States and/or other countries.

Copyright release

Reproduction and distribution of this guide is authorized for US Government purposes only.

Ordering information

This document is a product of Viavi's Technical Publications Department, issued as part of the JD700B Series. The catalog number for a published manual is JD700B362 - printed. The catalog number for an electronic manual on CD-ROM is JD700B361 - electronic.

Open source disclaimer – IMPORTANT READ CAREFULLY

The JD700B Series includes third party software licensed under the terms of separate open source software licenses. By using this software, you agree to comply with the terms and conditions of the applicable open source software licenses. Software originated by Viavi is not subject to third party licenses. Terms of the Viavi Software License different from applicable third party licenses are offered by Viavi alone.

This product incorporates open source software entitled "zlib". The zlib is the compression library written by Jean-loup Gailly and Mark Adler, who granted permission to use this software for any purpose, including commercial applications.

This product includes open source software developed by the Apache Software Foundation (http://www.apache.org/).

This product used free library for JPEG image compression written and distributed by Independent JPEG Group or IJG (http://www.ijg.org/).

This product used free, open-source JavaScript library entitled "jQuery". It is licensed under the MIT License (http://jquery.org/license/).

This product used open source software entitled "Libpcap-1.3.0". The Libcap-1.3.0 is the portable packet-capturing library developed by TCPDUMP (http://www.tcpdump.org)

See "Viewing OSS license" on page 44 for more information.

Terms and conditions

Specifications, terms, and conditions are subject to change without notice. The provision of hardware, services, and/or software is subject to Viavi's standard terms and conditions, available at www.viavisolutions.com/en/terms-and-conditions.

NRTL compliance

This product was tested according to UL 61010-1:2012 and CAN/CSA C22.2 No. 61010-1-12. Conformity with these requirements is based upon compliance with the standard IEC 61010-1. A copy of the Declaration of Conformity is provided upon your request.

Ce produit a été testé selon la norme UL 61010-1 : 2012 et CAN / CSA C22.2 No. 61010-1-12. La conformité à ces exigences est fondée sur la conformité à la norme CEI 61010-1. Une copie de la déclaration de conformité est disponible sur demande.

EMC directive compliance

This product was tested and conforms to the EMC Directive, 2004/108/EC and its amending directives for electromagnetic compatibility. Conformity with this directive is based upon compliance with the harmonized European standards: EN61326-1 and CISPR11. A copy of the Declaration of Conformity is provided upon your request.

Low voltage directive compliance

This product was tested and conforms to the Low Voltage Directive, 2006/95/EC and its amending directives. Conformity with this directive is based upon compliance with the harmonized European standard EN61010-1. A copy of the Declaration of Conformity is provided upon your request.

WEEE and battery directive compliance

Viavi has established processes in compliance with the Waste Electrical and Electronic Equipment (WEEE) Directive, 2002/96/EC, and the Battery Directive, 2006/66/EC.

This product, and the batteries used to power the product, should not be disposed of as unsorted municipal waste and should be collected separately and disposed of according to your national regulations. In the European Union, all equipment and batteries purchased from Viavi after 2005-08-13 can be returned for disposal at the end of its

useful life. Viavi will ensure that all waste equipment and batteries returned are reused, recycled, or disposed of in an environmentally friendly manner, and in compliance with all applicable national and international waste legislation.

It is the responsibility of the equipment owner to return equipment and batteries to Viavi for appropriate disposal. If the equipment or battery was imported by a reseller whose name or logo is marked on the equipment or battery, then the owner should return the equipment or battery directly to the reseller.

Instructions for returning waste equipment and batteries to Viavi can be found in the Environmental section of Viavi's web site at www.viavisolutions.com. If you have questions concerning disposal of your equipment or batteries, contact Viavi's WEEE Program Management team.

Contents

About This Guide	20
Purpose and scope	21
Assumptions	
Safety and compliance information	
Conventions	
Technical assistance	
Chapter 1 JD700B Series Overview	
About the JD700B series	25
Features and capabilities	25
Options	26
Specifications	26
AC power	26
Physical specifications	26
Chapter 2 Getting Started	27
Unpacking the JD700B series	28
Exploring the JD700B series	28
Front panel	29
Top panel	31
Installing battery pack	33
Starting up the JD700B series	
Managing files	34
Using save	
Using load	36
Using file manager	
Configuring system	
Setting frequency reference	
Setting date and time	
Setting language	
Setting power on	
Changing display mode	
Setting sleep time	
Adjusting LCD brightness	
Adjusting volume	
Upgrading firmware	
Checking installed firmware version	
Installing new firmware	
Managing licenses	
Checking installed or installable options	
Installing purchased options	
Loading temporary license	
Viewing OSS license	
Performing service diagnostic	
Viewing system log	
Running self-test	
Performing factory reset	
Re-aligning touch screen	
Using system administration	
Logging in	
Changing password	
Locking limit key	
Running IP test	

Activating 9	StrataSync	47
Settin	g up Internet connection	47
Estab	lishing a connection to StrataSync	48
Strata	Sync status indicators	49
Setting con	nmunication	49
Confi	guring Ethernet	49
Settin	g for JDViewer and JDRemote	50
Settin	g USBTMC mode	51
Settin	g SCPI mode	51
Confi	guring LMF setting	51
Enab	ing Bluetooth connection	51
Enab	ing Wi-Fi connection	51
	ing Web-based remote control	
	nelp manual	
	g other help manual	
Viewi	ng help manual	55
Chapter 3	Analyzing Measurement Results	56
Using mark	er	57
-	search	
Chapter 4	Using Spectrum Analyzer	59
-	1	
	erview	
	a cable	
•	neasurement mode	
	test parameters	
	g frequency	
	g amplitude	
	g bandwidth	
	g average	
	g sweep	
-	signal generator (RF source)	
-	spectrum measurements	
Settin	g trace	70
Settin	g limit	72
Settin	g frequency offset	72
Conducting	RF measurements	73
Chan	nel power	73
Occu	pied bandwidth	74
Spec	rum emission mask (SEM)	76
Adjac	ent channel power (ACP)	77
Multi-	ACP	79
Spuri	ous emissions	81
AM/F	M audio demodulation	82
Field	strength meter	84
Route	e map	86
Dual	spectrum	90
PIM o	letection (single and multiple carriers)	91
Total	Harmonic Distortion (THD)	93
Chapter 5	Using Interference Analyzer	96
Introduction	1	97
	erview	
	a cable	
-	an Omni or Yagi antenna	
-	an AntennaAdvisor handle	
-	neasurement mode	
•	test parameters	
	g frequencyg	
	g amplitudeg	
	g bandwidthg	
	•	
	g average	
	g sweep	
-	spectrum measurements	
	g trace	
Soun	d indicator	107

AM/FM audio demodulation	107
Interference ID	108
Conducting interference measurements	108
Spectrogram	
Dual spectrogram	
RSSI	
Interference finder	
Spectrum Replayer	
·	
Radar Chart.	
Setting limit for interference analyzer	
Setting a single limit line	
Setting a multi-segment line	
Defining a channel limit	122
Chapter 6 Using GSM/GPRS/EDGE Signal Analyzer	124
Introduction	
Display overview	
Connecting a cable	
Direct connection	
Indirect connection	
Over the air (OTA)	127
Selecting measurement mode	128
Configuring test parameters	128
Setting frequency	128
Setting amplitude	129
Setting average	
Setting sweep mode	131
Setting trigger source	
Conducting spectrum measurements	
Setting measure setup	
Setting trace	
Conducting RF measurements	
Channel power	
Occupied bandwidth	
Spectrum emission mask (SEM)	135
Output RF spectrum	136
Spurious emissions	137
Setting limit for RF tests	138
Conducting power vs. time measurements	139
Power vs. time (slot)	139
Power vs. time (frame)	
Conducting constellation measurements	
Setting measure setup	
Setting limit for constellation	
Measurement example	
Performing auto measurements	
Setting limit for auto measure	
Setting measure setup	
Setting display	
Conducting GSM OTA measurements	146
Channel scanner	146
Frequency scanner	148
Multipath profile	149
Modulation analyzer	
Chapter 7 Using WCDMA/HSPA+ Signal Analyzer	152
Introduction	153
Display overview	
• •	
Connecting a cable	
Direct connection	
Indirect connection	
Over the air (OTA)	
Selecting measurement mode	156
Configuring test parameters	156
Setting frequency	156
Setting amplitude	157
Cotting overage	450

	Setting sweep mode	159
	Setting trigger source	159
	Setting external clock	159
	Conducting spectrum measurements	161
	Setting trace	161
	Conducting RF measurements	162
	Channel power	162
	Occupied bandwidth	163
	Spectrum emission mask (SEM)	164
	ACLR	165
	Multi-ACLR	166
	Spurious emissions	167
	Setting limit for RF tests	168
	Conducting modulation measurements	169
	Constellation	169
	Code domain power	170
	Relative code domain power	173
	Codogram	175
	RCSI	
	CDP Table	179
	Setting limit for modulation tests	
	Performing auto measurements	
	Setting limit for auto measure	
	Setting measure setup	
	Setting display	
	Performing power statistics CCDF measurement	
	Setting measure setup	
	Measurement example	
	Conducting WCDMA/HSPA+ OTA measurements	
	Channel scanner	
	Scramble scanner Scramble scanner Scramble scanner Scramble scanner Scramble scanner S	
	Multipath profile	
	Code domain power	
	Route map	
		100
	·	
Ch		. 193
Ch	apter 8 Using LTE-FDD Signal Analyzer	
Ch	apter 8 Using LTE-FDD Signal Analyzer	194
Ch	apter 8 Using LTE-FDD Signal Analyzer	194 195
Ch	apter 8 Using LTE-FDD Signal Analyzer	194 195 195
Ch	apter 8 Using LTE-FDD Signal Analyzer	194 195 195 195
Ch	apter 8 Using LTE-FDD Signal Analyzer Introduction Display overview Connecting a cable Direct connection Indirect connection	194 195 195 195 196
Ch	apter 8 Using LTE-FDD Signal Analyzer	194 195 195 195 196
Ch	apter 8 Using LTE-FDD Signal Analyzer Introduction Display overview Connecting a cable Direct connection Indirect connection Over the air (OTA) Selecting measurement mode	194 195 195 195 196 196 197
Ch	apter 8 Using LTE-FDD Signal Analyzer Introduction	194 195 195 196 196 197 198
Ch	apter 8 Using LTE-FDD Signal Analyzer Introduction	194 195 195 196 196 197 198
Ch	apter 8 Using LTE-FDD Signal Analyzer Introduction	194 195 195 196 196 197 198
Ch	apter 8 Using LTE-FDD Signal Analyzer Introduction	194 195 195 196 196 197 198 198
Ch	apter 8 Using LTE-FDD Signal Analyzer Introduction Display overview Connecting a cable Direct connection Indirect connection Over the air (OTA) Selecting measurement mode Configuring test parameters Setting frequency Setting amplitude	194 195 195 196 196 197 198 198 198
Ch	apter 8 Using LTE-FDD Signal Analyzer Introduction Display overview Connecting a cable Direct connection Indirect connection Over the air (OTA) Selecting measurement mode Configuring test parameters Setting frequency Setting amplitude Setting average	194 195 195 196 196 197 198 198 198 200 200
Ch	apter 8 Using LTE-FDD Signal Analyzer Introduction Display overview Connecting a cable Direct connection Indirect connection Over the air (OTA) Selecting measurement mode Configuring test parameters Setting frequency Setting amplitude Setting average Setting sweep mode	194 195 195 196 196 197 198 198 198 200 201
Ch	apter 8 Using LTE-FDD Signal Analyzer Introduction Display overview Connecting a cable Direct connection Indirect connection Over the air (OTA) Selecting measurement mode Configuring test parameters Setting frequency Setting amplitude Setting average Setting sweep mode Setting trigger source	194 195 195 196 196 197 198 198 198 200 201 201
Ch	apter 8 Using LTE-FDD Signal Analyzer Introduction Display overview Connecting a cable Direct connection Indirect connection Over the air (OTA) Selecting measurement mode Configuring test parameters Setting frequency Setting amplitude Setting average Setting sweep mode Setting trigger source Setting external clock	194 195 195 196 196 197 198 198 198 200 201 201 202
Ch	apter 8 Using LTE-FDD Signal Analyzer Introduction	194 195 195 196 196 197 198 198 198 200 201 201 202 202
Ch	apter 8 Using LTE-FDD Signal Analyzer Introduction Display overview Connecting a cable Direct connection Indirect connection Over the air (OTA) Selecting measurement mode Configuring test parameters Setting frequency Setting amplitude Setting average Setting average Setting sweep mode Setting trigger source Setting external clock Conducting spectrum measurements Setting measure setup	194 195 195 196 196 197 198 198 198 200 201 201 202 202
Ch	Introduction Display overview Connecting a cable Direct connection Indirect connection Over the air (OTA). Selecting measurement mode. Configuring test parameters. Setting frequency Setting amplitude Setting average Setting average Setting trigger source Setting trigger source Setting external clock. Conducting spectrum measurements Setting measure setup Setting trace Conducting RF measurements	194 195 195 196 196 197 198 198 198 200 201 201 202 202 202 203
Ch	Introduction Display overview Connecting a cable Direct connection Indirect connection Over the air (OTA) Selecting measurement mode Configuring test parameters Setting frequency Setting amplitude Setting average Setting sweep mode Setting trigger source Setting external clock Conducting spectrum measurements Setting measure setup Setting trace	194 195 195 196 196 197 198 198 198 200 201 201 202 202 203 203
Ch	Introduction Display overview Connecting a cable Direct connection Indirect connection Over the air (OTA) Selecting measurement mode Configuring test parameters Setting frequency Setting amplitude Setting average Setting average Setting trigger source Setting trigger source Setting spectrum measurements Setting measure setup Setting trace Conducting RF measurements Channel power	194 195 195 196 196 197 198 198 198 200 201 201 202 202 203 203 204
Ch	Introduction	194 195 195 196 196 197 198 198 198 200 201 201 202 202 203 203 204 205
Ch	Introduction Display overview Connecting a cable Direct connection Indirect connection Over the air (OTA) Selecting measurement mode Configuring test parameters Setting frequency Setting amplitude Setting awreage Setting sweep mode Setting trigger source Setting trigger source Setting external clock Conducting spectrum measurements Setting measure setup Setting frace Conducting RF measurements Channel power Occupied bandwidth Spectrum emission mask (SEM) ACLR	194 195 195 196 196 197 198 198 200 201 201 202 202 202 203 203 204 205 206
Ch	Introduction Display overview Connecting a cable Direct connection Indirect connection Over the air (OTA) Selecting measurement mode Configuring test parameters Setting frequency Setting amplitude Setting average Setting average Setting sweep mode Setting sweep mode Setting prigger source Setting external clock Conducting spectrum measurements Setting measure setup Setting trace Conducting RF measurements Channel power Occupied bandwidth Spectrum emission mask (SEM) ACLR Multi-ACLR	194 195 195 196 196 197 198 198 200 201 201 202 202 203 203 204 205 206 207
Ch	Introduction Display overview Connecting a cable Direct connection Indirect connection Over the air (OTA) Selecting measurement mode Configuring test parameters Setting frequency Setting amplitude Setting average Setting average Setting sweep mode Setting trigger source Setting trigger source Setting paternal clock Conducting spectrum measurements Setting measure setup Setting frace Conducting RF measurements Channel power Occupied bandwidth Spectrum emission mask (SEM) ACLR Multi-ACLR. Spurious emissions	194 195 195 196 196 197 198 198 198 200 201 201 202 202 203 203 204 205 206 207 208
Ch	Introduction Display overview Connecting a cable Direct connection Indirect connection Over the air (OTA) Selecting measurement mode Configuring test parameters Setting frequency Setting amplitude Setting awrage Setting sweep mode Setting trigger source Setting external clock Conducting spectrum measurements Setting trace Conducting RF measurements Channel power Occupied bandwidth Spectrum emission mask (SEM) ACLR Multi-ACLR Spurious emissions Setting limit for RF tests	194 195 195 196 196 197 198 198 200 201 201 202 202 203 203 204 205 206 207 208 210
Ch	Introduction Display overview Connecting a cable Direct connection Indirect connection Over the air (OTA) Selecting measurement mode Configuring test parameters Setting frequency Setting amplitude Setting average Setting sweep mode Setting trigger source Setting trigger source Setting external clock Conducting spectrum measurements Setting measure setup Setting Trace Conducting RF measurements Channel power Occupied bandwidth Spectrum emission mask (SEM) ACLR Multi-ACLR Spurious emissions Setting limit for RF tests Conducting power vs. time (frame) measurements	194 195 195 196 196 197 198 198 200 201 201 202 202 203 203 204 205 206 207 208 210 210
Ch	Introduction Display overview Connecting a cable Direct connection Indirect connection Over the air (OTA) Selecting measurement mode Configuring test parameters Setting frequency Setting average Setting average Setting average Setting sweep mode Setting trigger source Setting external clock Conducting spectrum measurements Setting measure setup Setting measure setup Setting measurements Setting measure setup Setting trace Conducting RF measurements Channel power Occupied bandwidth Spectrum emission mask (SEM) ACLR Multi-ACLR Spurious emissions Setting limit for RF tests Conducting power vs. time (frame) measurements Setting limit for RF tests Conducting power vs. time (frame) measurements	194 195 195 196 197 198 198 198 200 201 201 202 202 203 203 204 205 206 207 208 210 210
Ch	Introduction Display overview Connecting a cable Direct connection. Indirect connection Over the air (OTA) Selecting measurement mode Configuring test parameters Setting frequency Setting amplitude. Setting average Setting sweep mode. Setting sigger source Setting external clock Conducting spectrum measurements Setting measure setup. Setting trace. Conducting RF measurements Channel power Occupied bandwidth Spectrum emission mask (SEM). ACLR Multi-ACLR Spurious emissions Setting in measure setup. Setting in min measurements Setting in min measurements Channel power Occupied bandwidth Spectrum emission mask (SEM). ACLR Multi-ACLR Spurious emissions Setting imit for RF tests Conducting power vs. time (frame) measurements Setting measure setup. Measurement example	194 195 195 196 197 198 198 198 200 201 201 202 202 203 203 204 205 206 207 208 210 210 211
Ch	Introduction Display overview Connecting a cable Direct connection Indirect connection Over the air (OTA) Selecting measurement mode Configuring test parameters Setting frequency Setting amplitude Setting average Setting average Setting sternal clock Conducting spectrum measurements Setting measure setup Setting measure setup Setting trace Conducting RF measurements Channel power Occupied bandwidth Spectrum emission mask (SEM) ACLR Multi-ACLR Spurious emissions Setting limit for RF tests Conducting power vs. time (frame) measurements Setting measure setup Measurement example Conducting power vs. time (frame) measurements Setting measure setup Measurement example Conducting modulation measurements	194 195 195 196 197 198 198 198 200 201 201 202 202 203 203 204 205 206 207 208 210 210 211
Ch	Introduction Display overview Connecting a cable Direct connection. Indirect connection Over the air (OTA) Selecting measurement mode Configuring test parameters Setting frequency Setting amplitude. Setting average Setting sweep mode. Setting sigger source Setting external clock Conducting spectrum measurements Setting measure setup. Setting trace. Conducting RF measurements Channel power Occupied bandwidth Spectrum emission mask (SEM). ACLR Multi-ACLR Spurious emissions Setting in measure setup. Setting in min measurements Setting in min measurements Channel power Occupied bandwidth Spectrum emission mask (SEM). ACLR Multi-ACLR Spurious emissions Setting imit for RF tests Conducting power vs. time (frame) measurements Setting measure setup. Measurement example	194 195 195 196 197 198 198 198 200 201 201 202 202 203 203 204 205 206 207 208 210 210 211

	Control channel	217
	Subframe	219
	Frame	
	Time alignment error	225
	Data allocation map	
	Setting limit for modulation tests	
	Performing auto measurements	
	Conformance test	230
	Maintenance test	233
	Signal performance test	235
	DAS test	
	Performing power statistics CCDF measurements	237
	Setting measure setup	237
	Measurement example	
	Performing carrier aggregation measurements	
	Setting measure setup	
	Setting display	239
	Measurement example	
	Using marker	
	Conducting LTE-FDD OTA measurements	241
	Channel scanner	241
	ID scanner	
	Multipath profile	
	Control channel	245
	Datagram	
	Route map	
	Performing RAN performance testing	
	Preparing your smartphone for remote control via Bluetooth	
	Setting parameters on RANAdvisor TrueSite™	256
	Performing RAN performance testing	257
	Measurement example	257
	Setting performance score level	
	Performing NB-IoT modulation analysis	258
	Setting measure setup	
	Measurement example	
	Using marker	259
Chr	apter 9 Using LTE-TDD Signal Analyzer	261
CH		
	Introduction	262
	Display overview	263
	Connecting a cable	
	Direct connection	263
	Indirect connection	264
	Over the air (OTA)	264
	Selecting measurement mode	
	Configuring test parameters	266
	Setting frequency	
	Setting amplitude	266
	Setting average	268
	Setting sweep mode	268
	Setting trigger source	269
	Setting external clock	269
	Conducting spectrum measurements	
	Setting measure setup	270
	Setting trace	271
	Conducting RF measurements	272
	Channel power	272
		272
	Channel power	272 273
	Channel power Occupied bandwidth	272 273 274
	Channel power	272 273 274 275
	Channel power Occupied bandwidth Spectrum emission mask (SEM) ACLR	272 273 274 275 276
	Channel power Occupied bandwidth Spectrum emission mask (SEM) ACLR Multi-ACLR	272 273 274 275 276 278
	Channel power Occupied bandwidth Spectrum emission mask (SEM) ACLR Multi-ACLR Spurious emissions	272 273 274 275 276 278 279
	Channel power Occupied bandwidth Spectrum emission mask (SEM) ACLR Multi-ACLR Spurious emissions Setting limit for RF tests	272 273 274 275 276 278 279 280
	Channel power Occupied bandwidth Spectrum emission mask (SEM) ACLR Multi-ACLR Spurious emissions Setting limit for RF tests Conducting power vs. time measurements.	272 273 274 275 276 278 279 280
	Channel power Occupied bandwidth Spectrum emission mask (SEM) ACLR Multi-ACLR Spurious emissions Setting limit for RF tests Conducting power vs. time measurements Power vs. time (slot).	272 273 274 275 276 278 279 280 280

Constellation	283
Data channel	286
Control channel	289
Subframe	291
Time alignment error	295
Data allocation map	
Setting limit for modulation tests	
Performing auto measurements	
Conformance test	
Maintenance test	
Signal performance test	
DAS test	
Performing power statistics CCDF measurements	
- · · · · · · · · · · · · · · · · · · ·	
Setting measure setup	
Measurement example	
Performing carrier aggregation measurements	
Setting measure setup	
Setting display	
Measurement example	
Using marker	
Conducting LTE-TDD OTA measurements	
Channel scanner	
ID scanner	
Multipath profile	
Control channel	
Datagram	
Route map	
Performing RAN performance testing	
Preparing your smartphone for remote control via Bluetooth	
Setting parameters on RANAdvisor TrueSite™	
Performing RAN performance testing	325
Measurement example	326
Setting performance score level	326
01 1 40 11 00011 00 14 1	200
Chapter 10 Using CDMA Signal Analyzer	328
Chapter 10 Using CDMA Signal Analyzer	
	329
Introduction	329 330
Introduction	
Introduction	329 330 330 330
Introduction	
Introduction	329 330 330 330 331 331
Introduction	329 330 330 330 331 331 331
Introduction	329 330 330 331 331 332 332
Introduction Display overview Connecting a cable Direct connection Indirect connection Over the air (OTA) Selecting measurement mode Configuring test parameters Setting frequency	329 330 330 331 331 332 332 332
Introduction Display overview Connecting a cable Direct connection Indirect connection Over the air (OTA) Selecting measurement mode Configuring test parameters Setting frequency Setting amplitude	329 330 330 331 331 332 332 332 333
Introduction Display overview Connecting a cable Direct connection Indirect connection Over the air (OTA) Selecting measurement mode Configuring test parameters Setting frequency Setting amplitude Setting average	329 330 330 331 331 332 332 332 333 333
Introduction Display overview Connecting a cable Direct connection Indirect connection Over the air (OTA) Selecting measurement mode Configuring test parameters Setting frequency Setting amplitude Setting average Setting sweep mode	329 330 330 331 331 332 332 332 333 335
Introduction Display overview Connecting a cable Direct connection Indirect connection Over the air (OTA) Selecting measurement mode Configuring test parameters Setting frequency Setting amplitude Setting average Setting sweep mode Setting trigger source	329 330 330 330 331 331 332 332 333 335 335
Introduction Display overview Connecting a cable Direct connection Indirect connection Over the air (OTA) Selecting measurement mode Configuring test parameters Setting frequency Setting amplitude Setting average Setting sweep mode Setting trigger source Setting external clock	329 330 330 331 331 332 332 332 333 335 335 335
Introduction Display overview Connecting a cable Direct connection Indirect connection Over the air (OTA) Selecting measurement mode Configuring test parameters Setting frequency Setting amplitude Setting average Setting average Setting trigger source Setting external clock Conducting spectrum measurements	329 330 330 331 331 332 332 333 335 335 336 336
Introduction Display overview Connecting a cable Direct connection Indirect connection Over the air (OTA) Selecting measurement mode Configuring test parameters Setting frequency Setting amplitude Setting average Setting sweep mode Setting trigger source Setting external clock Conducting spectrum measurements Setting trace	329 330 330 331 331 332 332 332 335 335 335 336 337
Introduction Display overview Connecting a cable Direct connection Indirect connection Over the air (OTA) Selecting measurement mode Configuring test parameters Setting frequency Setting amplitude Setting average Setting sweep mode Setting trigger source Setting external clock Conducting spectrum measurements Setting trace Conducting RF measurements	329 330 330 331 331 332 332 332 335 335 335 336 337 337
Introduction	329 330 330 331 331 332 332 333 335 335 336 337 337 338
Introduction Display overview Connecting a cable Direct connection Indirect connection Over the air (OTA) Selecting measurement mode Configuring test parameters Setting frequency Setting amplitude Setting average Setting sweep mode Setting trigger source Setting external clock Conducting spectrum measurements Setting trace Conducting RF measurements Channel power Occupied bandwidth	329 330 330 331 331 332 332 333 335 335 336 337 337 338 338 338
Introduction Display overview Connecting a cable Direct connection Indirect connection Over the air (OTA) Selecting measurement mode Configuring test parameters Setting frequency Setting amplitude Setting average Setting sweep mode Setting trigger source Setting external clock Conducting spectrum measurements Setting trace Conducting RF measurements Channel power Occupied bandwidth Spectrum emission mask (SEM)	329 330 330 331 331 332 332 332 333 335 335 336 337 337 338 338 339 340
Introduction Display overview Connecting a cable Direct connection Indirect connection Over the air (OTA) Selecting measurement mode Configuring test parameters Setting frequency Setting amplitude Setting awerage Setting average Setting sweep mode Setting trigger source Setting external clock Conducting spectrum measurements Setting trace Conducting RF measurements Channel power Occupied bandwidth Spectrum emission mask (SEM). ACPR	329 330 330 331 331 331 332 332 333 335 335 335 336 337 337 338 338 338 339 340
Introduction Display overview Connecting a cable Direct connection. Indirect connection Over the air (OTA). Selecting measurement mode Configuring test parameters Setting frequency Setting amplitude Setting average Setting sweep mode. Setting trigger source Setting external clock Conducting spectrum measurements Setting trace Conducting RF measurements Channel power Occupied bandwidth Spectrum emission mask (SEM). ACPR Multi-ACPR	329 330 330 331 331 331 332 332 332 335 335 335 336 337 337 338 338 339 340 340
Introduction Display overview Connecting a cable Direct connection Indirect connection Over the air (OTA) Selecting measurement mode Configuring test parameters Setting frequency Setting amplitude Setting average Setting sweep mode Setting trigger source Setting trigger source Setting external clock Conducting spectrum measurements Setting trace Conducting RF measurements Channel power Occupied bandwidth Spectrum emission mask (SEM) ACPR Multi-ACPR Spurious emissions	329 330 330 331 331 331 332 332 332 333 335 335 336 337 337 338 338 339 340 340 341
Introduction Display overview Connecting a cable Direct connection Indirect connection Over the air (OTA) Selecting measurement mode Configuring test parameters Setting frequency Setting amplitude Setting average Setting sweep mode Setting trigger source Setting trigger source Setting external clock Conducting spectrum measurements Setting trace Conducting RF measurements Channel power Occupied bandwidth Spectrum emission mask (SEM) ACPR Multi-ACPR Spurious emissions Setting limit for RF tests	329 330 330 331 331 331 332 332 332 333 335 335 335 336 337 338 338 339 340 340 341 342
Introduction Display overview Connecting a cable Direct connection Indirect connection Over the air (OTA) Selecting measurement mode Configuring test parameters Setting frequency Setting amplitude Setting average Setting average Setting sweep mode Setting styper source Setting external clock Conducting spectrum measurements Setting frace Conducting RF measurements Channel power Occupied bandwidth Spectrum emission mask (SEM) ACPR Multi-ACPR Spurious emissions Setting limit for RF tests Conducting modulation measurements	329 330 330 331 331 331 332 332 332 333 335 335 335 336 337 337 338 338 339 340 340 341 342 343
Introduction Display overview Connecting a cable Direct connection Indirect connection Over the air (OTA) Selecting measurement mode Configuring test parameters Setting frequency Setting amplitude Setting average Setting sweep mode Setting trigger source Setting external clock Conducting spectrum measurements Setting trace Conducting RF measurements Channel power Occupied bandwidth Spectrum emission mask (SEM) ACPR Multi-ACPR Spurious emissions Setting limit for RF tests Conducting modulation measurements Constellation	329 330 330 330 331 331 331 332 332 332 333 335 335 336 337 337 338 338 339 340 340 341 342 343
Introduction Display overview Connecting a cable Direct connection Indirect connection Over the air (OTA). Selecting measurement mode Configuring test parameters Setting frequency Setting amplitude Setting awerage Setting sweep mode Setting trigger source Setting trigger source Setting trace Conducting spectrum measurements Setting trace Conducting RF measurements Channel power Occupied bandwidth Spectrum emission mask (SEM). ACPR Multi-ACPR Spurious emissions Setting limit for RF tests Conducting modulation measurements Constellation Code domain power	329 330 330 330 331 331 331 332 332 333 335 335 335 336 337 337 338 338 339 340 340 341 342 343 344 344
Introduction Display overview Connecting a cable Direct connection Indirect connection Over the air (OTA) Selecting measurement mode Configuring test parameters Setting frequency Setting amplitude Setting average Setting average Setting sweep mode Setting trigger source Setting external clock Conducting spectrum measurements Setting pareaue Conducting RF measurements Setting trace Conducting RF measurements Setting trace Conducting RF measurements Channel power Occupied bandwidth Spectrum emission mask (SEM) ACPR Multi-ACPR Spurious emissions Setting limit for RF tests Conducting modulation measurements Constellation Code domain power Codogram	329 330 330 331 331 331 332 332 332 333 335 335 335 336 337 337 338 338 339 340 340 341 342 343 344 344 344
Introduction Display overview Connecting a cable Direct connection. Indirect connection Over the air (OTA) Selecting measurement mode Configuring test parameters Setting frequency Setting amplitude. Setting average Setting average Setting trigger source Setting external clock Conducting spectrum measurements Setting trace Conducting RF measurements Channel power Occupied bandwidth Spectrum emission mask (SEM). ACPR Multi-ACPR Spurious emissions Setting limit for RF tests Conducting modulation measurements Conde domain power Code domain power Code domain power Codogram RCSI	329 330 330 331 331 331 332 332 332 333 335 335 335 336 337 337 338 338 339 340 340 341 342 343 344 344 344 345
Introduction Display overview Connecting a cable Direct connection Indirect connection Over the air (OTA) Selecting measurement mode Configuring test parameters Setting frequency Setting amplitude Setting average Setting sweep mode Setting trigger source Setting trigger source Setting rexternal clock Conducting spectrum measurements Setting trace Conducting RF measurements Channel power Occupied bandwidth Spectrum emission mask (SEM). ACPR Multi-ACPR Spurious emissions Setting limit for RF tests Conducting modulation measurements Code domain power Code domain power Code gram RCSI CDP Table	329 330 330 330 331 331 331 332 332 332 335 335 335 336 337 337 338 338 339 340 340 341 342 343 344 344 345 346 348
Introduction Display overview Connecting a cable Direct connection. Indirect connection Over the air (OTA) Selecting measurement mode Configuring test parameters Setting frequency Setting amplitude. Setting average Setting average Setting trigger source Setting external clock Conducting spectrum measurements Setting trace Conducting RF measurements Channel power Occupied bandwidth Spectrum emission mask (SEM). ACPR Multi-ACPR Spurious emissions Setting limit for RF tests Conducting modulation measurements Conde domain power Code domain power Code domain power Codogram RCSI	329 330 330 331 331 331 332 332 332 333 335 335 336 337 337 338 338 339 340 340 341 342 343 344 344 345 346 348

Setting limit for auto measure	352
Setting measure setup	352
Setting display	353
Performing power statistics CCDF measurements	354
Setting measure setup	
Measurement example	
Conducting CDMA OTA measurements	
Channel scanner	
PN scanner	
Multipath profile	
Code domain power	
Route map	360
Chapter 11 Using EV-DO Signal Analyzer	365
Introduction	
Connecting a cable	
Direct connection.	
Indirect connection	
Over the air (OTA)	
Selecting measurement mode	
Configuring test parameters	
Setting frequency	
Setting amplitude	
Setting average	
Setting sweep mode	
Setting trigger source	372
Setting external clock	
Conducting spectrum measurements	374
Setting trace	374
Conducting RF measurements	375
Channel power	375
Occupied bandwidth	376
Spectrum emission mask (SEM)	376
ACPR	377
Multi-ACPR	378
Spurious emissions	
Setting limit for RF tests	
Conducting power vs. time measurements	
Power vs. time (idle slot)	
Power vs. time (active slot)	
Setting limit for power vs. time tests.	
Conducting modulation measurements	
Constellation	
Code domain power	
MAC CodogramRCSI	
MAC CDP Table	
Setting limit for modulation tests	
Performing auto measurements	
Setting limit for auto measure	
Setting measure setup	
Setting display	
Performing power statistics CCDF measurements	
Setting measure setup	395
Measurement example	395
Conducting EV-DO OTA measurements	395
Channel scanner	396
PN scanner	
Multipath profile	
Code domain power	
Route map	401
Chapter 12 Liging TD CCDMA Signal Analyzer	405
Chapter 12 Using TD-SCDMA Signal Analyzer	405
Introduction	
Display overview	
Connecting a cable	407

	Direct connection	407
	Indirect connection	408
	Over the air (OTA)	408
	Selecting measurement mode	409
	Configuring test parameters	
	Setting frequency	
	Setting amplitude	
	Setting average	
	Setting sweep mode	
	Setting trigger source	
	Setting external clock	
	· · · · · · · · · · · · · · · · · · ·	
	Conducting spectrum measurements	
	Setting measure setup	
	Setting trace	
	Conducting RF measurements	
	Channel power	
	Occupied bandwidth	
	Spectrum emission mask (SEM)	
	ACLR	
	Multi-ACLR	419
	Spurious emissions	420
	Setting limit for RF tests	422
	Conducting power vs. time measurements	422
	Power vs. time (slot)	422
	Power vs. time (frame)	
	Power vs. time (mask)	425
	Timogram	
	Setting limit for power vs. time tests	
	Conducting modulation measurements	
	Constellation	
	Midamble power	
	Code power	
	Code error	
	Setting limit for modulation tests	
	· · · · · · · · · · · · · · · · · · ·	
	Performing auto measurements	
	Setting littig	
	Setting measure setup	435
	Setting measure setup	435 436
	Setting measure setup	435 436 437
	Setting measure setup	435 436 437
	Setting measure setup Setting display Conducting TD-SCDMA OTA measurements Sync-DL ID scanner Sync-DL ID vs. Tau	435 436 437 437
	Setting measure setup Setting display Conducting TD-SCDMA OTA measurements Sync-DL ID scanner Sync-DL ID vs. Tau Sync-DL ID multipath	435 436 437 437 438
	Setting measure setup Setting display Conducting TD-SCDMA OTA measurements Sync-DL ID scanner Sync-DL ID vs. Tau	435 436 437 437
	Setting measure setup Setting display Conducting TD-SCDMA OTA measurements Sync-DL ID scanner Sync-DL ID vs. Tau Sync-DL ID multipath	435 436 437 437 438 439
	Setting measure setup. Setting display Conducting TD-SCDMA OTA measurements. Sync-DL ID scanner Sync-DL ID vs. Tau. Sync-DL ID multipath. Sync-DL ID analyzer. Route map.	435 436 437 437 438 439 440
	Setting measure setup. Setting display Conducting TD-SCDMA OTA measurements. Sync-DL ID scanner Sync-DL ID vs. Tau. Sync-DL ID multipath. Sync-DL ID analyzer.	435 436 437 437 438 439 440
Chap	Setting measure setup Setting display Conducting TD-SCDMA OTA measurements Sync-DL ID scanner Sync-DL ID vs. Tau Sync-DL ID multipath Sync-DL ID analyzer Route map Ipter 13 Using Mobile WiMAX Signal Analyzer	
Chap	Setting measure setup	
Cha	Setting measure setup	
Chap	Setting measure setup	
Chap	Setting measure setup	
Chap	Setting measure setup Setting display Conducting TD-SCDMA OTA measurements Sync-DL ID scanner Sync-DL ID vs. Tau Sync-DL ID multipath Sync-DL ID analyzer Route map Introduction Display overview Connecting a cable Direct connection Indirect connection Indirect connection Over the air (OTA) Selecting measurement mode Configuring test parameters	
Chap	Setting measure setup. Setting display Conducting TD-SCDMA OTA measurements Sync-DL ID scanner Sync-DL ID vs. Tau Sync-DL ID multipath Sync-DL ID analyzer Route map Introduction Display overview Connecting a cable Direct connection Indirect connection Indirect connection Over the air (OTA) Selecting measurement mode. Configuring test parameters Setting frequency	
Chap	Setting measure setup Setting display Conducting TD-SCDMA OTA measurements Sync-DL ID scanner Sync-DL ID vs. Tau. Sync-DL ID multipath Sync-DL ID analyzer Route map Inter 13 Using Mobile WiMAX Signal Analyzer Introduction Display overview Connecting a cable Direct connection Indirect connection Indirect connection Over the air (OTA). Selecting measurement mode. Configuring test parameters Setting frequency Setting amplitude	
Chap	Setting measure setup. Setting display	
Chap	Setting measure setup Setting display Conducting TD-SCDMA OTA measurements Sync-DL ID scanner Sync-DL ID vs. Tau Sync-DL ID multipath Sync-DL ID analyzer Route map Interduction Display overview Connecting a cable Direct connection Indirect connection Indirect connection Cover the air (OTA) Selecting measurement mode Configuring test parameters Setting frequency Setting amplitude Setting average Setting sweep mode	
Chap	Setting measure setup. Setting display Conducting TD-SCDMA OTA measurements. Sync-DL ID scanner Sync-DL ID vs. Tau Sync-DL ID multipath. Sync-DL ID analyzer. Route map Inter 13 Using Mobile WiMAX Signal Analyzer. Introduction Display overview Connecting a cable Direct connection Indirect connection Indirect connection Over the air (OTA) Selecting measurement mode Configuring test parameters Setting frequency Setting amplitude Setting average Setting sweep mode Setting sweep mode Setting trigger source	
Chap	Setting measure setup. Setting display. Conducting TD-SCDMA OTA measurements. Sync-DL ID scanner. Sync-DL ID vs. Tau. Sync-DL ID multipath. Sync-DL ID analyzer. Route map. Introduction. Display overview. Connecting a cable. Direct connection. Indirect connection. Indirect connection. Over the air (OTA). Selecting measurement mode. Configuring test parameters. Setting frequency. Setting average. Setting sweep mode. Setting sweep mode. Setting trigger source. Setting trigger source. Setting external clock.	
Chap	Setting measure setup Setting display. Conducting TD-SCDMA OTA measurements. Sync-DL ID scanner Sync-DL ID vs. Tau Sync-DL ID multipath Sync-DL ID analyzer. Route map Introduction Display overview. Connecting a cable Direct connection Indirect connection Indirect connection Over the air (OTA). Selecting measurement mode. Configuring test parameters Setting frequency Setting average Setting average Setting sweep mode Setting syeep mode Setting syeep mode Setting syeep mode Setting syeernal clock. Conducting spectrum measurements	
Chap	Setting measure setup. Setting display. Conducting TD-SCDMA OTA measurements. Sync-DL ID scanner Sync-DL ID vs. Tau. Sync-DL ID multipath. Sync-DL ID analyzer. Route map. Introduction Display overview Connecting a cable Direct connection Indirect connection Over the air (OTA) Selecting measurement mode Configuring test parameters Setting frequency Setting amplitude Setting awerage Setting sweep mode Setting sweep mode Setting syectrum measurements Setting spectrum measurements Setting measure setup.	
Chap	Setting measure setup. Setting display. Conducting TD-SCDMA OTA measurements. Sync-DL ID scanner Sync-DL ID vs. Tau. Sync-DL ID multipath. Sync-DL ID analyzer Route map	
Chap	Setting measure setup. Setting display. Conducting TD-SCDMA OTA measurements. Sync-DL ID scanner Sync-DL ID vs. Tau. Sync-DL ID multipath. Sync-DL ID analyzer. Route map. Introduction Display overview Connecting a cable Direct connection Indirect connection Over the air (OTA) Selecting measurement mode Configuring test parameters Setting frequency Setting amplitude Setting awerage Setting sweep mode Setting sweep mode Setting syectrum measurements Setting spectrum measurements Setting measure setup.	
Chap	Setting measure setup. Setting display. Conducting TD-SCDMA OTA measurements. Sync-DL ID scanner Sync-DL ID vs. Tau. Sync-DL ID multipath. Sync-DL ID analyzer Route map	
Chap	Setting measure setup. Setting display. Conducting TD-SCDMA OTA measurements. Sync-DL ID scanner. Sync-DL ID vs. Tau. Sync-DL ID multipath. Sync-DL ID analyzer. Route map	

Spurious emissions	458
Setting limit for RF tests	460
Conducting power vs. time (frame) measurements	
Setting measure setup	
Setting limit for power vs. time tests	
Measurement example	462
Conducting modulation measurements	462
Constellation	462
Spectral flatness	464
EVM vs. subcarrier	
EVM vs. symbol	
Setting limit for modulation tests	
Performing auto measurements	
Performing power statistics CCDF measurements	470
Setting measure setup	470
Measurement example	471
Conducting Mobile WiMAX OTA measurements	
G	
Preamble scanner	
Multipath profile	
Preamble power trend	
Route map	475
Chapter 14 Using NB-IoT Signal Analyzer	478
Introduction	
Connecting a cable	480
Direct connection	480
Indirect connection	480
Over the air (OTA)	
Selecting measurement mode	
Configuring test parameters	
Setting frequency	
Setting amplitude	482
Setting average	484
Setting sweep mode	484
Setting trigger source	
5 55	
Setting external clock	
Conducting NB-IoT in band spectrum measurement	
Setting measure setup	486
Setting trace	486
Conducting NB-IoT in band modulation analysis	487
Setting measure setup	
Conducting NB-IoT guard band spectrum measurement	
Setting measure setup	
Setting trace	
Conducting NB-IoT guard band spectrum emission mask (SEM)	
Setting measure setup	490
Conducting NB-IoT guard band modulation analysis	
Setting measure setup	
Conducting NB-IoT standalone RF measurements	
G	
Channel power	
Occupied bandwidth	
Spectrum emission mask (SEM)	494
ACLR	494
Spurious emissions	495
Setting limit for RF tests	
Conducting NB-IoT standalone modulation analysis	
· · · · · · · · · · · · · · · · · · ·	
Setting measure setup	497
Chapter 45 Heiner Cable and Automa Australia	400
Chapter 15 Using Cable and Antenna Analyzer	499
Introduction	500
Display overview	
Selecting measurement mode	
Configuring test parameters	
Setting frequency	501
Setting distance	
Adjusting scale	
Setting sweep mode	

Performing calibration	503
1-port calibration	504
2-port calibration	506
Calibration status indicators	508
Connecting a cable	
Connecting a cable for reflection, DTF, 1-port phase, and Smith Char	
Connecting a cable for cable loss (1 port) measurements	
Connecting a cable for 2-port vector measurements	
Connecting a cable for 2-port scalar measurements	
Performing reflection measurements	
Making a measurement	
Measurement example	512
Performing DTF measurements	512
Making a measurement	512
Measurement example	514
Performing reflection-DTF measurements	515
Making a measurement	
Measurement example	
Performing cable loss (1 port) measurements	
Making a measurement	
Measurement example	
·	
Performing 1-port phase measurements	
Making a measurement	
Measurement example	
Performing Smith chart measurements	519
Making a measurement	519
Measurement example	520
Performing 2-port vector measurements	520
Making a measurement	
Measurement example	
Performing 2-port scalar measurements	
Making a measurement	
Measurement example	
Analyzing measurements	
Setting trace and display	
Setting zoom zones	
Setting alternate sweep	
Setting limit for cable and antenna analyzer	
	500
Chapter 16 Performing RFoCPRI Testing	526
Introduction	
Display overview	
Selecting measurement mode	
Performing layer 2 monitoring	
Connecting cables	
Selecting measurement mode	
Selecting port	
Setting measure setup	530
Setting Rx optic limit	531
Conducting layer 2 monitoring	531
Measurement example	532
Performing layer 2 term testing	532
Connecting cables	532
Selecting measurement mode	
Selecting port	
Setting measure setup	
Setting Rx optic limit	
•	
Conducting layer 2 term test	
Measurement example	
Performing interference analysis	
Connecting cables	535
Selecting measurement mode	536
Selecting port	536
Configuring test parameters	536
Setting measure setup	
Using map profile list (custom)	
Using map profile list (system)	

	Selecting network technology	546
	Configuring Rx parameters	546
	Conducting spectrum measurement	548
	Conducting dual spectrum measurement	550
	Conducting quad spectrum	552
	Conducting spectrogram	
	Conducting dual spectrogram	
	Conducting RSSI	
	Zooming into spectrum using zoom in	
	Performing spectrum replayer	
	Setting limit for interference analysis	
Dorfe	orming PIM detection (single and multiple carriers)	
renc	· · · · · · · · · · · · · · · · · · ·	
	Connecting cables	
	Selecting measurement mode	
	Selecting port	
	Setting measure setup	
	Configuring Rx Parameters	
	Calculating possible PIM	
	Detecting PIM (single and multiple carriers)	
	Measurement example	
Perfo	orming LTE-FDD downlink signal analysis	566
	Connecting cables	567
	Selecting measurement mode	567
	Selecting port	567
	Configuring test parameters	568
	Setting measure setup	570
	Configuring Rx Parameters	570
	Viewing decoded MIB and SIB1/2 information	
	Conducting spectrum measurement	
	Conducting channel power measurement	
	Occupied bandwidth	
	Conducting power vs. time (frame) measurement	
	Conducting constellation measurement	
	Conducting data channel measurement	
	Conducting control channel measurement.	
	Conducting subframe measurement	
	Conducting subtraine measurement	
	• · · · · · · · · · · · · · · · · · · ·	
	Conducting time alignment error measurement	
	Conducting data allocation map measurement	
	Performing power statistics CCDF measurement	
	Setting limit for RFoCPRI signal analysis	
	orming LTE-TDD downlink signal analysis	
	Connecting cables	594
	Selecting measurement mode	
	Selecting port	
	Configuring test parameters	595
	Setting measure setup	597
	Configuring Rx Parameters	597
	Conducting spectrum measurement	598
	Conducting channel power measurement	600
	Occupied bandwidth	
	Conducting power vs. time (frame) measurement	
	Conducting constellation measurement	603
	Conducting constellation measurement	
	Conducting data channel measurement	605
	Conducting data channel measurement	605 607
	Conducting data channel measurement Conducting control channel measurement Conducting subframe measurement	605 607 609
	Conducting data channel measurement Conducting control channel measurement Conducting subframe measurement Conducting time alignment error measurement	605 607 609 612
	Conducting data channel measurement Conducting control channel measurement Conducting subframe measurement Conducting time alignment error measurement Conducting data allocation map measurement	605 607 609 612 613
	Conducting data channel measurement Conducting control channel measurement Conducting subframe measurement Conducting time alignment error measurement Conducting data allocation map measurement Performing power statistics CCDF measurement	605 607 609 612 613
116:-	Conducting data channel measurement Conducting control channel measurement Conducting subframe measurement Conducting time alignment error measurement Conducting data allocation map measurement Performing power statistics CCDF measurement Setting limit for RFoCPRI signal analysis	605 607 609 612 613 615
Usin	Conducting data channel measurement Conducting control channel measurement. Conducting subframe measurement. Conducting time alignment error measurement Conducting data allocation map measurement Performing power statistics CCDF measurement Setting limit for RFoCPRI signal analysis. g signal generator	605 607 609 612 613 615 616
Usin	Conducting data channel measurement Conducting control channel measurement. Conducting subframe measurement. Conducting time alignment error measurement Conducting data allocation map measurement Performing power statistics CCDF measurement Setting limit for RFoCPRI signal analysis g signal generator Using RF source in RFoCPRI testing.	605 607 609 612 613 615 617 617
	Conducting data channel measurement Conducting control channel measurement. Conducting subframe measurement. Conducting time alignment error measurement Conducting data allocation map measurement Performing power statistics CCDF measurement Setting limit for RFoCPRI signal analysis g signal generator Using RF source in RFoCPRI testing. Using CPRI source	605 607 609 612 613 615 616 617 618
	Conducting data channel measurement Conducting control channel measurement. Conducting subframe measurement. Conducting time alignment error measurement Conducting data allocation map measurement Performing power statistics CCDF measurement Setting limit for RFoCPRI signal analysis g signal generator Using RF source in RFoCPRI testing. Using CPRI source lating a BBU	605 607 609 612 613 615 617 617 618
	Conducting data channel measurement Conducting control channel measurement Conducting subframe measurement Conducting time alignment error measurement Conducting data allocation map measurement Performing power statistics CCDF measurement Setting limit for RFoCPRI signal analysis g signal generator Using RF source in RFoCPRI testing Using CPRI source lating a BBU Selecting measurement mode	605 607 609 612 613 615 616 617 618 619 620
	Conducting data channel measurement Conducting control channel measurement Conducting subframe measurement Conducting time alignment error measurement Conducting data allocation map measurement Performing power statistics CCDF measurement Setting limit for RFoCPRI signal analysis g signal generator Using RF source in RFoCPRI testing Using CPRI source lating a BBU Selecting measurement mode Selecting port	605 607 609 612 613 615 616 617 618 620 620
	Conducting data channel measurement Conducting control channel measurement Conducting subframe measurement Conducting time alignment error measurement Conducting data allocation map measurement Performing power statistics CCDF measurement Setting limit for RFoCPRI signal analysis g signal generator Using RF source in RFoCPRI testing Using CPRI source lating a BBU Selecting measurement mode	605 607 609 612 613 615 616 617 618 620 620 621

	Performing spectrum clearance	631
	Checking coverage range	639
	Performing PIM analysis	
	Optimizing RET information	
	Optimizing NET information.	
hanter	17 Performing RFoOBSAI Testing	
Intro	duction	649
Displ	lay overview	649
Seled	cting measurement mode	650
Perfo	orming layer 2 monitoring	650
	Connecting cables	
	Selecting measurement mode	
	Selecting port	
	Setting measure setup	
	Setting Rx optic limit	
	Conducting layer 2 monitoring	
	Measurement example	653
Perfo	orming layer 2 term testing	653
	Connecting cables	653
	Selecting measurement mode	654
	Selecting port	654
	Setting measure setup	
	Setting Rx optic limit	
	Conducting layer 2 term test	
Danfa	Measurement example	
Penc	orming interference analysis	
	Connecting cables	
	Selecting measurement mode	
	Selecting port	657
	Configuring test parameters	657
	Setting measure setup	661
	Conducting spectrum measurement	
	Conducting spectrogram	
	Conducting RSSI	
	Performing spectrum replayer	
	Setting limit for interference analysis	
Dorfo	orming PIM detection (single and multiple carriers)	
Fenc		
	Connecting cables	
	Selecting measurement mode	
	Selecting port	
	Setting measure setup	
	Calculating possible PIM	670
	Detecting PIM (single and multiple carriers)	671
	Measurement example	672
Perfo	orming LTE-FDD downlink signal analysis	
	Connecting cables	
	Selecting measurement mode	
	Selecting port	
	Configuring test parameters	
	Setting measure setup	
	Conducting spectrum measurement	
	Conducting channel power measurement	678
	Occupied bandwidth	679
	Conducting power vs. time (frame) measurement	680
	Conducting constellation measurement	681
	Conducting data channel measurement	
	Conducting control channel measurement	
	Conducting subframe measurement	
	•	
	Conducting frame measurement	
	Conducting time alignment error measurement	
	Conducting data allocation map measurement	
	Performing power statistics CCDF measurement	695
	Setting limit for RFoOBSAI signal analysis	696
Usin	g signal generator	697
	Using RF source in RFoOBSAI testing	697
	Using ORSAL source	698

Chapter 18 Using Channel Scanner	699
Introduction	700
Display overview	700
Connecting a cable	700
Direct connection	700
Indirect connection	701
Over the air (OTA)	701
Selecting measurement mode	702
Configuring test parameters	702
Setting frequency	702
Setting amplitude	
Setting average	
Setting sweep mode	
Making channel scanner measurements	
Setting channel	
Measurement example	
Making frequency scanner measurements	
Setting frequency	
Measurement example	
Making custom scanner measurements	
Setting channel/frequency	
Analyzing measurements	
Setting limit for channel scanner	
Setting limit for Granner Scanner	109
Chapter 19 Using Power Meter	710
Introduction	711
Display overview	
Performing internal RF power measurements	
Connecting a cable	
Selecting measurement mode	
Setting frequency	
Setting amplitude	714
Setting sweep mode	714
Making a measurement	715
Measurement example	715
Performing external RF power measurements	716
Connecting a cable	716
Selecting measurement mode	
Setting frequency	
Setting amplitude	
Making a measurement	718
Measurement example	
Performing optical power measurements	
Connecting a power meter.	
Selecting measurement mode	
Setting measurement parameters	
Reading a relative power	
Holding a measurement	
Chapter 20 Performing Fiber Inspection	722
Introduction	723
Display overview	723
Connecting a fiber microscope	723
Selecting measurement mode	724
Configuring test parameters	
Selecting profile and tip	724
Setting preferences	724
Performing fiber inspection	
Capturing fiber image	
Testing a fiber	726
Chapter 21 Using EMF Analyzer	728
Introduction	
Display overview	129

Connecting an isotropic antenna	729
Selecting measurement mode	730
Configuring test parameters	730
Setting frequency	730
Setting amplitude	732
Setting bandwidth	733
Conducting EMF spectrum measurements	734
Setting trace	735
Setting limit	
Recording and replaying EMF logging data	736
Logging EMF spectrum data	736
Replaying EMF spectrum data	
Appendix	
Appendix A – Product general information	740
JD780B series	
JD740B series	742
Appendix B – Cable list	744
Appendix C – Band, frequency & channel standard	
Appendix D – VSWR-Return loss conversion table	748
Appendix E – Cyclic prefix table	749
Appendix F – Motorola CDMA/EV-DO LMF	
Using JD700B series LMF interface	750
Setting up for a LMF test	750
Performing a LMF test	751
Appendix G – Bluetooth connection	752
Installing and setting up Bluetooth software	752
Making Bluetooth connection	752
Setting up communication in application	753
Turning Bluetooth mode on/off manually	754
Appendix H – Device driver installation	755
Appendix I – Ordering information	756
JD785B Base Station Analyzer	756
JD786B RF Analyzer	758
JD788B Signal Analyzer	759
JD745B Base Station Analyzer	762
JD746B RF Analyzer	764
JD748B Signal Analyzer	765
JD700B Series Common Options	768
Appendix J – RoHS information	771
JD780B series	771
JD740B series	772
Appendix K – On-screen keyboard	773
Adding or deleting letters	
Editing or adding a custom keyword	
Appending a keyword	
Appendix L – Supported map display parameters	776

About This Guide

Topics discussed in this chapter include the following:

Purpose and scope	21
Assumptions	21
Safety and compliance information	21
Conventions	22
Technical assistance	23

Sections "Safety and compliance information" and "Conventions" in this chapter contain information in French as well.

Purpose and scope

The purpose of this guide is to help you successfully operate the JD700B series (firmware version 3.066 and later) and use its features and capabilities. This document includes instructions that describe how to operate, set up, configure, and use the JD700B series, consisting of JD785B/JD745B Base Station Analyzer, JD786B/JD746B RF Analyzer, and JD788B/JD748B Signal Analyzer.

Objectif et champ d'application

Le but de ce guide est de vous aider à utiliser avec succès la série JD700B (version du firmware 3.066 et plus tard) et à utiliser ses fonctions et capacités. Ce document contient des instructions qui décrivent comment utiliser, créer, configurer et utiliser la série JD700B, composé de JD785B/JD745B Base Station Analyzer, JD786B/JD746B RF Analyzer, et JD788B/JD748B Signal Analyzer.

Assumptions

This guide is intended for novice, intermediate, and experienced users who want to use the JD700B series effectively and efficiently. We are assuming that you have basic operation experience and are familiar with basic mobile communication concepts and terminology.

Hypothèses

Ce guide est destiné aux débutants, intermédiaires et les utilisateurs avancés qui veulent utiliser série JD700B efficace et efficiente. Nous supposons que vous avez une expérience de base du fonctionnement et êtes familier avec les concepts de communication mobile et de la terminologie.

Safety and compliance information

It is mandatory to permanently connect this product to the protective earth.

When supplying power to this device, always use an AC power cable that includes an earth (safety) ground connection.

Informations de sécurité et de conformité

Il est obligatoire de se connecter en permanence ce produit à la protecteur terre. Lorsque alimenter en énergie cet appareil, utilisez toujours un câble d'alimentation secteur qui comprend une terre de sécurité.

WARNING

Do not attempt to service this product yourself, as opening or removing covers may expose you to dangerous voltage and other hazards. Refer all servicing to qualified service personnel.

AVERTISSEMENT

Ne pas tenter de réparer ce produit vous-même, car l'ouverture ou le retrait des capots peut vous exposer à des tensions dangereuses et autres risques. Confiez toute réparation à un personnel qualifié de service Viavi.

CAUTION

This equipment contains parts and assemblies sensitive to electrostatic discharge (ESD). Use ESD precautionary procedures when touching, removing, or inserting ESD sensitive parts and assemblies, or damage to components could result.

An electrostatic-sensitive device can only withstand voltage spikes of 10 to 100 volts. Any discharge greater than this can damage or effectively destroy such a device while going unnoticed by a technician. Common plastics (synthetic insulating materials), clothing, and paper or cardboard are the most common source of static charges.

MISE EN GARDE

Cet équipement contient des pièces et des assemblages sensibles aux décharges électrostatiques

(ESD). Utilisez ESD procédures de précaution en cas de contact, la suppression ou l'insertion de pièces de l'EDD et des assemblages sensibles, ou des dommages aux composants pourraient en résulter.

Un dispositif électrostatique sensible ne peut supporter des pointes de tension de 10 à 100 volts. Toute décharge supérieur à ce qui peut endommager ou détruire efficacement un tel dispositif alors passer inaperçu par un technicien. Matières plastiques (matériaux synthétiques isolants), les vêtements et le papier ou le carton sont la source la plus fréquente de charges statiques.

CAUTION

This instrument uses a Lithium Ion battery that, if not connected correctly, may lead to explosion. In case the battery needs to be exchanged, it must be the same kind as or compatible with the one shipped with your instrument.

The battery must not be disposed of in a landfill site or as municipal waste, and should be disposed of according to your national regulations.

MISE EN GARDE

Cet instrument utilise une batterie lithium-ion qui, s'il n'est pas connecté correctement, peut conduire à une explosion. Dans le cas où la batterie a besoin d'être remplacé, il doit être du même type ou compatible avec celui fourni avec votre instrument.

La batterie ne doit pas être éliminé dans un site d'enfouissement ou les déchets municipaux, et doit être éliminé conformément à la réglementation nationales.

Conventions

This guide uses typographical and symbols conventions as described in the following tables.

Conventions

Ce quide utilise les conventions typographiques et les symboles tels que décrits dans les tableaux suivants.

Table 1 Text formatting and other typographical conventions

Item	Text formatting/symbols used	Example(s)
Buttons or hard keys that the user presses on a physical device	Bold, all caps, default font	Press the ON button. Press the MODE hard key. Press the MARKER hard key.
Hot keys that the user presses on a physical device	Bold, all caps, italics, default font	Press the SYSTEM hot key. Press the MEASURE hot key.
Soft keys or toggle keys that the user presses on a physical device to select corresponding menus	Bold, default font	Press the Span soft key. Press the Channel Power soft key.
Soft key option separators	Denoted by a vertical bar that means "or", only one option can be selected with a single press	Press the Zone [1 2 3] soft key.
File type	Courier New	In .tra file type.
Required arguments (text variables in code)	Denoted by slanted brackets < >.	Enter <password></password>

Table 2 Symbol conventions

This symbol indicates a note that includes important supplemental information or tips related to the main text.

Ce symbole indique une note qui inclut des importante supplémentaire informations ou des pointes relatifs au texte principal.

This symbol represents a general hazard. It may be associated with either a DANGER, WARNING, or CAUTION message.

Ce symbole signale la présence d'un danger général.

This symbol represents hazardous voltages. It may be associated with either a DANGER, WARNING, or CAUTION message.

Ce symbole signale la présence d'un risque d'électrocution.

This symbol represents a risk of explosion. It may be associated with either a DANGER, WARNING, or CAUTION message.

Ce symbole signale la présence d'un risque d'explosion.

This symbol, located on the equipment, battery, or the packaging indicates that the equipment or battery must not be disposed of in a landfill site or as municipal waste, and should be disposed of according to your national regulations.

Ce symbole, situé sur l'équipement, la batterie ou l'emballage indique que l'équipement ou de la batterie ne doivent pas être jetés dans un site d'enfouissement ou les déchets municipaux, et doivent être éliminés conformément à la réglementation nationales.

Table 3	Safety definitions
---------	--------------------

DANGER Indicates a potentially hazardous situation that, if not avoided, *will* result in death or

serious injury. It may be associated with either a general hazard, high voltage, or risk of

explosion symbol.

DANGER Indique une situation potentiellement dangereuse qui, si elle n'est pas évitée, entraînera la mort

ou des blessures graves.

WARNING Indicates a potentially hazardous situation that, if not avoided, *could* result in death or

serious injury. It may be associated with either a general hazard, high voltage, or risk of

explosion symbol.

AVERTISSEMENT Indique une situation de danger potentiel qui, si elle n'est pas évitée, peut entraîner la mort ou des

dommages corporels graves.

CAUTION Indicates a potentially hazardous situation that, if not avoided, *could* result in minor or

moderate injury and/or damage to equipment. It may be associated with either a

general hazard, high voltage, or risk of explosion symbol.

When applied to software actions, indicates a situation that, if not avoided, could result

in loss of data or a disruption of software operation.

MISE EN GARDE Indique une situation de danger potentiel qui, si elle n'est pas évitée, peut entraîner des dommages corporels légers ou modérés.

Technical assistance

If you require technical assistance, call 1-844-GO-VIAVI or send an email to TAC@viavisolutions.com. For the latest TAC information, go to http://www.viavisolutions.com/en/services-and-support/support/technical-assistance.

Chapter 1 JD700B Series Overview

This chapter provides a general description of the JD700B series. Topics discussed in this chapter include the following:

About the JD700B series	25
Features and capabilities	25
Options	26
Specifications	26

About the JD700B series

Viavi wireless RF and fiber test solutions for the field include base station analyzers, cable and antenna analyzers, and signaling analyzers for the installation and maintenance of modern wireless communication systems. RF and fiber test is critical for wireless operators facing challenges of signal quality and signaling interference, and maintaining quality high-bandwidth services.

The JD700B series addresses spectrum analysis, interference analysis, and cable, antenna and modulation analysis, covering current wideband technologies such as WiMAX and LTE/LTE-Advanced.

Base station analyzer JD785B and JD745B

The Base Station Analyzer contains all the features and capabilities required to perform field-testing of cell sites of all wireless technologies, from 2G to 4G.

RF analyzer JD786B and JD746B

The RF Analyzer provides multi-purpose solution for the analysis of RF systems covering all physical aspects of transmission, reception, and interference of RF systems up to 8 GHz and 4 GHz, respectively.

Signal analyzer JD788B and JD748B

The Signal Analyzer contains all the features and capabilities required to perform cell site field-testing for all wireless technologies from 2G to 4G.

Features and capabilities

The JD700B series is the optimal test solution for installation and maintenance of cellular base stations and cell sites, running with external AC power or battery for the field.

The user interface has been specifically designed with customized menus and simple calibration procedures, providing service providers with accurate and reliable measurement results.

Applicable Systems

- cdmaOne/cdma2000
- EV-DO
- WCDMA/HSPA+
- GSM/GPRS/EDGE
- TD-SCDMA
- WiMAX
- LTE/LTE-Advanced (FDD and TDD)
- RF over Fiber (RFoFiber RFoCPRI and RFoOBSAI)

Key Features

Table 4 Key functions available in product models

Functionality	JD785B/JD745B	JD786B/JD746B	JD788B/JD748B
Spectrum Analyzer	•	•	•
Cable and Antenna Analyzer	•	-	
RF Power Meter		•	•
Optical Power Meter	-	•	-
Fiber Inspection	•	•	•
Signal Analyzers (optional)	•		-
RFoFiber (optional)	•	•	•
Interference Analyzer (optional)	-	-	-
Channel Scanner (optional)			•
OTA Measurement (optional)	-		•
EMF Analyzer (optional)			

Options

This instrument is provided with various options/features that are available to be ordered. See "Appendix I – Ordering information" on page 756 for more information.

Specifications

AC power

Input voltage is automatically selected within the instrument's tolerable input line voltage from 100 to 240 VAC. This instrument does not have a separate line protection fuse.

Table 5 AC power requirements

Item	JD780B Specification	JD740B Specification
AC Power	100 to 240 V AC, 50-60 Hz	100 to 240 V AC, 50-60 Hz
Power Consumption	42 W in operation 54 W with battery charging	42 W in operation 54 W with battery charging

Physical specifications

Table 6 shows weight with standard configurations and the battery pack installed.

Table 6 Physical specifications

Model	Dimension (H x W x D)
JD785B/JD786B/JD788B	7.7" x 11.6" x 3.2" (195 mm x 295 mm x 82 mm)
JD745B/JD746B/JD748B	7.7" x 11.6" x 3.2" (195 mm x 295 mm x 82 mm)

Chapter 2 Getting Started

This chapter provides general guides of how to get started with your JD700B series instrument. Topics discussed in this chapter are as follows:

	Unpacking the JD700B series	28
	Exploring the JD700B series	28
-	Installing battery pack	33
-	Starting up the JD700B series	33
	Managing files	34
	Configuring system	38
	Upgrading firmware	40
	Managing licenses	41
	Performing service diagnostic	44
	Using system administration	45
	Running IP test	46
-	Activating StrataSync	47
	Setting communication	49
	Managing help manual	54

Unpacking the JD700B series

Unpack and inspect the shipping package thoroughly to ensure that nothing was damaged during the shipment. Also, check that your delivered package includes all of your ordered items in the shipment. If contents in the package are damaged or defective or if there are any missing items, keep the shipping list and materials for carrier's inspection and contact your nearest Viavi's authorized sales and service office.

A basic test set of JD700B series would include the following items in the package. For more options, see "Appendix I – Ordering information" on page 756.

Table 7 Items included in a basic test set shipment

Item	Quantity
JD700B series instrument (JD785B, JD786B, JD788B, JD745B, JD746B, or JD748B)	1
AC/DC power adapter and power cord	1
1.5 meter cross LAN cable	1
1.8 meter USB A-to-B cable	1
> 1 GB USB memory	1
Rechargeable Lithium Ion battery pack	1
12 V DC automotive adapter	1
Stylus pen	1
User's guide and application software CD	1

Exploring the JD700B series

Figure 1 JD785B front panel view

Front panel

The JD700B series analyzers have the same front panel look as like **Figure 1**, except for the bumpers in different colors.

Power on/off button

Key	Description
(6)	POWER ON/OFF – You can turn your instrument on or off. Two LEDs indicate power source and status. See "Starting up the JD700B series" on page 33.

Function hard keys

You can use these hard keys to activate specified functions as labeled on each key.

Key	Description
Noche	MODE – You can select an analyzer mode from all the standard and optional modes available to your instrument.
Frank at	FREQ/DIST – You can configure frequency or distance settings.
Ampistode	AMP/SCALE – You can configure amplitude and scale settings.
FAXAV'S	BW/AVG – You can configure bandwidth and average settings.
mace Biograph	TRACE/DISPLAY – You can set up trace and display parameters.
Marker	MARKER – You can analyze measurements with markers.
Peak Search	PEAK SEARCH – You can set up peak search parameters.

Hot keys

When the user input field on the screen is inactive, you can use these hot keys to activate specific functions instead of numbers. When you see the user input field activated or highlighted, press the **ESC** hard key to use these hot keys.

Key	Description
Martin 1	MEASURE – You can select measurements available for your selected analyzer mode.
	MEASURE SETUP – You can set measurement parameters available for your selected measurement mode.
7	SAVE/LOAD – You can save or load your current screen, result, setup, or limit into or from the internal memory or an external USB memory drive.
	SWEEP – You can configure sweep parameters.
^{Тодрег} 2	TRIGGER – You can select trigger options such as internal, external, and GPS.
3	SYSTEM – You can configure your system settings or view your current system information.

Preset 6	PRESET – You can use this key to return to a known state and make measurements.
9	HOLD – You can change the sweep mode: Continue or Single.
Corre +/L	LIMIT – You can set limit settings such as display line, multi segment line, save limits, recall limits, or test specification limits.
	BACKLIGHT – You can turn the key backlight feature on or off.
0	HELP – You can have the online help screen on if available.

Soft keys

You can use not only the touchscreen keys but also these physical keys placed along the right side of the display to start a specific function associated with each soft key, invoke other screen keys, or select a unit. The **More** screen menu indicates that there are more than seven screen menus for the level. The small arrowhead symbol in the screen menu indicates that there are screen menus under the screen menu.

Data entry and other keys

ROTARY KNOB WITH ENTER KEY – You can change a value with predefined increments or move marker position. Rotating this knob clockwise increases value or moves a marker to the right and rotating counter clockwise does vice versa. This knob works as the ENTER hard key as well. ARROW KEYS – You can increase or decrease value or move your selection up, down, to the left, or to the right. NUMERIC KEYS – You can manually enter a value for measurement parameters. DEL – You can delete data entry. After pressing the ENTER key or selecting a unit soft key, you cannot delete or remove data entered. ENTER – You can save and confirm data entry. ESC – You can cancel any input in the user input field or dismiss a pop-up window on the screen. PREV – You can go back to the previous menu without changing current setup.	Key	Description
NUMERIC KEYS – You can manually enter a value for measurement parameters. DEL – You can delete data entry. After pressing the ENTER key or selecting a unit soft key, you cannot delete or remove data entered. ENTER – You can save and confirm data entry. ESC – You can cancel any input in the user input field or dismiss a pop-up window on the screen.		increments or move marker position. Rotating this knob clockwise increases value or moves a marker to the right and rotating counter clockwise does vice versa. This knob
DEL – You can delete data entry. After pressing the ENTER key or selecting a unit soft key, you cannot delete or remove data entered. ENTER – You can save and confirm data entry. ESC – You can cancel any input in the user input field or dismiss a pop-up window on the screen.		
key, you cannot delete or remove data entered. ENTER – You can save and confirm data entry. ESC – You can cancel any input in the user input field or dismiss a pop-up window on the screen.	5 Fran B	NUMERIC KEYS – You can manually enter a value for measurement parameters.
ESC – You can cancel any input in the user input field or dismiss a pop-up window on the screen.	Del	, , , , , , , , , , , , , , , , , , , ,
screen.	Enter	ENTER – You can save and confirm data entry.
PREV – You can go back to the previous menu without changing current setup.	ESC	
	Prof	PREV – You can go back to the previous menu without changing current setup.

Top panel

The JD700B series products have the same top view as Figure 2 and Figure 3.

Figure 2 Top view of JD785B with optical hardware option

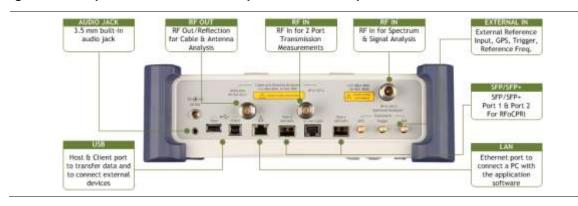
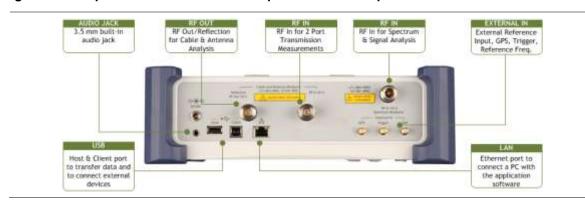



Figure 3 Top view of JD785B without optical hardware option

Reflection/RF Out (Cable and Antenna Analyzer)

The **Reflection/RF Out** port of the Cable and Antenna Analyzer is a precise 50 Ω N-type female connector that is used as the output signal port for the Cable and Antenna Analyzer mode.

CAUTION

Do not apply or connect power exceeding +25 dBm to this Reflection/RF Out port. If such power is applied, it will degrade the product's performance and can cause damage to the product in worst case.

RF In (Cable and Antenna Analyzer)

The **RF In** port is a precise 50 Ω N-type female connector that is used as the input signal port for 2-port vector measurements in the Cable and Antenna Analyzer mode.

CAUTION

The maximum power allowed to the RF In port is +25 dBm. If the input power exceeds the limit, it may degrade the product performance or cause damage to the instrument in a worst case. Do not connect any power feed exceeding 1 W directly to this port.

DC 18 V

The input power to this port shall be 18 V DC.

RF In (Spectrum Analyzer)

The **RF In** port is a precise 50 Ω N-type female connector that is used as the input signal port for spectrum analysis, signal analysis, and RF power measurement.

CAUTION

The maximum power allowed to the RF In port is +25 dBm for JD780B series and +20 dBm for JD740B series. If the input power exceeds the limit, it may degrade the product performance or cause damage to the instrument in a worst case.

Audio jack

The audio jack is labeled with a headphones icon. Plugging in headphones or earphones turns the speaker off.

USB

- **CLIENT:** This is a communication port that you can connect your instrument and your PC with application software JDViewer, JDRemote, or JDMapCreator. You must install driver software for the instrument on to the computer. See "Appendix H Device driver installation" on page 755 for more information.
- **HOST:** You can use this port to plug in an external USB memory to extend storage capacity or to upgrade the instrument's firmware. It supports most USB memory devices with 32-bit file system. You can also use this port to connect an external power sensor, Bluetooth USB adapter, or P5000i fiber microscope. See "Appendix G Bluetooth connection" on page 752 on how to set up and use the Bluetooth connection.

LAN

You can use this Ethernet communication port to connect your instrument and your PC using the application software JDViewer or Motorola WinLMF, if necessary. Two LEDs indicate data transfer activity and link status.

- ACTIVITY: The yellow LED is illuminated during data transfer.
- LINK: The green LED is illuminated when there is a valid communication connection.

SFP/SFP+

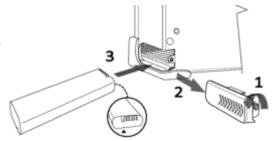
The optical hardware option board for RFoCPRI and RFoOBSAI supports all types of MSA (Multi-Source Agreement) compliant SFP transceivers. You can use these SFP/SFP+ ports to connect SFP modules to test CPRI/OBSAI protocols, detect an error or alarm, perform interference analysis, and transmit test pattern over fiber link.

External In

- **GPS:** You can plug in a GPS antenna to this SMA type female connector in order to get location information and highly accurate reference.
- **TRIGGER:** You can use this SMA type female connector to receive PP2S clock or 10 ms synchronization signals from an external timing reference.
- **REF:** You can use this SMA type female connector to receive 10 MHz, 13 MHz, or 15 MHz reference clock signals from an external frequency source.

Installing battery pack

You need to install the Lithium Ion battery pack provided with your instrument. Follow the instruction to install or remove the battery pack as needed.


Procedure

To install the battery pack:

- 1 Loosen the latching screw of the battery cover by turning counter clockwise.
- 2 Slide out the battery cover to open.
- 3 Insert the battery pack with the connector terminal side up and push in until it stops.
- 4 Slide in the battery cover to close.
- 5 Tighten the latching screw of the battery cover by turning clockwise.

To remove the battery pack:

- Loosen the latching screw of the battery cover by turning counter clockwise.
- 2 Slide out the battery cover.
- 3 Hold the battery strap and pull it out.

CAUTION

The battery pack that came with your instrument is Lithium Ion and it may, if not connected correctly, lead to explosion. In case you need to replace the battery, you must use one of the same kinds or compatible ones. You must dispose a battery according to your local safety and environmental regulations.

NOTE

It is recommended that you turn off the instrument to replace the battery. However, if you do not want to interrupt the current test, you can leave the module turned on with the AC power adapter plugged in.

Starting up the JD700B series

Use the power button to turn your JD700B series on or off. When external power is supplied via the AC/DC adapter, the upper orange LED is illuminated.

Procedure

To turn on:

- 1 Press and hold the POWER button for a few seconds until the lower green LED indicator is illuminated
- 2 Release the button and wait for a few seconds while booting up.

To turn off:

- 1 Press and hold the POWER button for a few seconds until the lower green LED indicator goes out.
- 2 Release the button.

Managing files

The JD700B series lets you save and load screen, result, setup, limit, logging data, or Fail events depending on your selected measurement modes and options.

NOTE

If you see greyed-out menus as you change measurement modes, this indicates that the menu(s) are not available to be used.

Using save

You can save your current screen, result, setup, and limit into the internal memory or your external USB memory drive.

Procedure

- 1 Press the SAVE/LOAD hot key. The Save/Load menu bar appears.
- 2 Press the Save soft key.
- **3** Select the save option, from the following choices:

To save	Select	File type
Current screen	Save Screen > Screen	.png
Measurement result in a report format with comments and captured screen images	Save Screen > Report	.pdf
Measurement result	Save Result	.tra .gom .grr .jdt
RRH profile (only available in BBU emulation mode)	Save Profile	.jcm
Measurement result (.csv)	Save Result as CSV Format	.csv
Setup and test configuration	Save Setup	.sta
Limit setting	Save Limit	.jml
Logging data	Save Logging Data	.grr .gsr .csv
Automatically screen or results that falls outside the defined limit settings (Failed event)	Save On Event	.png .tra .csv

The on-screen keyboard appears.

NOTE

- Save Setup saves a test configuration only, not a measurement limit setting. You must use Save Limit to save your limit settings.
- In the Spectrum measurement of Spectrum Analyzer and Interference Analyzer modes, Save Setup saves the test configuration and measurement limit settings.
- In the Cable and Antenna Analyzer mode, if the limit line is enabled and set, Save Result saves the trace together with the set limit line.
- In the Spectrum measurement of spectrum analyzer and Interference Analyzer modes, if the limit line is enabled and set, Save Result saves the trace together with the set limit line.
- An RFoCPRI/RFoOBSAI spectrum can be saved as a file, but the difference in its data

point does not allow the saved RFoCPRI/RFoOBSAI spectrum to be overlaid on a regular RF spectrum.

- 4 Toggle **Invert Colors** and select **On** to invert the image color.
- 5 Type the name of the file in the **File Name** field with or without using a keyword.
- Optional.

To create or edit keywords, touch the **Edit Keywords** button, select your desired keyword button in the upper screen, type a keyword, and then tap the **Save** button on the keyboard. See "Editing or adding a custom keyword" on page 773 for more information.

To include a keyword in the file name, touch the **Append Keywords** button, select your desired keyword, and then tap the **Keyboard** button. See "Appending a keyword" on page 774 for more information.

To change the file location in the internal memory or to your USB memory drive, tap the **Location** button, select your desired file path using the touch screen or the rotary knob, and then press the **Apply** soft key.

To create a folder, press the **Create Folder** soft key, type a directory name, and then press the **Apply** soft key.

- 7 Press the Save soft kev.
- 8 If you have selected **Save Screen > Report** in step **3**, pressing the **Save** soft key in the previous step **6** gives you another window where you can specify details on your report.
- **9** Type the name of the person who performed testing in the Engineer field.
- 10 Enter a description about the site or place in the Site Information field.
- 11 Enter your test purpose in the Test Purpose field.
- 12 Enter a summary of your test results in the Result field.
- 13 Type your company name in the Company Name field.
- 14 Enter your company or site address in the Address field.
- 15 To attach your company logo and up to six captured screens to the report, tap the **Click to Attach** bar, attach image files as desired, and then tap the **Save** button.

Saving fail events

Depending on the measurement mode, you can let the instrument automatically save measurement screen or result that falls outside the defined limit settings or the Fail indicator is on. You can also set to save the first event and hold the measurement or to save all the events continuously.

Procedure

- 1 Press the SAVE/LOAD hot key. The Save/Load menu bar appears.
- 2 Press the Save soft key.
- 3 Press the Save On Event soft key.
- 4 Press the Save Type soft key, and then select the save option from the choices: Screen, Result, or Result as CSV Format.
- 5 Optional. Toggle the Save Then Stop soft key to On in order to save the first event that falls outside the limit(s) and to hold the measurement. Otherwise, leave this feature off to save events continuously.
- **6** Press the **Start** soft key to start saving. The on-screen keyboard appears.
- 7 Type the name of the file in the **File Name** field with or without using a keyword.
- 8 Optional. Complete the following steps:

To create or edit keywords, touch the **Edit Keywords** button, select your desired keyword button in the upper screen, type a keyword, and then tap the **Save** button on the keyboard. See "Editing or adding a custom keyword" on page 773 for more information.

To include a keyword in the file name, touch the Append Keywords button, select your

desired keyword, and then tap the **Keyboard** button. See "Appending a keyword" on page 774 for more information.

To change the file location in the internal memory or to your USB memory drive, touch the **Location** button, select your desired file path using the touch screen or the rotary knob, and then press the **Apply** soft key.

To create a folder, press the **Create Folder** soft key, type a directory name, and then press the **Apply** soft key.

9 Press the Done soft key.

The "Event Save" appears on the screen and the Start screen menu changes to Stop.

10 Press the Stop soft key to end the event saving.

Saving logging data

You can save logging data if the measurement mode supports the feature and has the activated Save Logging Data soft key.

Procedure

- 1 Press the SAVE/LOAD hot key. The Save/Load menu bar appears.
- 2 Press the Save soft key.
- 3 Press the **Save Logging Data** soft key. The on-screen keyboard appears.
- 4 Type the name of the file in the **File Name** field with or without using a keyword.
- **5** Optional. Complete the following steps:

To create or edit keywords, touch the **Edit Keywords** button, select your desired keyword button in the upper screen, type a keyword, and then tap the **Save** button on the keyboard. See "Editing or adding a custom keyword" on page 773 for more information.

To include a keyword in the file name, touch the **Append Keywords** button, select your desired keyword, and then tap the **Keyboard** button. See "Appending a keyword" on page 774 for more information.

To create a folder, press the **Create Folder** soft key, type a directory name, and then press the **Apply** soft key.

To change the file location in the internal memory or to your USB memory drive, touch the **Location** button, select your desired file path using the touch screen or the rotary knob, and then press the **Apply** soft key.

NOTE

In is recommended that you use an external USB memory drive to save logging data in the Auto Measure mode in order to have enough free space.

- 6 Optional only in the Auto Measure mode.
 - Toggle the **Save Screen** soft key and select **All** to save all the Auto Measure screens or **Fail** to save only the ones with the Fail on.
- 7 Press the **Save** soft key to start logging.
 - The "Recording" appears on the screen.
- **8** Press the **ESC** hard key to stop logging data and complete saving.

Using load

You can load your saved screen, result, setup, and limit from the internal memory or your external USB memory drive.

Procedure

1 Press the SAVE/LOAD hot key.

The Save/Load menu bar appears.

2 Press the Load soft key. The Load menu bar appears.

3 Select the load option, from the following choices:

To load	Select
Saved screen or report	Load Screen
Measurement result	Load Result
Setup and test configuration	Load Setup
Limit setting	Load Limit
Logging data	Load Logging Data
Map file	Load Map
Scenario	Load Scenario

The file manager window appears.

NOTE

An RFoCPRI/RFoOBSAI spectrum can be recorded and replayed in the RFoCPRI/RFoOBSAI Interference Analyzer (IA) mode only. It is not compatible with a standard spectrum logging file in the Interference Analyzer mode.

- 4 Select the name of the file to be loaded from the internal memory or from your USB drive. Information of your selected file appears in the File Information pane.
- 5 Press the Load soft key.

Using file manager

The File Manager lets you copy, cut, paste, and delete data files saved in the internal memory or in your USB memory drive.

- 1 Press the SAVE/LOAD hot key. The Save/Load menu bar appears.
- 2 Press the **File Manager** soft key. The file manager window appears.
- **3** To copy, cut, and paste, complete the following steps:
 - a Select a file or folder by using the touch screen or the rotary knob.
 - **b** Select the **Copy** or **Cut** soft key.
 - **c** Select the location to which the file or folder to be pasted.
 - d Press the Paste soft key.
- 4 To delete, complete the following steps:
 - Select a file or folder by using the touch screen or the rotary knob.
 - Press the **Delete** soft key.
 The confirmation dialog box appears.
 Once the file or folder is deleted, you cannot recover it.
 - Select OK to delete.
- 5 Press the **Exit** soft key or the **ESC** hard key to close the file manager window.

Configuring system

Setting frequency reference

You can improve measurement accuracy by setting frequency reference.

Procedure

- 1 Press the **SYSTEM** hot key.
- 2 Press the Freq Reference soft key.
- 3 Select the frequency reference option: Internal, External 10 MHz, External 13 MHz, External 15 MHz, or GPS.

Setting date and time

You can set the instrument' system clock to your region.

Procedure

- 1 Press the SYSTEM hot key.
- 2 Select System Configuration > Date/Time.

The current time zone information box appears.

- **3** To change the standard time zone, complete the following steps:
 - a Press the Std Time Zone soft key.
 - **b** Select your time zone by using the rotary knob or arrow keys. You can also use the **Top/Bottom** or **Page Up/Down** soft keys.
 - c Press the **ENTER** hard key to save your change. You can also press the rotary knob.
- **4** To change the date format, complete the following steps:
 - a Press the Date Format soft key.
 - **b** Select **YYMMDD**, **MMDDYY**, or **DDMMYY** as needed.
- **5** To set the date and time manually, complete the following steps:
 - a Select Year, Month, Day, Hour, or Minute soft key as needed.
 - b Enter a value by using numeric keys.
 - c Press the Enter soft key to save your change.
- 6 Press the Apply screen key to save and exit.

Setting language

You can change the system language for the menus, messages, and information on screen.

Procedure

- 1 Press the **SYSTEM** hot key.
- 2 Select System Configuration > Language.
- **3** Select the language option from the choices available.

Setting power on

- 1 Press the SYSTEM hot key.
- 2 Press the Power On soft key.

3 Select the power-on option, from the following choices:

Last: Boots up with the last state of the instrument before power-off or shut-down.

Preset: Boots up with the default settings preset in the factory.

User: Boots up with the user-defined setup.

When the User is selected, the User Setup menu under System becomes activated.

- 4 Optional. If you have selected User in step 3, complete the following steps to specify a user setup file to be used:
 - a Press the User Setup soft key.
 - **b** Select the name of the user setup file.
 - c Press the Done soft key.

NOTE

The Preset is to revert to original factory settings. It is recommended that you use this option when you have experienced badly misadjusted settings.

Changing display mode

You can change the instrument's display mode as needed.

Procedure

- 1 Press the **SYSTEM** hot key.
- 2 Select System Configuration > Display Mode.
- 3 Select a display mode from the choices: Indoor, Outdoor, and Night.
- 4 The instrument optimizes screen colors to each choice.

Setting sleep time

You can set the amount of time up to 255 minutes to let the instrument automatically turn the backlight off and enter into power saving mode after no actions or data entries. Default setting is zero, which indicates that the sleep mode is turned off and screen backlight is always on.

Procedure

- 1 Press the **SYSTEM** hot key.
- 2 Select System Configuration > Sleep Time.
- 3 Enter the amount of minutes by using the numeric keys. You can also use the rotary knob.
- 4 Press the Enter soft key.

Adjusting LCD brightness

You can adjust display brightness from one to ten as needed. The larger number you set, the brighter the display becomes.

- 1 Press the **SYSTEM** hot key.
- 2 Select System Configuration > LCD Brightness.
- 3 Enter a value by using the numeric keys. You can also use the rotary knob.
- 4 Press the Enter soft key.

Adjusting volume

You can turn the sound on or off or adjust the volume from one to ten as needed.

Procedure

- 1 Press the SYSTEM hot key.
- 2 Select the sound option, from the following choices:

To turn the sound or alarm off, toggle the **Sound** soft key to **Off**.

To turn the sound or alarm on, toggle the **Sound** soft key to **On**.

To adjust the volume, complete the following steps:

- a Press the Sound soft key.
- **b** Enter a value by using the numeric keys.
- c Press the Enter soft key.

Upgrading firmware

It is recommended that you maintain your instrument up-to-date with its latest firmware in order to achieve the instrument's optimal performance.

Checking installed firmware version

Procedure

- 1 Press the **SYSTEM** hot key.
- 2 Press the HW/FW Info soft key.
- 3 Find the installed version number in the **Firmware** field.
- **4** From a computer with Internet access, visit <u>Viavi's Software Updates website</u> and check if your installed firmware is the latest one. Complete the steps **5-6** if you want to update your firmware with using your USB memory drive.
- 5 Download a latest firmware file from the website to the root directory of your USB memory drive.

NOTE

It is recommended that you format your memory drive to have enough space to download the file.

6 Unzip the download file into the root directory of your USB memory stick. A firmware file (* . fw) and a firmware release note (* . pdf) are extracted.

Installing new firmware

To update your firmware, you can choose either way of using your USB memory drive or accessing the FTP server over the network.

Upgrading from USB memory drive

- 1 Power your instrument via the AC-DC adapter to prevent any severe damage to your instrument caused by a power-off in the middle of the upgrade, which may require a repair in the factory.
- 2 Plug in the USB memory drive to the USB Host port of your instrument.
- 3 Press the SYSTEM hot key.
- 4 Select More (1/2) > Upgrade > USB.

The file manager window appears.

- 5 Highlight the firmware file (.fw) saved in the root directory of your USB drive.
- 6 Press the Select soft key. The Update Firmware dialog box appears.
- **7** Press the **OK** button to start to install the new firmware. The Upgrade Status bar appears.

NOTE

Firmware upgrade will be done within 30 minutes or so in most cases, but depending on the number of files to be reconfigured, it may take longer than that.

8 After you have restarted the instrument, check the installed firmware version and DSP versions in the System settings. Refer to the firmware release note to find correct DSP version and compatible application software versions.

WARNING

Do not remove the USB drive while upgrading the firmware.

Upgrading from FTP server

Procedure

- 1 Power your instrument via the AC-DC adapter to prevent any severe damage to your instrument caused by a power-off in the middle of the upgrade, which may require a repair in the factory.
- 2 Press the **SYSTEM** hot key.
- 3 Select More (1/2) > Upgrade > FTP Server. The upgrade server dialog box appears.

NOTE

Older version of firmware does not have the FTP Server option. It is recommended that you update your firmware with the USB option first.

- 4 Enter ftp2.jdsu.com in the server address field.
- 5 Enter your proxy server address in the proxy server field, if necessary. Contact your system administrator for your proxy server information.
- 6 Tap the **Check** button to check if the installed firmware version is the latest one.
- 7 Do one of the following:

If you view the latest firmware version information, tap the **Install** button to continue. If the message "**Your firmware is up to date.**" is displayed, tap the **Cancel** button.

NOTE

Firmware upgrade will be done within 30 minutes or so in most cases, but depending on the number of files to be reconfigured, it may take longer than that.

8 After you have started the instrument, check the installed firmware version and DSP versions in the System settings. Refer to the firmware release note to find correct DSP version and compatible application software versions.

Managing licenses

The License Manager lets you view installed options, install additional ones, and load evaluation licenses.

Checking installed or installable options

- 1 Press the SYSTEM hot key.
- 2 Select More (1/2) > License Manager. The License Manager menu bar appears.

3 Select the menu, from the following choices:

To view the installed options, select the **Installed Options** soft key. The list of options appears.

NOTE

- The "(P)" indicates permanent licenses.
- The "(T)" indicates temporary licenses.
- The "(FL)" indicates floating licenses.

To view the installable options, select the Installable Options soft key.

Installing purchased options

Procedure

- 1 Press the SYSTEM hot key.
- 2 Select More (1/2) > License Manager. The License Manager menu bar appears.
- **3** Select the **Install an Option** soft key. The Installable Options window appears.
- 4 Highlight the name of the option from the list by using the rotary knob.
- **5** Press the **ENTER** hard key. You can also press the rotary knob. The License Code bar appears.
- **6** Enter the number of the license to activate by using the numeric keys.
- 7 Press the ENTER hard key. You can also select the Enter soft key.

Loading temporary license

The temporary license that you received from Viavi is intended for your evaluation only and it expires after its specified time limit.

Procedure

- 1 Press the **SYSTEM** hot key.
- 2 Select More (1/2) > License Manager. The License Manager menu bar appears.
- 3 Select the Load Temp License soft key. The file manager window appears.
- 4 Select the name of the license file.
- 5 Press the Load soft key.
- 6 Optional. You can check the loaded license using the **Installed Options** menu.

Adding a floating license

If you have a Viavi StrataSync account, you can simply add a floating license by synchronizing your instrument with the StrataSync server. Before you begin, you need to verify that the necessary licenses have been deployed to the instrument. See "Activating StrataSync" on page 47 for more information.

- 1 Press the **SYSTEM** hot key.
- 2 Select More (1/2) > Utility > StrataSync.
 The StrataSync setting window appears as shown in Figure 4.
- 3 Enter <server address> in the Server Address field for StrataSync.

The server address at the time of this document production is "**stratasync.viavisolutions.com**", which may change.

NOTE

Viavi provides you with the information required to access StrataSync at your purchase of StrataSync, including the **Server Address**, **Account ID**, and **Port** number. See "JD700B Series Common Options" on page 768 for more information on available options.

- 4 Enter <account number> in the Account ID field.
- 5 Enter <technician number> in the Technician ID field.
- **6** To set the port number and proxy server address, complete the following steps:
 - Tap the **Detail Settings** button. The input dialog box appears.
 - **b** Enter **<port number>** in the **Port** field.
 - Enter proxy server address> in the Proxy Server address, if necessary.
 Contact your system administrator for your proxy server information.
 - d Tap the **Apply** button to save and exit.
- 7 Tap the **Start Sync** button, and then do one from the following steps:

When successfully synchronized, the text "Reboot the instrument to update the license information" appears. Tap the Apply button to exit and reboot the instrument.

When any errors occur during the synchronization:

The text "Report log has been updated. Check report info" appears and the Report button is activated at the same time.

- Tap the Report button.The list of errors is displayed on the report window. See Figure 5.
- **b** Review the error details, and then tap the **OK** button to exit.

Figure 4 StrataSync setting window

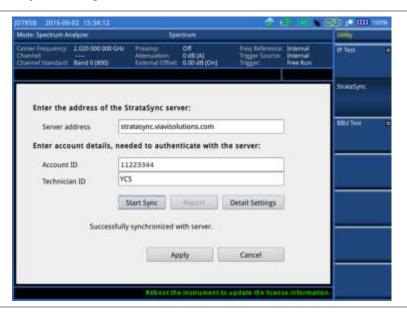


Figure 5 StrataSync report window

Viewing OSS license

Procedure

- 1 Press the **SYSTEM** hot key.
- 2 Select More (1/2) > License Manager. The License Manager menu bar appears.
- 3 Select the OSS License soft key. The Open Source Code Notification & Distribution screen appears.

Performing service diagnostic

The Service Diagnostic lets you view system log, perform self-test, revert the instrument settings to its factory settings, or perform touch alignment.

Viewing system log

Procedure

- 1 Press the **SYSTEM** hot key.
- 2 Select More (1/2) > Svc Diagnostic > System Logging.
- 3 Optional. Press the Save soft key to save the system log as a .log file type.

Running self-test

You can run a self-test on your instrument boards and modules.

- 1 Press the **SYSTEM** hot key.
- 2 Select More (1/2) > Svc Diagnostic > Self Test.

The on-screen instruction appears.

- 3 Connect a test cable between the Reflection/RF Out port for Cable and Antenna Analyzer and the RF In port for Spectrum Analyzer.
- 4 Press the Start soft key. The test result window appears.
- 5 Optional. Press the Save Screen soft key to save the self-test results.

Performing factory reset

The Factory Reset is used only when you want to purge all the user settings and data stored in the system and return to the instrument's factory state.

Procedure

- 1 Press the SYSTEM hot key.
- 2 Select More (1/2) > Svc Diagnostic > Factory Reset. The confirmation dialog box appears.
- 3 Press the Yes soft key to continue. Otherwise, select No.

NOTE

It is recommended that you copy your setup or result data to an external USB memory drive so that you can restore them later.

Re-aligning touch screen

When you consistently experience of the instrument responding improperly to your touch on the screen, you may need to perform this touch-screen alignment.

Procedure

- 1 Press the **SYSTEM** hot key.
- 2 Select More (1/2) > Svc Diagnostic > Touch Alignment.
 The white screen with a plus sign (+) in the upper-left corner appears.
- 3 Touch the plus sign and repeat until the previous screen is back on.

Using system administration

The Administration is used to disable editing limits, enable modifying help, or change administration password.

Logging in

You need to log in first to access the administration menus.

- 1 Press the SYSTEM hot key.
- 2 Select More (1/2) > Administration. The password box appears.
- 3 Enter password> by using the numeric keys.
 Default password is "0000". To change the password, see "Changing password" on page 46.

4 Press the Apply soft key.

Changing password

Procedure

- 1 Press the **SYSTEM** hot key.
- 2 Select More (1/2) > Administration, and then enter your password.
- 3 Press the Change Password soft key.
 - The new password box appears.
- **4** Enter a new password up to eight digits by using the numeric keys.
- 5 Press the Apply soft key. The reconfirmation box appears.
- 6 Enter the new password again by using the numeric keys.
- 7 Press the Apply soft key to complete changing password.

Locking limit key

You can lock the *LIMIT* hot key and disable editing predefined limit settings to prevent any unintentional changes, which could result in incorrect measurements.

Procedure

- 1 Press the **SYSTEM** hot key.
- 2 Select More (1/2) > Administration, and then enter your password.
- 3 Toggle the Edit Limit soft key and select Disable to lock the LIMIT hot key or Enable to unlock the key.

NOTE

Disabling the Edit Limit limits the access to the *LIMIT* hot key only. The Limit features including displaying limit line(s) and Pass/Fail result function properly as predefined.

Running IP test

You can test an Internet Protocol (IP) configuration of the cell site's backhaul.

Procedure

- 1 Press the **SYSTEM** hot key.
- 2 Select More (1/2) > Utility > IP Test.
- 3 Select the command option, from the following choices:

To display the route and measure transit delays of packets, toggle the **Commands** soft key and select **Traceroute**.

To display the reachability and measure the round-trip time, toggle the **Commands** soft key and select **Ping**.

- **4** To set the destination IP address to be tested, complete the following steps:
 - a Press the **Destination IP** soft key.
 - b Press the First Octal soft key.
 - Enter a value, and then press the Enter soft key.
 - d Press the **Second Octal** soft key and repeat step **c**.

- e Press the **Third Octal** soft key and repeat step **c**.
- f Press the **Fourth Octal** soft key and repeat step **c**.
- 5 Press the Execute soft key and select Start to start testing. Test result is displayed on the screen as the test is progressing.
- 6 Press the **Execute** soft key and select **Stop** to stop testing.
- 7 Optional. Press the Save soft key to save the test result as a .txt file type.

Activating StrataSync

StrataSync is a cloud-based solution that provides asset, configuration, and test data management for Viavi instruments. StrataSync manages and tracks test instruments, collects and analyzes results from the entire network, and informs and trains the workforce.

The JD700B series is compatible with the Viavi StrataSync cloud. This optional capability allows you to manage your instrument inventory ensuring you know where all your valuable equipment is and which engineer is using it. In addition, it allows you to keep your instruments current through the remote upgrade capability that ensures all instruments have the latest firmware. It also enables the centralized distribution of configuration settings to ensure all your engineers use the same instrument settings resulting in consistent measurements.

Once testing is completed, the trace files can be uploaded onto StrataSync for secure storage and sharing. This sharing capability allows engineers who have a problem they cannot resolve to request help from an expert who can analyze the trace file via StrataSync using applications such as JDViewer, JDFileViewer, JDPowerMeter, etc. from anywhere without having to be at the instrument, helping resolve problems even faster.

Setting up Internet connection

Your JD700B series instrument must have Internet access to be able to connect to the StrataSync. You can set up for wireline or wireless Ethernet network connection. You can also use your mobile device's data network such as the Bluetooth tethering on an Android-based smartphone and the Personal Hotspot on an iOS-based smartphone. If you want to share your mobile's data network, you need to connect your instrument to your mobile device.

Procedure

- 1 Connect one of the Parani-UD100 Bluetooth adapters to the USB port of your JD780B or JD740B series.
- 2 Turn on Bluetooth on your mobile device, and then activate its tethering or hotspot.

On Android mobile devices:

- a Go to Settings > Connections > Bluetooth.
- b Check the box for Visible to all nearby Bluetooth devices to make your mobile device discoverable by your instrument.
- **c** Go to **Settings > More networks > Tethering and portable hotspot**.
- **d** Check the box for **Bluetooth tethering** to enable sharing your mobile device's Internet connection with your instrument.

On iOS mobile devices:

- a Go to Settings > Bluetooth.
- b Turn on Bluetooth.
- c Go to Settings > Personal Hotspot.
- **d** Turn on **Personal Hotspot** to make your mobile device discoverable by your instrument and enable sharing your mobile device's Internet connection with your

instrument

- 3 On your JD780B or JD740B series instrument, press the **SYSTEM** hot key.
- 4 Select System Configuration > Remote Interface > Bluetooth > Connect.
- 5 Press the Scan soft key to discover your mobile device. You will find your mobile device from the list on the screen.
- 6 Highlight your mobile device name from the list, and then press the Select soft key. A dialog box appears.
- 7 Tap the **Connect** button to pair and connect.
- 8 On your mobile device, enter **0000** in the PIN field, and then tap the **OK** button or **Pair** button. If the connection is successful, "(Paired & Connected)" appears next to the name of your mobile device on your instrument. If the connection is unsuccessful, repeat steps **6** and **7**.
- 9 Press the PREV hard key to return to the Bluetooth Information screen that displays the paired device and connected service including your CellAdvisor's IP Address.

NOTE

If you want to use the Web-based remote control described on page 53 using this Bluetooth tethering, record the IP address assigned to your JD700B series to have access to the instrument on your smartphone's Web browser.

Establishing a connection to StrataSync

Procedure

- 1 Press the **SYSTEM** hot key.
- 2 Select More (1/2) > Utility > StrataSync.

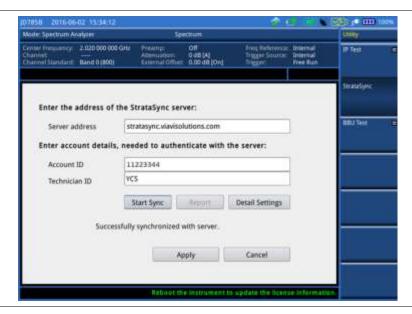
The StrataSync setting window appears as shown in Figure 6.

3 Enter <server address> in the Server Address field for StrataSync. The server address at the time of this document production is "stratasync.viavisolutions.com", which may change.

NOTE

Viavi provides you with the information required to access StrataSync at your purchase of StrataSync, including the **Server Address**, **Account ID**, and **Port** number. See "JD700B Series Common Options" on page 768 for more information on available options.

- 4 Enter <account number> in the Account ID field.
- 5 Enter <technician number> in the Technician ID field.
- 6 To set the port number and proxy server address, complete the following steps:
 - **a** Tap the **Detail Settings** button. The input dialog box appears.
 - **b** Enter **<port number>** in the **Port** field.
 - c Enter proxy server address> in the Proxy Server address, if necessary.
 Contact your system administrator for your proxy server information.
 - d Tap the **Apply** button to save and exit.
- 7 Tap the **Start Sync** button, and then do one from the following steps:


When successfully synchronized, the text "Reboot the instrument to update the license information" appears. Tap the Apply button to exit and reboot the instrument.

When any errors occur during the synchronization:

The text "Report log has been updated. Check report info" appears and the Report button is activated at the same time.

- a Tap the **Report** button. The list of errors is displayed on the report window.
- **b** Review the error details, and then tap the **OK** button to exit.

Figure 6 StrataSync setting window

StrataSync status indicators

The StrataSync indication icons provide you with the connection and activity status.

Indicator	Description
<u></u>	Indicates that your instrument is idle to be connected and synchronized with the StrataSync server.
**	Indicates that your instrument is acquiring an authentication, synchronizing with the server, and sharing data.
₹	Indicates that your instrument is synchronized successfully.
Ŷ	Indicates that your instrument failed to synchronize with the StrataSync server or encountered an error.

Setting communication

JD700B series provides several methods for you to connect your instrument with application software or other instruments and devices.

Configuring Ethernet

You can configure a network to connect your JD700B series to a computer installed with Viavi software applications such as JDViewer or JDRemote via Ethernet. JD700B series supports both IPv4 and IPv6 protocols.

Setting for IPv4 protocol

- 1 Press the **SYSTEM** hot key.
- 2 Select System Configuration > Ethernet Config > IPv4. The Ethernet Configuration box appears.

3 Do one of the following:

To enable automatic IP addressing, toggle the Mode soft key to DHCP.

To manually assign fixed IP addresses, complete the following steps:

- a Toggle the Mode soft key to Static.
- b Press the IP Address soft key.
- Enter an address including dots in the user input field.
- d Press the ENTER hard key or Enter soft key.
- Press the Subnet Mask soft key and repeat steps c-d.
- f Press the Gateway soft key and repeat steps c-d.
- g Press the **DNS** soft key and repeat steps **c-d**.
- 4 Press the **Apply** soft key to apply and complete the network configuration. The message "Applying Network Info..." appears.

Setting for IPv6 protocol

Procedure

- 1 Press the SYSTEM hot key.
- 2 Select System Configuration > Ethernet Config > IPv6.
- 3 Do one of the following:

To enable automatic IP addressing, toggle the **Mode** soft key to **Auto**.

To manually assign fixed IP addresses, complete the following steps:

- a Toggle the Mode soft key to Static. The Ethernet Configuration box appears.
- b Press the IP Address soft key.
- Type in an address including colons using the on-screen keyboard.
- d Press the **Apply** soft key to complete the input.
- e Press the Subnet Prefix Length soft key.
- f Enter a length value using the numeric keys, and then press the **Enter** soft key.
- g Press the **Gateway** soft key and repeat steps **c-d**.
- h Press the DNS soft key and repeat steps c-d.
- 4 Press the **ESC** hard key, and then make sure to press the **Apply** soft key in the IPv6 menu bar in order to apply and complete the network configuration.

The message "Applying Network Info..." appears.

Setting for JDViewer and JDRemote

The **App SW** is set by default to make it easy to connect your instrument to JDViewer, JDRemote, JDMapCreator, and other applications. After using other remote interfaces such as SCPI, LMF, and USBTMC, it is recommended that you set the LAN and USB settings back to App SW.

Procedure

- 1 Press the SYSTEM hot key.
- 2 Press the System Configuration soft key.
- 3 Press the Remote Interface soft key and then do the following:

Select the LAN soft key and then press the App SW soft key.

Select the **USB** soft key and then press the **App SW** soft key.

Setting USBTMC mode

The USB Test & Measurement Class (USBTMC) is a standard for programmatic control of USB-based test instruments that defines protocols used to send and receive messages. If you want to use the USBTMC protocol to communicate with the instrument remotely, you can turn this TMC Mode on.

Procedure

- 1 Press the **SYSTEM** hot key.
- 2 Select System Configuration > Remote Interface > USB.
- 3 Press the USBTMC soft key. The confirmation dialog box appears.
- 4 Press the **USBTMC** soft key again to confirm the mode change and reboot the instrument.

NOTE

After using the USBTMC mode, you may want to set this setting back to **App SW** if you use JDViewer mainly for remote controlling your JD700B series.

Setting SCPI mode

You can use SCPI commands to control your JD700B series remotely.

Procedure

- 1 Press the **SYSTEM** hot key.
- 2 Select System Configuration > Remote Interface > LAN.
- 3 Press the SCPI soft key.

NOTE

After using the SCPI mode, you may want to set this setting back to **App SW** if you use JDViewer or JDRemote mainly.

Configuring LMF setting

The Local Maintenance Facility (LMF) setting is used in order to perform TX Calibration and TX Audit on Motorola's CDMA/EV-DO BTS in the RF Power Meter mode. See "Appendix F – Motorola CDMA/EV-DO LMF" on page 750 for more information.

Enabling Bluetooth connection

If your JD700B series has the Bluetooth Connectivity option installed with a license, you can use the Bluetooth mode to enable communicate between your instrument and your computer with application software such as JDRemote and JDViewer or to transfer files to a Bluetooth storage device. See "Appendix G – Bluetooth connection" on page 752 for more information.

Enabling Wi-Fi connection

Wi-Fi Connectivity is an optional feature that you can activate by installing a purchased license on your JD700B series. After plugging a USB Wi-Fi LAN card using Realtek NICs into the instrument, you can join a wireless network from the instrument so that you can have access to StrataSync or control the instrument from the Web-based remote control on a computer.

Procedure

1 Plug in your USB Wi-Fi LAN card to the USB Host port of the JD700B series. The Wi-Fi LAN card is detected and the white Wi-Fi indicator appears on the screen to indicate it.

b

NOTE

CellAdvisor JD700B series is compatible only with a USB LAN card that uses Realtek NICs (RTL8188eu, RTL8192cu, and RTL8812au).

- 2 Press the **SYSTEM** hot key.
- 3 Select System Configuration > Remote Interface > Wi-Fi.

The Wi-Fi mode is turned on automatically. After searching nearby networks, the instrument displays a list of networks.

- **4** To select a network to join, complete the following steps:
 - To refresh the networks list, press the **Scan** soft key.

 The instrument displays all detected networks as **Detected** and previously connected ones as **Saved**.
 - **b** Highlight a network to join by using the arrow keys or rotary knob.
 - Press the Select soft key.
 The Wi-Fi Connection Info window appears for entries. Figure 7 is an example.
 - To enter a user identity and a password for the network, complete the following steps:
 - a Tap on the input box for **Identity**, if required.
 - The on-screen keyboard appears.
 - Type your identity, and then press the **Apply** soft key.
 - **c** Tap on the input box for **Password**, if required. The on-screen keyboard appears.
 - d Type a correct password that must be at least eight characters long.
 - e Press the Apply soft key.
 - To view the password exactly as entered, tap the checkbox for **Show Password** to enable it.
- 6 To configure IP network settings, complete the following steps:
 - Select the TCP/IP protocol option from the choices: **IPv4** and **IPv6**. Sub-selection options change according to your selection. If the selected network supports IPv6, you can configure IP settings for it.
 - **b** Do one of the following:

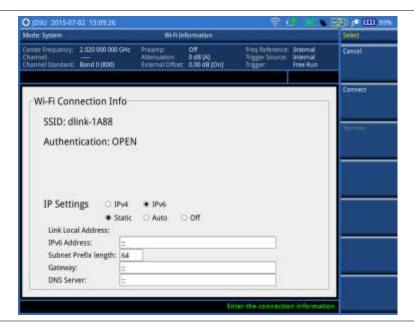
To enable automatic IP addressing, select **DHCP** for IPv4 or **Auto** for IPv6. It is recommended that you select DHCP unless otherwise you know static IP addresses.

To manually assign fixed IP addresses, select **Static**, and then enter addresses as required for IPv4 or IPv6. If you do not have required information, contact your network administrator.

To disable the IPv6 protocol, select Off.

7 Press the Connect soft key.

Once connected, the Wi-Fi indicator turns to green and the Wi-Fi Connection Info window is updated with information about the connected network including SSID, status, authentication type, encryption method, BSSID, and assigned IP address(es). If you have selected **Auto** for IPv6 in step **6**, you will have Link-Local, Stateless, and Stateful instead of IP Address. If you see the green Wi-Fi indication with a red exclamation mark in the center, it means that an IP address has not been assigned.



NOTE

It is important to record the IP address(es) if you want to use the Web Remote on your computer.

- 8 To disconnect the currently connected network, select the network and then press the Disconnect soft key.
- 9 To forget the selected network and delete it permanently from the list, press the **Remove** soft key.

Figure 7 Example of Wi-Fi connection information window

Enabling Web-based remote control

If your JD700B series has the Wi-Fi Connectivity option installed with a license, you can enable this Web Remote feature to control your instrument from most of Web browsers including Windows Internet Explorer (IE) 6 and later, Firefox, Chrome, Safari, and Android native browser in an accessible network. You can also use this feature to allow other users to access your instrument remotely and share the live screen concurrently with up to 10 clients in the network.

Procedure

- 1 Press the SYSTEM hot key.
- 2 To get the IP address assigned to your instrument, do one of the following:

For wireline LAN connection:

- a Select System Configuration > Ethernet Config > IPv4 or IPv6.
- **b** Toggle the **Mode** soft key and select **DHCP** or **Auto** for automatic IP addressing.
- Press the Apply soft key. The Ethernet Configuration box is updated with assigned IP address(es). For IPv6 Auto, you will see Link-Local, Stateless, and Stateful instead of IP Address.
- d Record the IP address(es).

NOTE

If your network does not support the automatic IP addressing, contact your network administrator to get a fixed IP address assigned to your instrument.

For wireless LAN connection:

- a Select System Configuration > Remote Interface > Wi-Fi.
- **b** Select the currently connected network from the list, and then press the **Select** soft key.
- c Record the IP address displayed at the bottom.

For Bluetooth tethering on an Android-based smartphone or Personal Hotspot on an iOS-based smartphone:

- a Select System Configuration > Remote Interface > Bluetooth.
- Record the IP address assigned to your instrument under Connected Service.
- 3 Press the SYSTEM hot key again.
- 4 Select System Configuration > Remote Interface.
- 5 Toggle the Web Remote soft key and select On to enable it.

Open a Web browser on your computer or mobile device, and then enter the IP address you have obtained in step 2, depending on the TCP/IP protocol. Examples are the following:

IPv4: 10.82.26.254 (put the entire address including dots in the URL bar)

IPv6: [fe80::21b:22ff:fea1:924a] (make sure to add the brackets "[" and "]" and put the entire address including colons in the URL bar)

Your instrument's live screen appears on the Web browser as shown like Figure 8 or Figure 9.

NOTE

The IPv6 protocol is supported on the operation system "Windows Vista" and later.

Figure 8 Example of Web remote on iPhone

Figure 9 Example of Web remote on Chrome

Managing help manual

The JD700B series contains the JD700B series help manual by default. The name of default help manual is "**System_Help**". You can browse the manual instantly from any screen by pressing the *HELP* hot key.

Adding other help manual

You can add other help manuals to your instrument by importing a folder of help manuals (.html) from a USB memory drive.

Procedure

- 1 Insert a USB memory drive that contains the folders of help manuals (.html).
- 2 Press the *HELP* hot key.
- 3 Select Help manager > Import Help Files. The list of help folders appears on the import help files window.
- 4 Select a folder you want to add.

NOTE

You cannot copy the "Internal" folder.

5 Tap the Copy button to complete. The text "Copy Completed" appears. The folder is copied under the User_Help folder in the Select Help. See Figure 10.

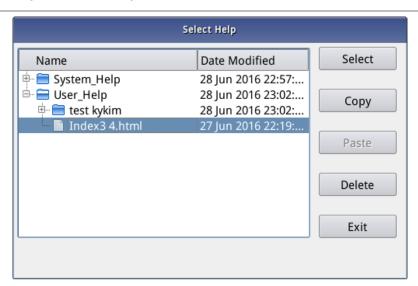
NOTE

The maximum storage size for user help is 10M. If the file exceeds the remained storage space, the text "Not enough space left" appears.

Viewing help manual

You can select a help manual to view on your instrument.

Procedure


- 1 Press the *Help* hot key.
- 2 Select Help Manager > Select Help. The list of help files appears on the select help window.
- The list of help files appears on the select help window.
- 3 Select a folder or a help file you want to view, and then tap the Select button. The select help window is dismissed.
- 4 Press the Home soft key to view the selected help manual. The selected help manual appears.
- 5 To copy a folder or a help file in the User_Help folder, select a help file, and then tap Copy > Paste.
- 6 To delete a folder or a help file, select a folder or a help file, and then tap **Delete > Yes**.

NOTE

You cannot delete the User_Help folder.

Figure 10 Example of select help screen

Chapter 3 Analyzing Measurement Results

This chapter provides instructions on how to use JD700B series' capabilities for measurement analysis. Topics discussed in this chapter are as follows:

-	Using marker	57
	Using peak search	58

Using marker

Marker

Marker is used to get the information about a specific trace. Six markers can be set on the display and each marker can be used independently. The X and Y coordinates of the trace are displayed when the marker is placed on any position of the trace. The position displaying the marker's X and Y coordinates may be slightly different for each measurement mode and refer to the description of each measurement. There are three different marker types available: Normal, Delta, and Delta pair. Marker position can be set manually by entering numeric values (frequency) when one of the marker types is selected.

- Select Marker: Selects an active marker whose position can be changed with the rotary knob or the arrow keys. The assigned number of the active marker is displayed in the Select Marker menu box and the active marker number is also displayed right next to the active marker on the trace when the Marker View is set to On.
- **Marker View:** Displays the selected marker on the screen or hides it. When the Marker View is turned off and then on again in the same measurement mode, markers appear at the previous positions. If a measurement mode is changed, markers are not restored to their previous positions.
- Normal: This Normal marker type provides the reading of a marker position on the trace along with the marker number between one and six.
- **Delta:** This Delta marker type is associated with a Normal marker. A Normal marker must be set before a Delta marker is set. When the Delta marker is set, the position set by the Delta marker becomes the reference position of the Normal marker and the marker's X and Y values displays the difference compared with the Delta marker.
- **Delta Pair:** This Delta Pair marker type is associated with a Normal marker. A Normal marker must be set before a Delta Pair marker is set. When the Delta Pair marker is set, the position set by the Delta Pair marker becomes the reference position of the Normal marker and the marker's X and Y values displays the difference compared with the Delta Pair marker. The reference position will be varied in accordance with trace change.
- Marker All Off: Turns all the markers the screen off. When the Marker View is selected for those markers, the instrument displays those markers back at the previous position. If a measurement mode is changed, current settings are not restored.
- Marker →: Sets the X coordinate of the active marker as selected.
 - Marker→Center: Sets the frequency of the active marker to the center frequency of spectrum analyzer.
 - Marker->Start: Sets the frequency of the active marker to the start frequency of spectrum analyzer.
 - Marker→Stop: Sets the frequency of the active marker to the stop frequency of spectrum analyzer.
- Frequency Count: This Frequency Count is used when a highly accurate reading of the frequency is needed for the active marker on the signal. The measurement sweeps get significantly slower because the instrument runs the measurement of the signal peak with 1 Hz resolution in background. Toggle this key between **On** and **Off** to enable or disable the frequency count function for the selected marker.
- Noise Marker: This Noise Marker is used to measure a noise adjacent to a signal by averaging several data points to calculate the readout for the Noise Marker as if making a measurement using a 1 Hz bandwidth. Toggle this key between On and Off to enable or disable the noise marker function for the selected active marker.

NOTE

Frequency Count and Noise Marker functions are used only in the Spectrum Analyzer mode

Using peak search

Peak search

Each time the Peak Search soft key is pressed, the active marker is positioned at the highest peak of the trace.

- **Peak Search:** Moves the active marker to the highest peak of the trace.
- Next Peak: Moves the active marker to the second highest peak of the trace.
- Next Peak Right: Moves the active marker to the highest peak to the right of its current position.
- Next Peak Left: Moves the active marker to the highest peak to the left of its current position.
- Min Search: Moves the active marker to the lowest peak of the trace.
- Always Peak: When the Always Peak is set to On, the instrument moves the active marker automatically to the highest peak of the trace every time the trace is refreshed.

Chapter 4 Using Spectrum Analyzer

This chapter provides instructions for using the Spectrum Analyzer function. Topics discussed in this chapter are as follows:

	Introduction	60
-	Display overview	60
-	Connecting a cable	61
	Selecting measurement mode	62
	Conducting spectrum measurements	69
	Conducting RF measurements	73

Introduction

The advantage of using the Spectrum Analyzer is easy to verify the presence of unwanted signals such as spurious and harmonics, which are normally very hard to identify in time domain analysis.

Performance assurance in wireless communication systems includes the observation of the out-of-band signal characteristics in order to identify the presence of harmonic signals. Harmonic signals of a carrier may interfere with other signals far out of the transmission band, or harmonic signals from other transmitter may interfere with in band signals affecting the spectral integrity.

In these days when wide variety of wireless communication services are provided in frequency bands assigned very closely to each other, it is critical to ensure that each communication service is carried out within their assigned frequency band minimizing interference with adjacent frequency bands. The Adjacent Channel Power Ratio (ACPR) characteristic of a power amplifier or other RF components is an important factor in evaluating the system performance.

The JD700B series is the optimal solution to perform following measurements:

- Spectrum Analysis
 - Spectrum
- RF Analysis
 - Channel Power
 - Occupied Bandwidth
 - Spectrum Emission Mask
 - Adjacent Channel Power (ACP)
 - Multi-ACP
 - Spurious Emissions
 - AM/FM Audio Demodulation
 - Field Strength
 - Route Map
 - Dual Spectrum
 - PIM Detection (Single and Multiple Carriers)
 - Total Harmonic Distortion (THD)

Display overview

Figure 11 provides overview of each segment of the measurement screen.

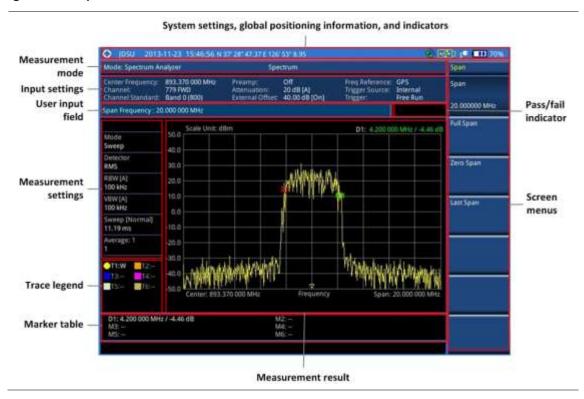


Figure 11 Spectrum measurement screen

Connecting a cable

There are two ways that you can make a connection of your instrument and the base station to be tested: direct or indirect.

Procedure

To make a direct connection:

1 Connect the **Spectrum Analyzer RF In** port of the JD700B series and the PA output port of BTS as shown in **Figure 12**.

To make an indirect connection:

1 Connect the **Spectrum Analyzer RF In** port of the JD700B series and the monitor (test) port of BTS as shown in **Figure 13**.

Figure 12 Direct connection

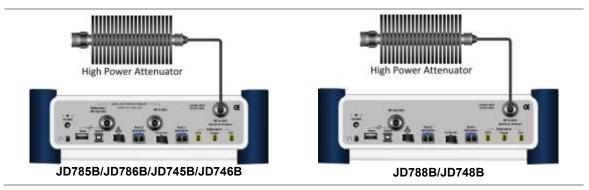
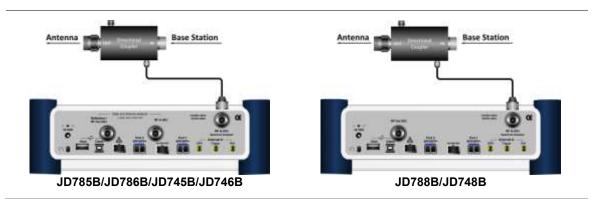



Figure 13 Indirect connection

CAUTION

The maximum power for the **Spectrum Analyzer RF In** port is +25 dBm (0.316 W) for JD780B series and +20 dBm (0.1 W) for JD740B series. If the level of the input signal to be measured is greater than this, use a *High Power Attenuator* to prevent damage when you directly connect the signal to the instrument or connect the signal from the coupling port of a directional coupler.

Selecting measurement mode

Procedure

- 1 Press the **MODE** hard key.
- 2 Press the Spectrum Analyzer soft key. The Measure Off mode is selected by default.
- 3 Press the MEASURE hot key, and then select the measurement mode from the following choices:

Channel Power

Occupied BW

Spectrum Emission Mask

Adjacent Channel Power

Multi-ACP

Spurious Emissions

AM/FM Audio Demod

Field Strength

Route Map

Dual Spectrum

PIM Detection > Single Carrier and Multiple Carriers

Total Harmonic Distortion

Configuring test parameters

Setting frequency

You need to set the frequency range to be measured with either the center frequency/span or the start/stop frequencies. You can also set the frequency with the channel number and span.

Procedure

To set the center frequency and span:

- 1 Press the FREQ/DIST hard key.
- 2 Toggle the Unit soft key to Freq.
- 3 Press the Center Frequency soft key.
- **4** Enter a value by using the numeric keys, the rotary knob, or the arrow keys.
- 5 Select the unit: GHz, MHz, kHz, or Hz.
- 6 Press the **Span** soft key, and then do one of the following:

To set the span manually, select **Span**, enter a value, and then select the unit.

To set the span automatically, select Full Span, Zero Span, or Last Span as needed.

NOTE

The **Zero Span** option is available only in the Spectrum mode. If you have selected **Zero Span**, select **TRIGGER > Free Run**, **External**, **GPS**, **Video**, or **Display Position**.

To set the start and stop frequencies:

- Press the FREQ/DIST hard key.
- 2 Toggle the Unit soft key to Freq.
- 3 Press the Start Frequency soft key.
- **4** Enter a value by using the numeric keys, the rotary knob, or the arrow keys.
- 5 Select the unit: GHz, MHz, kHz, or Hz.
- 6 Press the Stop Frequency soft key.
- 7 Enter a value by using the numeric keys, the rotary knob, or the arrow keys.
- 8 Select the unit: GHz, MHz, kHz, or Hz.

To set the channel number and span:

- Press the FREQ/DIST hard key.
- 2 Toggle the Unit soft key to Channel.
- **3** To select the standard channel, complete the following steps:
 - Press the Channel Std soft key. The standard channel window appears.
 See "Appendix C Band, frequency & channel standard" on page 745 for more information.
 - b Highlight the band to be measured by using the rotary knob, the arrow keys, or the Page Up/Page Down soft keys.
 - c Press the **Select** soft key or the rotary knob to confirm the selection.
- 4 Toggle the **Link** soft key between **Fwd** (forward) or **Rev** (reverse) to select the sweep direction.
- **5** To set the channel number, complete the following steps:
 - Press the Channel Number soft key.
 - **b** Enter a value by using the numeric keys.
 - c Press the Enter soft key or ENTER hard key to complete the entry. The instrument automatically displays the corresponding center frequency value for the selected channel number.
- **6** To set the span, complete the following steps:
 - a Press the Span soft key.
 - **b** Select the span option, from the following choices:

To set the span manually, select **Span**, enter a value, and then select the unit.

To set the span automatically, select **Full Span**, **Zero Span**, or **Last Span** as needed.

NOTE

The Zero Span option is available only in the Spectrum mode. If you have selected Zero Span, select *TRIGGER* > Free Run, External, GPS, Video, or Display Position.

Optional. To define the amount of frequency increment for the rotary knob:

- 1 Press the **Frequency Step** soft key, if the **Freq** is selected.
- 2 Enter a value by using the numeric keys.
- 3 Press the unit: GHz, MHz, kHz, or Hz.

Optional. To define the amount of channel increment for the rotary knob:

- 1 Press the Channel Step soft key, if the Channel is selected.
- 2 Enter a value by using the numeric keys.
- 3 Press the Enter soft key.

NOTE

This setting option is not available in the Spurious Emissions mode.

Setting amplitude

Reference level and attenuation

You can set the reference and attenuation levels automatically or manually to optimize the display of the traces measured, as you desire.

Procedure

To automatically set the reference and attenuation level:

- 1 Press the AMP/SCALE hard key.
- 2 Press the Auto Scale soft key. Each time you press this key, both of the Y-axis scale and input attenuation level change to be optimized with some margin.

To set the reference or attenuation level manually:

- 1 Press the AMP/SCALE hard key.
- 2 To set the maximum reference level on the Y-axis manually, complete the following steps:
 - a Press the Reference Level soft key.
 - **b** Enter a value by using the numeric keys or the rotary knob with 10 dB increments.
 - Press the unit soft key or the ENTER hard key.
 - d This unit key name changes according to the setting in the **Units** menu.
- **3** To set the attenuation option, select one from the following choices:

To set the input attenuator's level automatically, select **Attenuation > Auto**.

NOTE

It is recommended that you set the **Attenuation** to **Auto** in most situations so that the level of the input attenuator can be set automatically according to your input signal level.

To set the input attenuation manually up to 55 dB for JD780B series or 50 dB for JD740B series to optimize S/N, complete the following steps:

- a Select Attenuation > Manual.
- **b** Press the **Attenuation Value** soft key to set the level.
- c Enter a value in fives by using the numeric keys.
- d Press the dB soft key or the ENTER hard key.

To couple the input attenuator's level with your reference level setting, select **Attenuation > Couple**.

When you increase the reference setting, the attenuation level also increases accordingly.

Optional. To change the scale unit:

- 1 Select More (1/2) > Units.
- 2 Select the unit of the display scale: dBm, dBV, dBmV, dBμV, V, or W. The scale unit on the screen changes accordingly.

NOTE

For the Field Strength mode, the units change to dBµV/m, dBmV/m, dBV/m, V/m, Watt/m^2, and dBm/m^2.

Pre-amplifier

You can turn the internal pre-amplifier on to correct and compensate for the gain of the preamplifier so that amplitude readings show the value at the input connector.

Procedure

- 1 Press the AMP/SCALE hard key.
- 2 Toggle the **Preamp** soft key and select **On** or **Off** as needed.

NOTE

You can turn the Preamp on when the input attenuation range is from 0 dB to 10 dB. If the attenuation value is manually set to greater than 10 dB, the instrument will automatically turn off the pre-amplifier to display low-level signal properly on the chart.

External offset

You can turn the **External Offset** on and manually set the external offset value. An offset consists of a cable loss and a user offset and the measurement result shows the value reflecting both offset values. When the external offset value is set at 40 dB in the Spectrum mode, the measurement result compensates 40 dB at both the Spectrum Analyzer and Signal Analyzer modes.

Procedure

To set the external offset:

- 1 Press the AMP/SCALE hard key.
- 2 Toggle the **External Offset** soft key to **On**.
- 3 Enter a value by using the numeric keys.
- 4 Press the dB soft key to complete the entry.

To turn the external offset off:

- 1 Press the AMP/SCALE hard key.
- 2 Toggle the External Offset soft key to Off.

NOTE

This setting option is not available in the Field Strength mode.

Scale per division

You can use the **Scale/Div** feature available for the spectrum measurement screen. It represents the value of one division on the horizontal scale. The default setting is 10 dB per division and the maximum value can be set up to 20 dB.

Procedure

To set the scale per division:

- 1 Press the AMP/SCALE hard key.
- 2 Select More (1/2) > Scale/Div.
- **3** Enter a value between 1 and 20 by using the numeric keys.
- 4 Press the dB soft key to complete the entry.

Setting bandwidth

You can manually set the Resolution Bandwidth (RBW), Video Bandwidth (VBW), and the proportional VBW based on the designated RBW. Selecting **Auto** changes the value to correspond to your frequency span setting for RBW and to the current RBW and VBW/RBW settings for VBW.

Procedure

To automatically set the RBW and VBW to your selected VBW/RBW ratio:

- 1 Press the BW/AVG hard key.
- 2 Press the VBW/RBW soft key to set the proportional VBW based on the designated RBW. Table 9 shows the ratio example for 30 kHz RBW.
- 3 Select the ratio: 1, 0.3, 0.1, 0.03, 0.01, or 0.003.
- 4 Toggle the RBW soft key to Auto.
- 5 Toggle the VBW soft key to Auto. The RBW or VBW value on the screen changes accordingly based on the span.

To manually set the RBW or VBW to your selected VBW/RBW ratio:

- 1 Press the BW/AVG hard key.
- 2 Press the RBW soft key.
- 3 Enter a value between 1 Hz to 3 MHz in 1-3 sequence by using the numeric keys.
- 4 Select the unit: MHz, kHz, or Hz. The RBW setting automatically changes to Manual.
- **5** Press the **VBW** soft key, and then enter a value by using the numeric keys.
- 6 Select the unit: MHz, kHz, or Hz. The VBW setting automatically changes to Manual. The RBW or VBW value on the screen changes accordingly.

NOTE

This setting option is not available in the Spurious Emissions mode.

Table 8 VBW/RBW ratio example

RBW	Ratio (VBW/RBW)	VBW
30 kHz	1:1	30 kHz
	1:0.3	10 kHz
	1:0.1	3 kHz
	1:0.03	1 kHz
	1:0.01	300 Hz
	1:0.003	100 Hz

Setting average

You can set the number of measurements to be averaged for the trace presentation. A maximum of 100 times of averaging can be set. When the averaging reaches to your setting, a new measurement value replaces the measurement value in sequence from the earliest.

- 1 Press the BW/AVG hard key.
- 2 Press the Average soft key.

- 3 Enter a value between 1 and 100 as needed by using the numeric keys.
- 4 Press the Enter soft key.

Setting sweep

The **SWEEP** hot key is used to set and control the sweep time, sweep mode, gated sweep settings, and gated sweep on or off.

Sweep time

You can set the sweep time automatically or manually. Manual setting allows you to set the sweep time beyond an automatic setting.

Procedure

- 1 Press the **SWEEP** hot key.
- 2 Select the sweep time option, from the following choices:

To automatically set, toggle the **Sweep Time** soft key to **Auto**.

To manually set, complete the following steps:

- a Press the Sweep Time soft key.
- **b** Enter a value by using the numeric keys.
- Select the unit: Sec, mSec, or µSec. The sweep time mode automatically changes to Manual.

NOTE

This setting option is not available in the Spurious Emissions mode.

Sweep mode

The default settings of the sweep mode are **Continue** and **Normal** to sweep continuously at a normal speed for most on-going measurements. If you want to hold the measurement or get a single sweep, you can change the sweep mode.

Procedure

To select the single sweep mode:

- 1 Press the **SWEEP** hot key.
- 2 Toggle the Sweep Mode soft key and select Single. You can also use the HOLD hot key. The letter HOLD in red appears and the sweeping is paused.
- 3 Optional. Press the Sweep Once soft key to get a new measurement.
- 4 Optional. To speed up sweeping, press the Sweep Mode soft key to Fast.

NOTE

Selecting **Sweep Mode > Fast** may reduce the measurement accuracy, but it is useful to identify the existence of interfering signals.

To return to the continuous sweep mode:

1 Toggle the Sweep Mode soft key to Continue. You can also use the HOLD hot key. The letter HOLD in red disappears and the sweeping resumes.

NOTE

This setting option is not available in the Field Strength mode, the AM/FM Audio Demodulation mode, and the Route Map mode.

Gated sweep

You can configure the gated sweep settings with an internal or external trigger source. If you select **Gated Sweep Settings**, you can view the signal in time domain.

Procedure

- 1 Press the **SWEEP** hot key.
- 2 Press the Gated Sweep Settings soft key.
- 3 Optional. Adjust sweep time to allow enough time for a cycle by completing the following steps:
 - Press the Zero Span Time soft key.
 - b Enter a value by using the numeric keys.
 - Select the unit: Sec, mSec, or µSec.
- 4 Set the period, if using the internal trigger source, by completing one of the followings:

To select the preset period, complete the following steps:

- a Toggle the Period soft key to StdSignal.
- b Press the StdSignal soft key, and then select the period from the choices: GSM (4.615 ms), WCDMA (10 ms), LTE (10 ms), EV-DO (5 ms), TD-SCDMA (5 ms), or WiMAX (10 ms).

To manually set the period, complete the following steps:

- a Toggle the Period soft key to Manual.
- Press the Period soft key to enter the amount of time.
- c Enter a value by using the numeric keys.
- d Select the unit: Sec, mSec, or µSec.
- **5** Press the **TRIGGER** hot key, and then complete one of the followings:

Select External for an external trigger source.

Select Video or Display Position for the internal trigger source.

- **6** Press the **PREV** hard key to continue setting the gated sweep.
- 7 Set the gate delay by completing the following steps:
 - a Press the Gate Delay soft key.
 - **b** Enter a value by using the numeric keys.
 - c Select the unit: Sec, mSec, or μSec.
- **8** Set the gate length by completing the following steps:
 - Press the Gate Length soft key.
 - **b** Enter a value by using the numeric keys.
 - Select the unit: Sec, mSec, or µSec.
- 9 Press the PREV hard key to enable gated sweeping.
- 10 Toggle the Gated Sweep soft key to On.

NOTE

This setting option is not available in the in the Spurious Emissions mode, the Field Strength mode, and the Route Map mode.

Using signal generator (RF source)

You can turn on the RF Source feature to generate a CW signal of different output power levels.

- 1 Press the **MEASURE SETUP** hot key.
- 2 Press the RF Source soft key.
- **3** To set the frequency of the CW signal to be injected, complete the following steps:

- a Press the Frequency soft key.
- **b** Enter a value within the frequency range of your instrument.

JD740B series: 25 MHz to 4 GHz

- JD780B series: 5 MHz to 6 GHz
- c Select the unit option from the choices: GHz, MHz, kHz, or Hz.
- **4** To set the output level of the CW signal to be injected, complete following steps:
 - Press the Power Level soft key.
 - **b** Enter a value within the output range for the frequency you have set.

JD740B series: -80 dBm to -30 dBm, 0 dBm

JD780B series: -60 dBm to 10 dBm

- Press the Enter soft key.
- 5 To start to inject the set signal, toggle the **RF Source** soft key to **On**.
- 6 To stop injecting the signal, toggle the RF Source soft key to Off.

Conducting spectrum measurements

If you have configured test parameters as described in the "Configuring test parameters" on page 62, your measurement is displayed on the screen as like the following example, Figure 14.

Figure 14 Spectrum measurement with spectrum analyzer

| Mode: Spectrum Analyzer | Spectrum | Spect

Figure 15 Gated sweep measurement with spectrum analyzer

Setting trace

You can display up to six traces on the measurement chart simultaneously.

Procedure

- 1 Press the TRACE/DISPLAY hard key.
- 2 Press the Select Trace soft key, and then select the trace number: T1, T2, T3, T4, T5, or T6. The legend shape of the selected trace changes from square to round to indicate that the trace is the active one now.
- 3 Complete one of the followings:

То	Select	Trace Legend
Clear current data and display with new measurements	Clear Write	W
Display the input signal's maximum response only (unlimited or for a certain amount of time)	Max Hold	M
Display the input signal's minimum response only (unlimited or for a certain amount of time)	Min Hold	m
Capture the selected trace and compare traces	Capture	С
Load a saved trace	More (1/3) > Load	L
Hide the displayed trace	Trace View > Off	F
Remove all the traces and initialize the trace settings	More (1/3) > Trace Clear All	

NOTE

For the **Max Hold** and **Min Hold**, your instrument compares newly acquired data with the active trace and displays larger maximum values or smaller minimum values on the screen. You can set it to **Unlimited** to hold and view maximum or minimum data or specify a certain amount of time up to 60 seconds by using numeric keys or rotary knob.

4 To select the detection option, select More (1/3) > Detectors, and then complete one of the followings:

To display	Select
Random noise better than the peak without missing signals	Normal
The highest value in each data point	Peak
The root mean squared average power across the spectrum	RMS
The lowest value in each data point	Negative Peak
The center value in each data point	Sample

- 5 To detect Wi-Fi SSID in a user-specified bandwidth, complete the following steps and refer to Figure 16 below:
 - Connect the WiFi device to the USB Host port of the instrument.
 - b Press More (1/3) > Wi-Fi Info.
 - c Toggle the Wi-Fi Info soft key and select On.
 - d Press the FREQ/DIST hard key.
 - Press the Center Frequency soft key.
 - f Enter a value using the numeric keys. You can also turn the rotary knob to change the value.
- 6 Optional. Select More (1/3) > Trace Info, and then select the trace number to view the trace's setting information stored at the time of the measurement or None to hide the information.
- 7 Optional. If you have the two traces T1 and T2, you can perform trace math. To view the power difference between the traces, press the T1 T2 -> T5 or T2 T1 -> T6 soft key. The result is overlaid on the screen along with the second Y-axis.

NOTE

Wi-Fi SSID display is only enabled when the mesure mode is set to spectrum and channel power and the center frequency needs to be set as desired.

NOTE

To be able to load a trace, the trace to be overlaid must be saved in the same measurement mode and frequency setting as the current measurement.

Figure 16 Wi-Fi SSID display with spectrum analyzer

Setting limit

Procedure

To use the display line:

- 1 Press the *LIMIT* hot key.
- 2 Press the **Display Line** soft key for a reference line.
- 3 Enter a value, and then press the dBm unit soft key.
- 4 Toggle the **Display Line** soft key between **On** and **Off** to display and dismiss the reference line. The straight line appears across the screen to be used as a visual reference only.

To display the multiple segment line:

- 1 Press the LIMIT hot key.
- 2 Press the Multi Segment Line soft key for Pass/Fail indication.
- 3 Toggle the Limit soft key between Upper and Lower to select the one to be displayed.
- 4 Set the number of segments for the selected upper or lower limit line, up to 50 segments.
 - a Press the # of Line soft key.
 - **b** Enter a value between 1 and 50 by using the numeric keys.
 - c Press the Enter soft key.
- 5 Press the Autoset soft key to let the instrument set the limit for each segment and display the line.
- **6** Optional. To move the limit line, complete the following steps:
 - Select Limit Up/Down or Limit Left/Right.
 - b Turn the rotary knob to move the line as desired. You can also manually enter a value.
- 7 Optional. To edit the segment properties, complete the following steps:
 - a Press the Edit Limit soft key.
 - **b** Press the **Move** soft key and then turn the rotary knob to select the segment to edit.
 - Select the menu option, from the following choices:
 - To hide the line for the selected segment, toggle the **Line** soft key to **Off**.
 - To add a new point, press the Add Point soft key.
 - To delete the selected point, press the **Delete Point** soft key.
 - To change the position, press the **Frequency** or **Amplitude** soft key, and then turn the rotary knob to change the value as desired.
- **8** Optional. Go to **SAVE/LOAD > Save**, and then select **Limit** to save the limit settings. See "Using save" on page 34 for more information.

Setting frequency offset

If you want to check how much the actual frequency has been drifted from the input center frequency on your spectrum, you can set the center frequency as a frequency reference or an offset to view the drifted amount in frequency easily.

- 1 Press the FREQ/DIST hard key.
- 2 Press the Frequency Offset soft key.
- 3 Enter a value using the numeric keys. You can also turn the rotary knob to change the value. For example, if you have set the center frequency as 89.1 MHz and want to set it as a frequency reference, you need to enter "-89.1" in the user input field to view the center frequency as "0".
- 4 Select the unit: GHz, MHz, kHz, or Hz. All frequency information on the display changes accordingly.

Conducting RF measurements

Channel power

The Channel Power measurement is a common test used in the wireless industry to measure the total transmitted power of a radio within a defined frequency channel. It acquires a number of points representing the input signal in the time domain, transforms this information into the frequency domain using Fast Fourier Transform (FFT), and then calculates the channel power. The effective resolution bandwidth of the frequency domain trace is proportional to the number of points acquired for the FFT.

The channel power measurement identifies the total RF power, power spectral density, and Peak to Average Ratio (PAR) of the signal within the channel bandwidth.

Setting measure setup

After configuring test parameters, you can set the measure setup to continue your measurement. The measurement settings can be saved and recalled as a file. You can also use JDViewer, PC application software to configure a measure setup, save as a file, and load the file on to the instrument.

Procedure

- 1 Configure test parameters as described in the "Configuring test parameters" on page 62.
- 2 Press the **MEASURE SETUP** hot key.
- **3** Set the channel power measurement bandwidth to be measured:
 - a Press the Integrated BW soft key.
 - **b** Enter a bandwidth by using the numeric keys. You can also use the rotary knob.
 - Select the unit: GHz, MHz, kHz, or Hz.
- **4** Set the frequency range over which the instrument will sweep:
 - a Press the Span soft key.
 - **b** Enter a span frequency value by using the numeric keys. You can also use the rotary knob.
 - c Select the unit: GHz, MHz, kHz, or Hz.
- **5** Set the number of measurements to be averaged:
 - a Press the Average soft key.
 - **b** Enter a value between 1 and 100.
 - c Press the Enter soft key.

Setting limit

- 1 Press the *LIMIT* hot key.
- 2 Press the **Channel Power** soft key to set the limit parameters.
- 3 Toggle the **Test Limits** soft key between **On** and **Off** to enable or disable the Pass/Fail indication.
- 4 Set the upper threshold:
 - a Press the High Limit soft key.
 - **b** Enter a value for the upper limit, and then press the **dBm** unit soft key.
- 5 Set the lower threshold:
 - Press the Low Limit soft key.
 - **b** Enter a value for the lower limit, and then press the **dBm** unit soft key.
- 6 Optional. Go to SAVE/LOAD > Save, and then select the save option from the choices available for your measurement mode. See "Using save" on page 34 for more information.

Measurement example

Figure 17 Channel power measurement with spectrum analyzer

Channel power measurement result shows channel power and spectrum density in a user specified channel bandwidth. The peak to average ratio (PAR) is shown at the bottom of the screen as well. The shaded area on the display indicates the channel bandwidth.

Figure 18 Wi-Fi SSID display in channel power measurement with spectrum analyzer

Occupied bandwidth

The Occupied Bandwidth measures the percentage of the transmitted power within a specified bandwidth. The percentage is typically 99%.

Setting measure setup

After configuring test parameters, you can set the measure setup to continue your measurement. The measurement settings can be saved and recalled as a file. You can also use JDViewer, PC application

software to configure a measure setup, save as a file, and load the file on to the instrument.

Procedure

- 1 Configure test parameters as described in the "Configuring test parameters" on page 62.
- 2 Press the **MEASURE SETUP** hot key.
- **3** Set the percentage of power within the bandwidth to be measured:
 - a Press the Occupied BW % Power soft key.
 - **b** Enter a value by using the numeric keys. You can also use the rotary knob.
 - c Press the Enter soft key.
- **4** Set the frequency range over which the instrument will sweep:
 - a Press the Span soft key.
 - **b** Enter a span frequency value by using the numeric keys. You can also use the rotary knob.
 - c Select the unit: GHz, MHz, kHz, or Hz.
- **5** Set the number of measurements to be averaged:
 - a Press the Average soft key.
 - **b** Enter a value between 1 and 100.
 - c Press the Enter soft key.

Setting limit

Procedure

- 1 Press the LIMIT hot key.
- 2 Press the Occupied BW soft key to set the limit parameters.
- 3 Toggle the **Test Limits** soft key between **On** and **Off** to enable or disable the Pass/Fail indication.
- 4 Set the upper threshold:
 - a Press the High Limit soft key.
 - **b** Enter a value for the upper limit, and then select the unit: **MHz**, **kHz**, or **Hz**.
- 5 Optional. Go to SAVE/LOAD > Save, and then select Limit to save the limit settings. See "Using save" on page 34 for more information.

Measurement example

The Occupied Bandwidth measurement shows both of power across the band and power bandwidth in a user specified percentage to determine the amount of spectrum used by a modulated signal. Occupied bandwidth is typically calculated as the bandwidth containing 99% of the transmitted power.

Mode: Spectrum Analyze

Mode: Spectrum Analyze

Centre Resource; PSX.370 000 MHz

Charmed TOR NO

Abenualism: 20 dB (A)

Resource DB

Resource DB

Abenualism: 20 dB (A)

Respective Press Analyze

Charmed Standard Band 0 (800)

External Official: 40 00 00 000 MHz

Seed Band 0 (800)

Scale line: dBm

M1

With Indian Band 0 (800)

Sale line: dBm

M2

Seed Band 0 (800)

Sale line: dBm

M1

Occupied Band 0 (800)

Sale line: dBm

M1

Occupied Band 0 (800)

Sale line: dBm

M1

Spectrum

Complete Band 0 (800)

Sale line: dBm

M1

Spectrum

Complete Band 0 (800)

Sale line: dBm

M1

Spectrum

Complete Band 0 (800)

Sale line: dBm

M1

Spectrum

Complete Band 0 (800)

Sale line: dBm

M1

Spectrum

Emission Mails

Action Band 0 (800)

Action Band 0 (800)

Action Band 0 (800)

Spectrum

Emission Mails

Action Band 0 (800)

Actio

Figure 19 Occupied bandwidth measurement with spectrum analyzer

Spectrum emission mask (SEM)

The Spectrum Emission Mask (SEM) measurement is to identify and determine the power level of out-of-band spurious emission outside the necessary channel bandwidth and modulated signal. It measures the power ratio between in-band and adjacent channels. The JD700B series indicates either Pass or Fail based on the specified limit of the signal.

Setting measure setup

After configuring test parameters, you can set the measure setup to continue your measurement. The measurement settings can be saved and recalled as a file. You can also use JDViewer, PC application software to configure a measure setup, save as a file, and load the file on to the instrument.

- 1 Configure test parameters as described in the "Configuring test parameters" on page 62.
- 2 Press the **MEASURE SETUP** hot key.
- **3** Set the main channel bandwidth to be measured:
 - a Press the Main Channel BW soft key.
 - **b** Enter a value by using the numeric keys. You can also use the rotary knob.
 - Select the unit: MHz, kHz, or Hz.
- **4** Set the frequency range over which the instrument will sweep:
 - a Press the Span soft key.
 - **b** Enter a span frequency value by using the numeric keys. You can also use the rotary knob.
 - Select the unit: GHz, MHz, kHz, or Hz.
- **5** Set the number of measurements to be averaged:
 - Press the Average soft key.
 - **b** Enter a value between 1 and 100, and then press the **Enter** soft key.
- **6** To configure an offset, up to five, complete the following steps:
 - a Press the **Offset/Limit** soft key. The Offset/Limit menu bar appears.
 - **b** Press the **Offset** soft key, and then select the number for the active offset to configure.
 - **c** Toggle the **Offset** soft key and select **On** to display or **Off** to hide the active offset.
 - d Press the Offset Frequency soft key to set the center frequency of the offset.
 - Enter a value by using the numeric keys. You can also use the rotary knob.

- f Select the unit: MHz, kHz, or Hz.
- g Press the Measurement Bandwidth soft key to set the bandwidth for the selected offset.
- h Enter a value by using the numeric keys. You can also use the rotary knob.
- i Select the unit: MHz, kHz, or Hz.
- j Toggle the Reference soft key between Relative and Absolute and select Relative or Absolute depending on how to use the reference.
- 7 To define the selected offset's limits for Pass/Fail indication, complete the following steps:
 - Press the **Start Offset Limit** soft key to set the threshold for the power difference between the main channel bandwidth and the selected offset bandwidth on the left.
 - **b** Enter a value by using the numeric keys. You can also use the rotary knob.
 - c Select the dB soft key.
 - d Press the **Stop Offset Limit** soft key to set the threshold for the power difference between the main channel bandwidth and the selected offset bandwidth on the right.
 - **e** Enter a value by using the numeric keys. You can also use the rotary knob.
 - f Select the dB soft key.

Setting limit

Procedure

- 1 Press the *LIMIT* hot key.
- 2 Press the Spectrum Emission Mask soft key.
- 3 Toggle the **Test Limits** soft key between **On** and **Off** to enable or disable the Pass/Fail indication.
- 4 Optional. Go to **SAVE/LOAD > Save**, and then select **Limit** to save the limit settings. See "Using save" on page 34 for more information.

Measurement example

Figure 20 Spectrum emission mask measurement with spectrum analyzer

Adjacent channel power (ACP)

The Adjacent Channel Power (ACP) is the power contained in a specified frequency channel bandwidth relative to the total carrier power. It may also be expressed as a ratio of power spectral densities between the carrier and the specified offset frequency band.

Setting measure setup

After configuring test parameters, you can set the measure setup to continue your measurement. The measurement settings can be saved and recalled as a file. You can also use JDViewer, PC application software to configure a measure setup, save as a file, and load the file on to the instrument.

Procedure

- 1 Configure test parameters as described in the "Configuring test parameters" on page 62.
- 2 Press the **MEASURE SETUP** hot key.
- 3 Set the main channel bandwidth to be measured:
 - a Press the Main Channel BW soft key.
 - **b** Enter a value by using the numeric keys. You can also use the rotary knob.
 - Select the unit: MHz, kHz, or Hz.
- **4** Set the frequency range over which the instrument will sweep:
 - a Press the Span soft key.
 - b Enter a span frequency value by using the numeric keys. You can also use the rotary knob.
 - Select the unit: GHz, MHz, kHz, or Hz.
- **5** Set the number of measurements to be averaged:
 - a Press the Average soft key.
 - **b** Enter a value between 1 and 100, and then press the **Enter** soft key.
- **6** To configure an offset, up to five, complete the following steps:
 - a Press the Offset/Limit soft key. The Offset/Limit menu bar appears.
 - b Press the Offset soft key, and then select the number for the active offset to configure.
 - Toggle the Offset soft key and select On to display or Off to hide the active offset.
 - d Press the Offset Frequency soft key to set the center frequency of the offset.
 - Enter a value by using the numeric keys. You can also use the rotary knob.
 - f Select the unit: MHz, kHz, or Hz.
 - Press the Integration Bandwidth soft key to set the bandwidth for the selected offset.
 - h Enter a value by using the numeric keys. You can also use the rotary knob.
 - i Select the unit: MHz, kHz, or Hz.
- 7 To define the selected offset's limits for Pass/Fail indication, complete the following steps:
 - a Press the **Lower** soft key to set the threshold for the power difference between the main channel bandwidth and the selected offset bandwidth on the left.
 - **b** Enter a value by using the numeric keys. You can also use the rotary knob.
 - c Select the dBc soft key.
 - **d** Press the **Upper** soft key to set the threshold for the power difference between the main channel bandwidth and the selected offset bandwidth on the right.
 - e Enter a value by using the numeric keys. You can also use the rotary knob.
 - f Select the dBc soft key.

Setting limit

- 1 Press the LIMIT hot key.
- 2 Press the ACP soft key.
- 3 Toggle the **Test Limits** soft key between **On** and **Off** to enable or disable the Pass/Fail indication.
- 4 Optional. Go to **SAVE/LOAD** > **Save**, and then select **Limit** to save the limit settings. See "Using save" on page 34 for more information.

Measurement example

Figure 21 Adjacent channel power measurement with spectrum analyzer

Multi-ACP

The Multi-ACP measurement is used to do multi-channel ACP testing. It helps you to measure ACP in multi-channel transmitting base station environment.

Setting measure setup

After configuring test parameters as described in "Configuring test parameters" on page 62, you can set the measure setup to continue your measurement. The measurement settings can be saved and recalled as a file. You can also use JDViewer, PC application software to configure a measure setup, save as a file, and load the file on to the instrument.

Procedure

- 1 Press the **MEASURE SETUP** hot key.
- 2 Toggle the Unit soft key and select Freq or Channel.

For the frequency setting, complete the following steps:

- a Press the Lowest Frequency soft key.
- **b** Enter a value by using the numeric keys. You can also use the rotary knob.
- c Select the unit: GHz, MHz, kHz, or Hz.
- d Press the Highest Frequency soft key.
- e Enter a value by using the numeric keys. You can also use the rotary knob.
- f Select the unit: GHz, MHz, kHz, or Hz.

For the channel setting, complete the following steps:

- a Press the Channel Std soft key. The standard channel window appears.
- b Select the band to be measured by using the rotary knob or the Page p/Page Down soft keys.
- Press the Select soft key or the rotary knob to confirm the selection.
- d Toggle the Link soft key to select the sweep direction and select Fwd (forward) or Rev (reverse) as needed.
- e Press the Lowest Channel soft key.
- f Enter a value by using the numeric keys.
- g Press the Enter soft key or ENTER hard key to complete the entry.

The instrument automatically displays the corresponding center frequency value for the selected channel number.

- h Press the Highest Channel soft key.
- i Enter a value by using the numeric keys.
- j Press the Enter soft key or ENTER hard key to complete the entry. The instrument automatically displays the corresponding center frequency value for the selected channel number.
- To set up ACP setting, press the ACP Settings soft key and then complete the following steps:
 - Press the Main Channel BW soft key.
 - **b** Enter a value by using the numeric keys. You can also use the rotary knob.
 - c Select the unit: MHz, kHz, or Hz.
 - d Press the **Span** soft key to set the frequency range over which the instrument will sweep.
 - Enter a span frequency value by using the numeric keys. You can also use the rotary knob.
 - f Select the unit: GHz, MHz, kHz, or Hz.
 - Press the Average soft key to set the number of measurement to be averaged:
 - h Enter a value between 1 and 100.
 - i Press the Enter soft key.
- **4** To configure an offset, up to five, complete the following steps:
 - Press the Offset/Limit soft key. The Offset/Limit menu bar appears.
 - **b** Press the **Offset** soft key, and then select the number for the active offset to configure.
 - c Toggle the **Offset** soft key and select **On** to display or **Off** to hide the active offset.
 - d Press the Offset Frequency soft key to set the offset frequency.
 - Enter a value by using the numeric keys. You can also use the rotary knob.
 - f Select the unit: MHz, kHz, or Hz.
 - g Press the Integration Bandwidth soft key.
 - h Enter a value by using the numeric keys. You can also use the rotary knob.
 - i Select the unit: MHz, kHz, or Hz.
- 5 To define the selected offset's limits for Pass/Fail indication, complete the following steps:
 - a Press the **Lower** soft key to set the threshold for the power difference between the main channel bandwidth and the selected offset bandwidth on the left.
 - **b** Enter a value by using the numeric keys. You can also use the rotary knob.
 - Select the dBc soft key.
 - d Press the **Upper** soft key to set the threshold for the power difference between the main channel bandwidth and the selected offset bandwidth on the right.
 - e Enter a value by using the numeric keys. You can also use the rotary knob.
 - f Select the dBc soft key.

Setting limit

- 1 Press the LIMIT hot key.
- 2 Press the Multi-ACP soft key.
- 3 Toggle the **Test Limits** soft key between **On** and **Off** to enable or disable the Pass/Fail indication.
- 4 Optional. Go to **SAVE/LOAD** > **Save**, and then select **Limit** to save the limit settings. See "Using save" on page 34 for more information.

Measurement example

Figure 22 Multi-ACP measurement with spectrum analyzer

Spurious emissions

The Spurious Emissions measurement is to identify or determine the power level of in-band or out-of-band spurious emissions within the necessary channel bandwidth and modulated signal. The JD700B series indicates either Pass or Fail based on the specified limit of the signal.

Setting measure setup

After configuring test parameters as described in the "Configuring test parameters" on page 62, you can set the measure setup to continue your measurement. The measurement settings can be saved and recalled as a file. You can also use JDViewer, PC application software to configure a measure setup, save as a file, and load the file on to the instrument.

- 1 Press the **MEASURE SETUP** hot key.
- 2 To set up the range table and parameters, press the Range Table soft key and then complete the following steps:
 - Press the Range soft key, and then select the range number between 1 and 20 to add as a new or change the existing settings.
 - **b** Do the following as desired:
 - Select **Start Frequency**, and then specify the start frequency for the selected range.
 - Select Stop Frequency, and then specify the stop frequency for the selected range.
 - Select Start Limit, and then specify the lower limit for Pass/Fail indication.
 - Select Stop Limit, and then specify the upper limit for Pass/Fail indication.
 - Select More (1/2) > Attenuation, and then specify an value in the multiple of five.
 - Select More (1/2) > RBW, and then specify a RBW value.
 - Select **More (1/2) > VBW**, and then specify a VBW value.
 - c Press the PREV hard key.
 - d Toggle the Range soft key and select On to display the selected range in the result table or Off to hide it from the table.
- 3 Toggle the Measure Type soft key between Examine and Full to select the measurement type.

NOTE

The **Examine** mode displays only the selected range while the **Full** mode lets the instrument automatically changes the selected range from one another.

- 4 To set the number of measurements to be averaged, complete the following steps:
 - Press the Average soft key.
 - **b** Enter a value between 1 and 100.
 - c Press the Enter soft key.
- 5 To move the highlighted bar in the result table to other range, complete the following steps:
 - Press the Range soft key in the Measure Setup menu bar.
 - **b** Enter a value between 1 and 20.
 - c Press the Enter soft key.

Setting limit

Procedure

- 1 Press the LIMIT hot key.
- 2 Press the Spurious Emissions soft key.
- 3 Toggle the **Test Limits** soft key between **On** and **Off** to enable or disable the Pass/Fail indication.
- 4 Optional. Go to SAVE/LOAD > Save, and then select Limit to save the limit settings. See "Using save" on page 34 for more information.

Measurement example

Figure 23 Spurious emissions measurement with spectrum analyzer

AM/FM audio demodulation

The AM/FM Audio Demodulator operates using the power received from radio waves and it serves as an alternative to identify interfering signals easily. The instrument sounds demodulated signals that can be heard through the built-in speaker or plugged-in headphones. You can hear the sound and identify interfering signals easily.

Setting measure setup

After configuring test parameters as described in the "Configuring test parameters" on page 62, you can set

the measure setup to continue your measurement. The measurement settings can be saved and recalled as a file. You can also use JDViewer, PC application software to configure a measure setup, save as a file, and load the file on to the instrument.

Procedure

- 1 Press the **MEASURE SETUP** hot key.
- 2 Toggle the Audio Demod soft key between On and Off to turn the AM/FM audio demodulation on and off.
- 3 Press the Demod at soft key, and then select the marker number for the frequency to be demodulated.

NOTE

You must set the marker(s) first by using the **MARKER** hard key as the AM/FM demodulator uses the marker position to demodulate. See "Using marker" on page 57 for more information.

- 4 Press the **Demod Mode** soft key, and then select the demodulation mode: **AM**, **FM** and **CW**.
- 5 Press the **Dwell Time** soft key, and then turn the rotary knob to set the demodulation interval between 1 and 20.
- 6 Press the Volume soft key, and then turn the rotary knob to set the speaker volume.
- 7 Toggle the **Auto Gain** soft key between **On** and **Off** to enable or disable the automatic gain feature to adjust the interval gain of the demodulator.
- **8** Optional. You can use the Save On Event soft key to let the instrument automatically save measurement screen or result that falls outside the defined limit settings or the Fail indicator is on. You can also set to save the first event and hold the measurement or to save all the events continuously. See "Using save" on page 34 for more information.

Setting limit

You can show or hide the display line on the screen that is used as a visual reference only.

Procedure

To view the display line:

- 1 Press the *LIMIT* hot key.
- 2 Press the Display Line soft key.
- 3 Enter a value, and then press the dBm unit soft key.
- 4 Toggle the Display Line On/Off soft key and select On. The straight line appears on the screen.

To dismiss the display line:

- 1 Press the *LIMIT* hot key.
- 2 Toggle the Display Line On/Off soft key and select Off.

You can use the multiple segment limit line to set up different limits for different frequency ranges for Pass/Fail indication.

Procedure


To display the multiple segment line:

- 1 Press the LIMIT hot key.
- 2 Press the Multi Segment Line soft key.
- 3 Toggle the Limit soft key between Upper and Lower to select the one to be displayed.
- 4 Set the number of segments for the selected upper or lower limit line, up to 50 segments.
 - Press the # of Line soft key.
 - **b** Enter a value between 1 and 50 by using the numeric keys.

- c Press the Enter soft key.
- 5 Press the Autoset soft key to let the instrument set the limit for each segment and display the line.
- 6 Optional. To move the limit line, complete the following steps:
 - a Select Limit Up/Down or Limit Left/Right.
 - Turn the rotary knob to move the line as desired. You can also manually enter a value.
- 7 Optional. To edit the segment properties, complete the following steps:
 - a Press the Edit Limit soft key.
 - **b** Press the **Move** soft key and then turn the rotary knob to select the segment to edit.
 - **c** Select the menu option, from the following choices:
 - To hide the line for the selected segment, toggle the **Line** soft key and select **Off**.
 - To add a new point, press the Add Point soft key.
 - To delete the selected point, press the **Delete Point** soft key.
 - To change the position, press the **Frequency** or **Amplitude** soft key, and then turn the rotary knob to change the value as desired.
- 8 Optional. Go to **SAVE/LOAD** > **Save**, and then select **Limit** to save the limit settings. See "Using save" on page 34 for more information.

Measurement example

Figure 24 AM/FM audio demodulation with spectrum analyzer

Field strength meter

The Field Strength Meter measures the field strength over the frequency range of a connected antenna, which is known with its specific bandwidth and gain characteristics. A standard or user-defined antenna can be selected from the antenna list in the JD700B series.

Setting measure setup

- 1 Connect an antenna to be used with your instrument.
- 2 Configure test parameters as described in the "Configuring test parameters" on page 62.
- 3 Press the MEASURE SETUP hot key, and then do one of the following:

To select the connected antenna from the list stored in the instrument:

- a Press the Antenna List soft key to view the standard and custom antennas. The antenna list window appears.
- **b** Select an antenna to be used for the field strength measurement by using the rotary knob, the arrow keys, or **Page Up/Page Down** soft keys.
- c Press the Select soft key.

NOTE

You can use the JDViewer to edit or define a custom antenna and add to this list.

To edit the properties of the connected antenna:

- a Press the Antenna Start Frequency soft key.
- Enter a value by using the numeric keys, and then select the unit: GHz, MHz, kHz, or Hz. You can also use the rotary knob.
- c Press the Antenna Stop Frequency soft key.
- d Enter a value by using the numeric keys, and then select the unit: GHz, MHz, kHz, or
 Hz. You can also use the rotary knob.
- Press the Gain soft key to enter the gain information for the antenna.
- f Enter a value by using the numeric keys, and then select the Enter soft key.

Setting limit

You can show or hide the display line on the screen that is used as a visual reference only.

Procedure

To view the display line:

- 1 Press the *LIMIT* hot key.
- 2 Press the Display Line soft key.
- 3 Enter a value, and then press the dBm unit soft key.
- 4 Toggle the Display Line On/Off soft key and select On. The straight line appears on the screen.

To dismiss the display line:

- 1 Press the *LIMIT* hot key.
- 2 Toggle the Display Line On/Off soft key and select Off.

You can use the multiple segment limit line to set up different limits for different frequency ranges for Pass/Fail indication.

Procedure

To display the multiple segment line:

- 1 Press the LIMIT hot key.
- 2 Press the Multi Segment Line soft key.
- 3 Toggle the Limit soft key between Upper and Lower to select the one to be displayed.
- 4 Set the number of segments for the selected upper or lower limit line, up to 50 segments.
 - a Press the # of Line soft key.
 - **b** Enter a value between 1 and 50 by using the numeric keys.
 - c Press the Enter soft key.
- 5 Press the Autoset soft key to set and display the limit line for each segment automatically.
- **6** Optional. To move the limit line, complete the following steps:
 - a Select Limit Up/Down or Limit Left/Right.
 - **b** Turn the rotary knob to move the line as desired. You can also manually enter a value.
- 7 Optional. To edit the segment properties, complete the following steps:

- a Press the Edit Limit soft key.
- **b** Press the **Move** soft key and then turn the rotary knob to select the segment to edit.
- **c** Select the menu option, from the following choices:
 - To hide the line for the selected segment, toggle the Line soft key and select Off.
 - To add a new point, press the Add Point soft key.
 - To delete the selected point, press the Delete Point soft key.
 - To change the position, press the **Frequency** or **Amplitude** soft key, and then turn the rotary knob to change the value as desired.
- **8** Optional. Go to **SAVE/LOAD** > **Save**, and then select **Limit** to save the limit settings. See "Using save" on page 34 for more information.

Measurement example

Figure 25 Field strength measurement with spectrum analyzer

Route map

The JD700B Series provides the Route Map function that allows you to collect data of points in an indoor or outdoor environment and track the received signals and coverage of RF transmitters by plotting data real time directly on top of a loaded floor plan or a map.

The JD700B Series also supports the RAN-IL (Interference Location) feature that enables you to overlay user experience data obtained through Viavi's ariesoGEO on your base map to help you troubleshoot problems easily and quickly using your instrument. You can generate raster data files on the ariesoGEO application and load them on your instrument.

Setting measure setup

- 1 If required, connect a GPS receiver to your JD700B series for outdoor mapping. Indoor mapping does not necessarily need a GPS antenna.
- 2 Configure test parameters as described in the "Configuring test parameters" on page 62.
- **3** To load your map file, complete the following steps:
 - Plug in your USB drive that has a floor map or .mcf file type created in JDMapCreator. If the JDMapCreator application on your computer is connected to the instrument via USB or

LAN, you can send a map file with a single layer to the instrument directly by using the **Send to EQP** menu in JDMapCreator.

NOTE

The JDMapCreator converts and resizes any scanned floor plan or layout to fit onto your instrument's display. JDMapCreator 1.2.0 or later can save a multiple-layered map, providing **x1**, **x2**, and **x4** views, as a sizable map file so that you can zoom in and out after loading it.

- b Press SAVE/LOAD hot key, and then select Load > Load Map. See "Using load" on page 36 for more information.
- 4 Press the **MEASURE SETUP** hot key.
- 5 Press the Plot Point soft key, and then select the plot point option from the following choices:

To collect data/plot points automatically as you move around in a vehicle or outside, select **GPS** and then toggle the **Screen Mode** soft key between **Map** and **Full**.

NOTE

- With the **Map** setting, you can view only the collected points that can be seen within the boundary of the loaded map. If a point is off the map, the instrument displays an arrow to indicate the direction of the current location on the map and the distance from the center to the location at the top of the screen.
- With the Full setting, you can view all the collected points of the route without the loaded map.

To collect data/plot points manually without a GPS antenna, select **Position**.

To collect data/plot points based on time, select Time.

You do not need a GPS antenna as you would usually use this option indoor.

- 6 Press the Plot Item soft key, and then select the measurement option: RSSI or ACP.
- 7 Optional. If ACP is selected, set the Main Channel BW and Offset/Limit:
 - Press the Main Channel BW soft key.
 - **b** Enter a value, and then select the unit from the choices: **MHz**, **kHz**, and **Hz**.
 - c Press the Offset/Limit soft key.
 - d Toggle the **Offset** soft key and select **On** to display or **Off** to hide the offset.
 - e Press the Integration Bandwidth soft key.
 - f Enter a value, and then select the unit from the choices: MHz, kHz, and Hz.
 - g Press the Offset Frequency soft key to set the offset frequency.
 - h Enter a value, and then select the unit from the choices: MHz, kHz, and Hz.
 - i Press the Offset Limit soft key to set the offset limit.
 - j Enter a value, and then select the **dB** soft key.
- 8 Toggle the **Plot** soft key and select **Start**.
- 9 Touch directly on the screen or press the ENTER hard key to collect data and plot points on the loaded map for the Position or Time setting.

NOTE

For the **Position** setting, you can change the direction of the route with screen touch or the arrow keys and the distance with the rotary knob. For the **Time** setting, the instrument interpolates points in between two enters on a straight dotted line. You can change the direction of the route with the arrow keys and the distance with the rotary knob.

- 10 Toggle the Plot soft key and select Stop to stop plotting.
- **11** Press the **SAVE/LOAD** hot key to save the result. See "Using save" on page 34 for more information.

NOTE

The instrument does not automatically save the collected data. It is recommended that you save the result. Otherwise, you will lose all the collected data.

Setting limit

You can set the thresholds for the four different color indicators.

Procedure

- 1 Press the LIMIT hot key.
- 2 Press the Excellent soft key to set its threshold.
- 3 Enter a value, and then press the dBm soft key. You can also use the rotary knob.
- 4 Press the Very Good soft key to set its threshold.
- **5** Enter a value, and then press the **dBm** soft key. You can also use the rotary knob.
- 6 Press the Good soft key to set its threshold.
- 7 Enter a value, and then press the **dBm** soft key. You can also use the rotary knob.
- 8 Press the **Poor** soft key to set its threshold.
- **9** Enter a value, and then press the **dBm** soft key. You can also use the rotary knob.
- **10** Optional. Go to **SAVE/LOAD > Save**, and then select **Limit** to save the limit settings. See "Using save" on page 34 for more information.

Measurement example

Figure 26 Route map measurement screen with GPS

Controlling a map

If you have loaded a sizable map that was created in JDMapCreator 1.2.0 or later, you can use the Map Control feature that enables you to zoom into the map and view a specific area of interest in detail.

Procedure

- 1 Press the TRACE/DISPLAY hard key.
- 2 Press the Map Control soft key. This key is active only when you have loaded a sizable map.
- **3** To zoom in or zoom out, do one of the following:

To zoom into an area of interest directly, complete the following steps:

- **a** Toggle the **Zoom to** soft key and select **Area**. The black rectangle appears on the map.
- **b** Press the **Zoom In** and **Zoom Out** soft keys, as you need, to decrease and increase the selected area.
- Move the rectangle by using the four arrow keys, as you need, to place it in a specific area of interest.

d Press the center of the rotary knob to zoom into the selected area. You can also press the **Zoom to** soft key again to zoom into the selected area.

To zoom into the center or zoom out from the center, complete the following steps:

- a Toggle the Zoom to soft key and select Center.
- b Press the Zoom In and Zoom Out soft keys, as you need, to zoom in and zoom out.
- Move the zoomed-in area by using the four arrow keys, as you need.
- 4 To set the location mode, toggle the Location Mode soft key between Auto and Manual and select the one you desire.

Auto: The instrument compares the coordinates of the displayed map with recevied GPS information. If your current location goes out of the displayed area and enters into the next zoomed-in section within the base map, the map display changes automatically to the next section in which your current position is.

Manual: The map display of the zoomed-in area remains unchanged even if your current location goes out of the displayed area. You can change the displayed area manually by using the arrow keys.

Loading and displaying raster data

If you have a set of raster data files generated through the ariesoGEO application, you can load and overlay the data on your base map to help you check the signal quality and the strength of interferences while driving toward the area of interest.

Procedure

5 Copy a set of raster data files into your USB memory drive, including the following:

ASCII: .tab, .asc, and .clr files
BIL: .tab, .hdr, .bil, and .clr files

NOTE

The .tab file type is a geospatial vector data format used in many geographic information systems. The color file (.clr) is an optional file, but the image will be displayed as a grayscale image without it. The size of the raster map must be 1024 x 1024 or smaller.

- **6** Plug in the USB memory drive to your instrument.
- 7 Press the TRACE/DISPLAY hard key.
- 8 Press the Load Raster Map soft key. The file explorer window appears.
- 9 Navigate to the raster file (.tab) you want to open, and then press the **Load** soft key. The raster image appears on top of your base map as shown in Figure 27.

NOTE

If the area of the loaded raster data is not within the boundary of the base map, you will not see the raster image on the screen.

- **10** To select the display option, complete the following steps:
 - Press the Display Options soft key.
 - **b** Select the option you desire from the choices: **On**, **Off**, and **Blink**.
- 11 To adjust the transparency level of the image, complete the following steps:
 - a Press the Transparency soft key.
 - **b** Enter a value between **0** for opaque and **100** for clear.
 - Press the Enter soft key.

Figure 27 Raster image overlaid on the base map

Dual spectrum

The Dual Spectrum feature lets you view two spectrum measurements, both the Uplink and Downlink spectrum, simultaneously eliminating the need to swap between two screens back and forth.

Setting measure setup

- 1 Configure test parameters as described in the "Configuring test parameters" on page 62.
- 2 Press the **MEASURE SETUP** hot key.
- Toggle the **Active Window** soft key between **Top** and **Bottom** to select the measurement window to configure or work on. You can also tap on the top or bottom chart on the screen.

Measurement example

Figure 28 Dual spectrum measurement with spectrum analyzer

PIM detection (single and multiple carriers)

The Passive Intermodulation (PIM) Detection allows you to detect Uplink PIM across the full spectrum for any technology. When PIM is detected, the normal repair mode is to replace the offending cable and what you need to do is replacing the whole cable irrespective of the location of the fault.

Setting measure setup

Procedure

- 1 Press the **MEASURE SETUP** hot key.
- 2 Connect cables as instructed on the screen.
- **3** Optional. To check any possibility of PIM existence in red color by calculation, complete the following steps:
 - Press the Calculated PIM soft key.
 - Press the Radio Band soft key for single carrier.
 There are Radio 1 Band and Radio 2 Band soft keys for multiple carriers.
 - c Highlight a desired band and then press the **Select** soft key.
 - d Press the Return soft key.
- 4 To set the uplink frequency to be measured, do one of the following:

To set the center frequency and span, complete the following steps:

- a Toggle the Unit soft key and select Freq.
- b Press the Uplink Center Frequency soft key.
- c Enter a value by using the numeric keys. You can also use the rotary knob.
- d Select the unit: GHz, MHz, kHz, or Hz.
- Press the Uplink Span soft key.
- f Enter a value by using the numeric keys. You can also use the rotary knob.
- g Select the unit: GHz, MHz, kHz, or Hz.

To set the channel number and span, complete the following steps:

- a Toggle the **Unit** soft key and select **Channel**.
- b Press the Channel Std soft key and select a desired band.
- c Press the Channel Number soft key.

- d Enter a value by using the numeric keys and then press the Enter soft key. The instrument automatically displays the corresponding center frequency value for the selected channel number.
- e Press the Uplink Span soft key.
- f Enter a value by using the numeric keys. You can also use the rotary knob.
- g Select the unit: GHz, MHz, kHz, or Hz.
- 5 Press the **Continue** soft key and follow the instructions on the screen.

Measurement example

Figure 29 PIM detection for single carrier

Figure 30 PIM detection for multiple carriers

Total Harmonic Distortion (THD)

The JD700B series can measure the Total Harmonic Distortion using spectrum analyzer. The Total Harmonic Distortion is defined as the ratio of RMS voltage of the harmonics to that of the fundamental component. This is accomplished by using a spectrum analyzer to obtain the level of each harmonic with peak detector.

Figure 31 Total harmonic distortion screen

Setting fundamental frequency

You need to set the fundamental frequency to measure the total harmonic distortion. Once you set up, it will automatically collect the harmonic outputs (up to the tenth harmonics as shown in Figure 31) from the spectrum analyzer and calculate the corresponding THD value (%) and the distortion attenuation (dB).

Procedure

- 1 Press the FREQ/DIST hard key.
- 2 Press the Fundamental Frequency soft key.
- 3 Enter a value by using the numeric keys. You can also use the rotary knob or the arrow keys.
- 4 Select the unit: GHz, MHz, kHz, or Hz. The total harmonic distortion screen changes accordingly.

Setting reference level

You can set the reference level automatically or manually to optimize the display of the traces measured, as you desire.

Procedure

To automatically set the reference level:

- 1 Press the AMP/SCALE hard key.
- 2 Press the Auto Scale soft key. Each time you press this key, the Y-axis scale changes to be optimized with some margin.

To set the reference or attenuation level manually:

- 1 Press the AMP/SCALE hard key.
- 2 To set the maximum reference value on the Y-axis manually, compete the following steps:

- a Press the Reference Level soft key.
- **b** Enter a value by using the numeric keys or the rotary knob with 10 dB increments.
- Select the unit: dBM or -dBM, or press the ENTER hard key.
- **3** To set the attenuation option, select one from the following choices:

To set the input attenuator's level automatically, select **Attenuation > Auto**.

To set the input attenuation manually up to 55 dB for JD780 series or 50 dB for JD740B series to optimize S/N, complete the following steps:

- a Select Attenuation > Manual.
- **b** Press the **Attenuation Value** soft key to set the level.
- c Enter a value in fives by using the numeric keys.
- d Press the dB soft key or the ENTER hard key.
 To couple the input attenuator's level with your reference level setting, select Attenuation > Couple.

Optional. To change the scale unit:

- 1 Select More (1/2) > Units.
- 2 Select the unit of the display scale: dBm, dBV, dBmV, dBμV, V, or W. The scale unit on the screen changes accordingly.

Pre-amplifier

You can turn the internal pre-amplifier on to correct and compensate for the gain of the preamp so that amplitude readings show the value at the input connector.

Procedure

- 1 Press the AMP/SCALE hard key.
- 2 Toggle the **Preamp** soft key and select **On** or **Off** as needed.

NOTE

You can turn the Preamp on when the input attenuation range is from 0 dB to 10 dB. If the attenuation value is manually set to greater than 10 dB, the instrument will automatically turn off the pre-amplifier to display low-level signal properly on the chart.

External offset

You can turn the External offset on and manually set the external offset value.

Procedure

To set the external offset:

- 1 Press the AMP/SCALE hard key.
- 2 Press the External Offset soft key and select On. Enter a value by using the numeric keys between -120 to 120. You can also use the rotary knob or the arrow keys.
- 3 Press the dB soft key or the ENTER hard key.

To turn the external offset off:

- 1 Press the AMP/SCALE hard key.
- 2 Press the External Offset soft key and select Off.

Scale per division

You can use the **Scale/Div** feature available for the total harmonic distortion screen. It represents the value of one division on the horizontal scale. The default setting is 10 dB per division and the maximum value can be set up to 20 dB.

- 1 Press the AMP/SCALE hard key.
- Select More (1/2) > Scale/Div. Enter a value between 1 and 20 by using the numeric keys. You can also use the rotary knob or the arrow keys.
- 3 Press the dB soft key or the ENTER hard key.

Chapter 5 Using Interference Analyzer

This chapter provides instructions for using the Interference Analyzer function (option 011). Topics discussed in this chapter are as follows:

	Introduction	97
	Display overview	97
-	Connecting a cable	98
-	Selecting measurement mode	.100
-	Configuring test parameters	.100
-	Conducting spectrum measurements	. 105
-	Conducting interference measurements	.108
	Setting limit for interference analyzer	122

Introduction

Interference is becoming more prevalent in the wireless community with the increasing number of transmitters coming on the air. Wireless service providers have traditionally used spectrum analyzers to monitor service channels, frequencies, and adjacent spectrum and to locate sources of interference. A spectrum analyzer can only show you an interfering signal and you require determining the source of the interference. To solve interference problems, you must understand the RF environment, know adjacent operating transmitters, and identify any new or unlicensed emitters.

Once a potential interfering signal is identified in the Spectrum Analyzer mode, you can monitor the signal further in the Interference Analyzer mode. JD700B series provides two different methodologies to identify and determine interference signals: Spectrogram and Received Signal Strength Indicator (RSSI). Locating the source of interference signal can be done with geographical information received from the built-in GPS receiver.

The JD700B series is extremely effective for locating and identifying periodic or intermittent RF interference. Interference signals derive from several kinds of licensed or unlicensed transmitters that cause dropped calls and poor service quality.

The JD700B series provides following measurements for interference analysis:

- Spectrum
- Spectrogram
- Dual Spectrogram
- RSSI (Received Signal Strength Indicator)
- Interference Finder
- Spectrum Replayer
- Radar Chart

Using a set of the AntennaAdvisor Handle that holds a broadband directional antenna is mandatory in the Rader Chart mode and its built-in compass, GPS antenna, gyro sensor, and low-noise amplifier (LNA) benefits you to determine the direction of the interference.

Display overview

Figure 32 provides descriptions for each segment of the measurement screen.

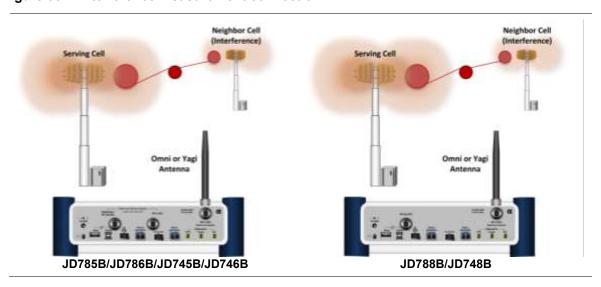
System settings, global positioning information, and indicators

Measurement mode Input settings

User input field

Mode Interference Analyzer Spectrogram

Consider Frequency Control (Standard Rand Global Several College Standard Rand Global Several Randard Randa


Figure 32 Interference measurement screen

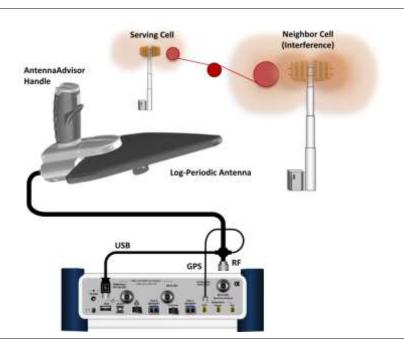
Connecting a cable

Using an Omni or Yagi antenna

- 1 Connect an Omni/directional RF antenna to the Spectrum Analyzer RF In port of the JD700B series
- 2 Connect a GPS antenna to the GPS port of the JD700B series.

Figure 33 Interference measurement connection

CAUTION


If the input signal level to be measured is less than 0 dBm, set it to 0 dB attenuation or turn on the preamp to have better dynamic range for the testing.

Using an AntennaAdvisor handle

In the Interference Finder mode and the Radar Chart mode, you can perform interference hunting using the AntennaAdvisor Handle after attaching a broadband directional antenna to it. The handle is a device that has a built-in GPS antenna and LNA.

- 1 Mount a broadband antenna to your AntennaAdvisor Handle according to the quick start guide of the AntennaAdvisor Handle.
- 2 Connect the RF Type-N jack of the handle to the RF In port of the instrument.
- 3 Connect the GPS SMA jack of the handle to the GPS port of the instrument. The GPS status indicator appears on the instrument screen. If GPS is locked, the indicator turns green.
- 4 Connect the **USB plug** of the handle to the **USB Host port** of the JD700B series. The device icon appears in the system status bar on the screen.

Figure 34 Connection using AntennaAdvisor handle and log-periodic antenna

Selecting measurement mode

Procedure

- 1 Press the MODE hard key.
- 2 Press the Interference Analyzer soft key. The Spectrum mode is selected by default.
- 3 To change the mode, press the **MEASURE** hot key and then select the measurement mode: **Spectrogram**, **Dual Spectrogram**, **RSSI**, **Interference Finder**, or **Spectrum Replayer**.

NOTE

If the **Dual Spectrogram** is selected, you can select the left or right measurement pane in **MEASURE SETUP** to configure measurement parameters for the selected spectrogram.

Configuring test parameters

Setting frequency

You need to set the frequency range to be measured with either the center frequency/span or the start/stop frequencies. You can also set the frequency with the channel number and span.

Procedure

To set the center frequency and span:

- 1 Press the FREQ/DIST hard key.
- 2 Toggle the Unit soft key and select Freq.
- 3 Press the Center Frequency soft key.
- 4 Enter a value by using the numeric keys. You can also use the rotary knob or the arrow keys.
- 5 Select the unit: GHz, MHz, kHz, or Hz.
- 6 Press the **Span** soft key, and then do one of the following:

To set the span manually, select **Span**, enter a value, and then select the unit.

To set the span automatically, select **Full Span**, **Zero Span**, or **Last Span** as needed.

NOTE

The **Zero Span** option is available only in the Spectrum mode. If you have selected **Zero Span**, select **TRIGGER > Free Run**, **External**, **GPS**, **Video**, or **Display Position**.

To set the start and stop frequencies:

- 1 Press the FREQ/DIST hard key.
- 2 Toggle the Unit soft key and select Freq.
- 3 Press the Start Frequency soft key.
- 4 Enter a value by using the numeric keys. You can also use the rotary knob or the arrow keys.
- 5 Select the unit: GHz, MHz, kHz, or Hz.
- 6 Press the Stop Frequency soft key.
- 7 Enter a value by using the numeric keys. You can also use the rotary knob or the arrow keys.
- 8 Select the unit: GHz, MHz, kHz, or Hz.

To set the channel number and span:

- 1 Press the FREQ/DIST hard key.
- 2 Toggle the **Unit** soft key and select **Channel**.
- **3** To select the standard channel, complete the following steps:
 - Press the Channel Std soft key. The standard channel window appears.
 See "Appendix C Band, frequency & channel standard" on page 745 for more information.

- b Highlight the band to be measured by using the rotary knob, the arrow keys, or the Page Up/Page Down soft keys.
- Press the **Select** soft key or the rotary knob to confirm the selection.
- 4 Toggle the Link soft key to select the sweep direction and select Fwd (forward) or Rev (reverse).
- 5 To set the channel number, complete the following steps:
 - Press the Channel Number soft key.
 - b Enter a value by using the numeric keys.
 - c Press the Enter soft key or ENTER hard key to complete the entry. The instrument automatically displays the corresponding center frequency value for the selected channel number.
- **6** To set the span, complete the following steps:
 - Press the Span soft key.
 - **b** Select the span option, from the following choices:

To set the span manually, select Span, enter a value, and then select the unit.

To set the span automatically, select Full Span, Zero Span, or Last Span as needed.

NOTE

The Zero Span option is available only in the Spectrum mode. If you have selected Zero Span, select *TRIGGER* > Free Run, External, GPS, Video, or Display Position.

Optional. To define the amount of frequency increment for the rotary knob:

- 1 Press the **Frequency Step** soft key, if the **Freq** is selected.
- 2 Enter a value by using the numeric keys.
- 3 Press the unit: GHz, MHz, kHz, or Hz.

Optional. To define the amount of channel increment for the rotary knob:

- 1 Press the Channel Step soft key, if the Channel is selected.
- **2** Enter a value by using the numeric keys.
- 3 Press the Enter soft key.

Setting amplitude

Reference level and attenuation

You can set the reference and attenuation levels automatically or manually to optimize the display of the traces measured, as you desire.

Procedure

To automatically set the reference and attenuation level:

- 1 Press the AMP/SCALE hard key.
- Press the Auto Scale soft key. Each time you press this key, both of the Y-axis scale and input attenuation level change to be optimized with some margin.

To set the reference or attenuation level manually:

- 1 Press the AMP/SCALE hard key.
- 2 To set the maximum reference value on the Y-axis manually, complete the following steps:
 - a Press the Reference Level soft key.
 - **b** Enter a value by using the numeric keys or the rotary knob with 10 dB increments.
 - Press the unit soft key or the ENTER hard key.
 This unit key name changes according to the setting in the Units menu.
- **3** To set the attenuation option, select one from the following choices:

To set the input attenuator's level automatically, select **Attenuation > Auto**.

NOTE

It is recommended that you set the **Attenuation** to **Auto** in most situations so that the level of the input attenuator can be set automatically according to your input signal level.

To set the input attenuation manually up to 55 dB for JD780B series or 50 dB for JD740B series to optimize S/N, complete the following steps:

- a Select Attenuation > Manual.
- b Press the Attenuation Value soft key to set the level.
- Enter a value in fives by using the numeric keys.
- d Press the dB soft key or the ENTER hard key.

To couple the input attenuator's level with your reference level setting, select **Attenuation > Couple**.

As you increase the reference setting, the attenuation level also increases accordingly.

Optional. To change the scale unit:

- 1 Select More (1/2) > Units.
- 2 Select the unit of the display scale: dBm, dBV, dBmV, $dB\mu V$, V, or W. The scale unit on the screen changes accordingly.

Scale per division

You can use the **Scale/Div** feature available for the spectrum measurement screen. It represents the value of one division on the horizontal scale. The default setting is 10 dB per division and the maximum value can be set up to 20 dB.

Procedure

To set the scale per division:

- 1 Press the AMP/SCALE hard key.
- 2 Select More (1/2) > Scale/Div.
- 3 Enter a value between 1 and 20 by using the numeric keys.
- 4 Press the dB soft key to complete the entry.

Pre-amplifier

You can turn the internal pre-amplifier on to correct and compensate for the gain of the preamp so that amplitude readings show the value at the input connector.

Procedure

- 1 Press the AMP/SCALE hard key.
- 2 Toggle the **Preamp** soft key and select **On** or **Off** as needed.

NOTE

You can turn the Preamp on when the input attenuation range is from 0 dB to 10 dB. If the attenuation value is manually set to greater than 10 dB, the instrument will automatically turn off the pre-amplifier to display low-level signal properly on the chart.

External offset

You can turn the **External Offset** on and manually set the external offset value. An offset consists of a cable loss and a user offset and the measurement result shows the value reflecting both offset values. When the external offset value is set at 40 dB in the Spectrum mode, the measurement result compensates 40 dB at both the Spectrum Analyzer and Signal Analyzer modes.

Procedure

To set the external offset:

- 1 Press the AMP/SCALE hard key.
- 2 Toggle the External Offset soft key to On.
- 3 Enter a value by using the numeric keys.
- 4 Press the dB soft key to complete the entry.

To turn the external offset off:

- 1 Press the AMP/SCALE hard key.
- 2 Toggle the External Offset soft key to Off.

Setting bandwidth

VBW based on the designated RBW. Selecting **Auto** changes the value to correspond to your frequency span setting for RBW and to the current RBW and VBW/RBW settings for VBW.

Procedure

To automatically set the RBW and VBW to your selected VBW/RBW ratio:

- 1 Press the BW/AVG hard key.
- 2 Press the VBW/RBW soft key to set the proportional VBW based on the designated RBW. Table 9 shows the ratio example for 30 kHz RBW.
- 3 Select the ratio: 1, 0.3, 0.1, 0.03, 0.01, or 0.003.
- 4 Toggle the RBW soft key and select Auto.
- 5 Toggle the VBW soft key and select Auto. The RBW or VBW value on the screen changes accordingly based on the span.

To manually set the RBW or VBW to your selected VBW/RBW ratio:

- 1 Press the BW/AVG hard key.
- 2 Press the **RBW** soft key.
- 3 Enter a value between 1 Hz to 3 MHz in 1-3 sequence by using the numeric keys.
- 4 Select the unit: MHz, kHz, or Hz. The RBW setting automatically changes to Manual.
- 5 Press the VBW soft key.
- 6 Enter a value by using the numeric keys.
- 7 Select the unit: MHz, kHz, or Hz.

The VBW setting automatically changes to Manual.

The RBW or VBW value on the screen changes accordingly.

Table 9 VBW/RBW ratio example

RBW	Ratio (VBW/RBW)	VBW
30 kHz	1:1	30 kHz
	1:0.3	10 kHz
	1:0.1	3 kHz
	1:0.03	1 kHz
	1:0.01	300 Hz
	1:0.003	100 Hz

Setting average

You can set the number of measurements to be averaged for the trace presentation. A maximum of 100 times of averaging can be set. When the averaging reaches to your setting, a new measurement value replaces the measurement value in sequence from the earliest.

Procedure

- 1 Press the BW/AVG hard key.
- 2 Press the Average soft key.
- 3 Enter a value between 1 and 100 as needed by using the numeric keys.
- 4 Press the Enter soft key.

Setting sweep

The **SWEEP** hot key is used to set and control the sweep time, sweep mode, gated sweep settings, and gated sweep on or off. This key is not available in the Dual Spectrum mode.

Sweep time

You can set the sweep time automatically or manually. Manual setting allows you to set the sweep time beyond an automatic setting.

Procedure

- 1 Press the **SWEEP** hot key.
- 2 Select the sweep time option, from the following choices:

To automatically set, toggle the **Sweep Time** soft key and select **Auto**.

To manually set, complete the following steps:

- a Press the Sweep Time soft key.
- **b** Enter a value by using the numeric keys.
- c Select the unit: Sec, mSec, or µSec. The sweep time mode automatically changes to Manual.

Sweep mode

The default settings of the sweep mode are **Continue** and **Normal** to sweep continuously at a normal speed for most on-going measurements. If you want to hold the measurement or get a single sweep, you can change the sweep mode.

Procedure

To select the single sweep mode:

- 1 Press the SWEEP hot key.
- 2 Toggle the Sweep Mode soft key to Single. You can also use the HOLD hot key. The letter HOLD in red appears and the sweeping is paused.
- 3 Optional. Press the Sweep Once soft key to get a new measurement.
- 4 Optional. To speed up sweeping, press the Sweep Mode soft key to Fast.

NOTE

Selecting **Sweep Mode > Fast** may reduce the measurement accuracy, but it is useful to identify the existence of interfering signals.

To return to the continuous sweep mode:

1 Toggle the Sweep Mode soft key to Continue. You can also use the HOLD hot key. The letter HOLD in red disappears and the sweeping resumes.

Gated sweep

You can configure the gated sweep settings with an internal or external trigger source. If you select **Gated Sweep Settings**, you can view the signal in time domain.

Procedure

- 1 Press the **SWEEP** hot key.
- 2 Press the Gated Sweep Settings soft key.
- 3 Optional. Adjust sweep time to allow enough time for a cycle by completing the following steps:
 - Press the Zero Span Time soft key.
 - b Enter a value by using the numeric keys.
 - c Select the unit: Sec, mSec, or μSec.
- 4 Set the period, if using the internal trigger source, by doing one of the following:

To select the preset period, complete the following steps:

- a Toggle the Period soft key and select StdSignal.
- b Press the StdSignal soft key, and then select the period from the choices: GSM (4.615 ms), WCDMA (10 ms), LTE (10 ms), EV-DO (5 ms), TD-SCDMA (5 ms), and WiMAX (10 ms).

To manually set the period, complete the following steps:

- Toggle the Period soft key and select Manual.
- **b** Press the **Period** soft key to enter the amount of time.
- Enter a value by using the numeric keys.
- d Select the unit: Sec, mSec, or μSec.
- 5 Press the **TRIGGER** hot key, and then do one of the following:

Select External for an external trigger source.

Select Video or Display Position for the internal trigger source.

- 6 Press the PREV hard key to continue setting the gated sweep.
- 7 Set the gate delay by completing the following steps:
 - Press the Gate Delay soft key.
 - **b** Enter a value by using the numeric keys.
 - c Select the unit: Sec, mSec, or μSec.
- **8** Set the gate length by completing the following steps:
 - a Press the Gate Length soft key.
 - **b** Enter a value by using the numeric keys.
 - c Select the unit: Sec, mSec, or μSec.
- 9 Press the PREV hard key to enable gated sweeping.
- **10** Toggle the **Gated Sweep** soft key and select **On**.

NOTE

This setting option is not available in the Spectrum Replayer mode.

Conducting spectrum measurements

The spectrum measurement with an audible indicator is especially useful for locating interferer sources with a directional antenna.

Setting trace

You can display up to six traces on the measurement chart simultaneously.

Procedure

- 1 Press the TRACE/DISPLAY hard key.
- 2 Press the Select Trace soft key, and then select the trace number: T1, T2, T3, T4, T5, or T6. The legend shape of the selected trace changes from square to round to indicate that the trace is the active one now.
- **3** Do one of the following:

То	Select	Trace Legend
Clear current data and display with new measurements	Clear Write	W
Display the input signal's maximum response only (unlimited or for a certain amount of time)	Max Hold	М
Display the input signal's minimum response only (unlimited or for a certain amount of time)	Min Hold	m
Capture the selected trace and compare traces	Capture	С
Load a saved trace	More (1/2) > Load	L
Hide the displayed trace	Trace View > Off	F
Remove all the traces and initialize the trace settings	More (1/2) > Trace Clear All	

NOTE

For the **Max Hold** and **Min Hold**, your instrument compares newly acquired data with the active trace and displays larger maximum values or smaller minimum values on the screen. You can set it to **Unlimited** to hold and view maximum or minimum data or specify a certain amount of time up to 60 seconds by using numeric keys or rotary knob.

4 To select the detection option, select More (1/2) > Detectors, and then do one of the following:

To display	Select
Random noise better than the peak without missing signals	Normal
The highest value in each data point	Peak
The root mean squared average power across the spectrum	RMS
The lowest value in each data point	Negative Peak
The center value in each data point	Sample

- 5 Optional. Select More (1/2) > Trace Info, and then select the trace number to view the trace's parameter setting information stored at the time of the measurement or None to hide the information display.
- Optional. If you have the two traces T1 and T2, you can perform trace math. To view the power difference between the traces, press the T1 T2 -> T5 or T2 T1 -> T6 soft key. The result is overlaid on the screen along with the second Y-axis.

NOTE

To be able to load a trace, the trace to be overlaid must be saved in the same measurement mode and frequency setting as the current measurement.

Sound indicator

You can use the Sound Indicator to help you identify interfering signals by sounding an alarm.

Procedure

- 1 Configure test parameters as described in the "Configuring test parameters" on page 100.
- 2 Press the MEASURE SETUP hot key.
- 3 Press the Sound Indicator soft key.
- 4 Toggle the **Sound** soft key between **On** and **Off** to enable and disable the alarm sound.
- **5** Select the alarm reference option from the following choices:

To set the active marker position as the alarm reference, toggle the **Alarm Reference** soft key and select **Marker**.

To set the limit as the alarm reference, complete the following steps:

- a Toggle the Alarm Reference soft key and select Line. The Limit Line menu becomes activated to be set.
- **b** Press the **Limit Line** soft key to define a threshold for the limit line.
- **c** Enter a value by using the numeric keys. You can also use the rotary knob.
- d Press the dBm soft key.
- 6 Optional. To adjust the volume for alarm sound, press the Volume soft key and then turn the rotary knob clockwise or counter clockwise.
- 7 Optional. You can save logging data automatically so that you can load the measurement data and replay in the Spectrum Replayer mode. See "Using save" on page 34 for more information.

AM/FM audio demodulation

You can use the AM/FM Audio Demodulation to identify if the interfering signal is nth harmonics of AM/FM audio. The instrument sounds demodulated signals that you can hear through the speaker or headphones.

Procedure

- 1 Configure test parameters as described in the "Configuring test parameters" on page 100.
- 2 Press the MEASURE SETUP hot key.
- 3 Toggle the Audio Demod soft key between On and Off to turn the AM/FM audio demodulation on and off.
- 4 Press the Demod at soft key, and then select the marker number for the frequency to be demodulated.

NOTE

You must set the marker(s) first by using the **MARKER** hard key as the AM/FM demodulator uses the marker position to demodulate. See "Using marker" on page 57 for more information.

- 5 Press the **Demod Mode** soft key, and then select the demodulation mode: **AM**, **FM** and **CW**.
- **6** Press the **Dwell Time** soft key, and then turn the rotary knob to set the demodulation interval between 1 and 20.
- 7 Press the **Volume** soft key, and then turn the rotary knob to set the speaker volume.
- **8** Toggle the **Auto Gain** soft key between **On** and **Off** to enable or disable the automatic gain feature to adjust the interval gain of the demodulator.
- 9 Optional. Go to SAVE/LOAD > Save, and then select the save option from the choices available for your measurement mode. See "Using save" on page 34 for more information.

Interference ID

The Interference ID automatically classifies interfering signals over a designated spectrum and displays the list of possible signal types corresponding to the selected signal.

Procedure

- 1 Configure test parameters as described in the "Configuring test parameters" on page 100.
- 2 Press the MEASURE SETUP hot key.
- 3 Toggle the Interference ID soft key between On and Off to turn the Interference ID on and off.
- **4** To set the threshold level manually, complete the following steps:
 - a Press the Threshold soft key.
 - b Enter a value by using the numeric keys.
 - c Press the dBm soft key.
- 5 Optional. Go to **SAVE/LOAD** > **Save**, and then select the save option from the choices available for your measurement mode. See "Using save" on page 34 for more information.

NOTE

You can use the *LIMIT* hot key to analyze your measurements with the display line, multi-segment line, and channel limit. See "Setting limit for interference analyzer" on page 117 for more information.

Conducting interference measurements

Spectrogram

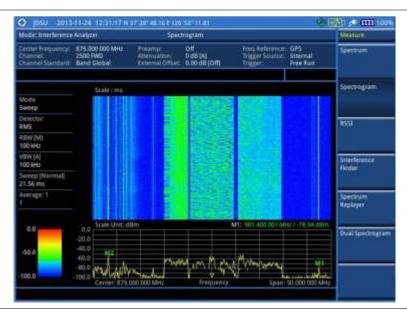
The Spectrogram is particularly useful when attempting to identify periodic or intermittent signals as it captures spectrum activity over time and uses various colors to differentiate spectrum power levels. When the directional antenna is used to receive the signal, you will see a change in the amplitude of the tracked signal as you change the direction of the antenna and see a change in the Spectrogram colors. The source of the signal is located in the direction that results in the highest signal strength.

Setting measure setup

Procedure

- 1 Configure test parameters as described in the "Configuring test parameters" on page 100.
- 2 Press the MEASURE SETUP hot key.
- 3 To set the amount of time between each trace measurement:
 - a Press the Time Interval soft key.
 - **b** Enter a value by using the numeric keys. You can also use the rotary knob.
 - c Press the Sec soft key.
- 4 To set the time cursor on a specific trace position, complete the following steps:
 - a Toggle the **Time Cursor** soft key and select **On**.
 - b Press the Position soft key.
 - c Turn the rotary knob to move the time cursor. You can also enter a value and then press the Enter soft key.

NOTE


Enabling the time cursor puts the measurement on hold and you can make post-processing analysis for each measurement over time using the time cursor.

- **5** To start a new measurement, press the **Reset/Restart** soft key.
- 6 Optional. Go to **SAVE/LOAD** > **Save**, and then select the save option from the choices available for your measurement mode. See "Using save" on page 34 for more information.

Measurement example

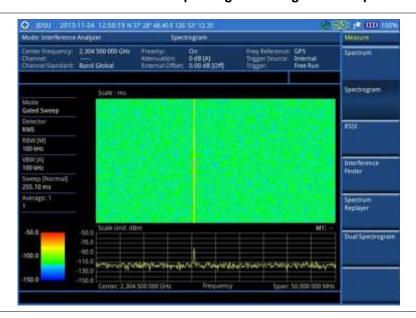

The spectrogram shows a vertical line on the chart when the marker is enabled on the screen.

Figure 35 Interference measurement in spectrogram

- The horizontal line or X-axis of the spectrogram is frequency.
- The vertical line or Y-axis is time.
- The color identification (Spectrogram) indicates power level of the tracked signal. As the signal strength increases, the color on the spectrogram changes accordingly.

Figure 36 Interference measurement in spectrogram with gated sweep on

NOTE

You can use the *LIMIT* hot key to analyze your measurements with the display line, multi-segment line, and channel limit. See "Setting limit for interference analyzer" on page 117 for more information.

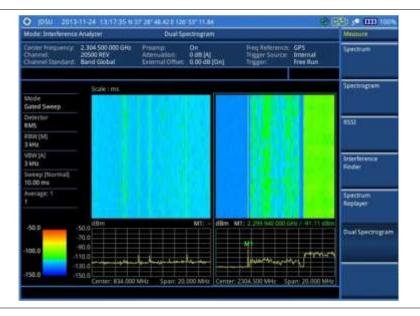
Dual spectrogram

The Dual Spectrogram mode is useful to compare two spectrograms displayed simultaneously on the screen.

Setting measure setup

Procedure

- 1 Configure test parameters as described in the "Configuring test parameters" on page 100.
- 2 Press the **MEASURE SETUP** hot key.
- 3 Toggle the **Active Window** soft key and select **Left** or **Right** spectrogram to be set up. You can also tap on the left or right chart on the screen.
- 4 To set the amount of time between each trace measurement:
 - a Press the Time Interval soft key.
 - **b** Enter a value by using the numeric keys. You can also use the rotary knob.
 - c Press the Sec soft key.
- 5 To set the time cursor on a specific trace position, complete the following steps:
 - a Toggle the **Time Cursor** soft key and select **On**.
 - b Press the Position soft key.
 - c Turn the rotary knob to move the time cursor. You can also enter a value and then press the Enter soft key.


NOTE

Enabling the time cursor puts the measurement on hold and you can make post-processing analysis for each measurement over time using the time cursor.

- 6 To start a new measurement, press the Reset/Restart soft key.
- 7 Optional. Go to SAVE/LOAD > Save, and then select the save option from the choices available for your measurement mode. See "Using save" on page 34 for more information.

Measurement example

Figure 37 Interference measurement in dual spectrogram view

RSSI

The Received Signal Strength Indicator (RSSI) is a multi-signal tracking metric that is particularly useful for measuring power-level variations over time. The RSSI measurement lets you assign power limit line for audible alarms and increase alarm counters every time a signal exceeds a defined limit line. For long-term analysis, the spectrogram and RSSI measurements can be automatically saved into an external USB memory. Post-analysis can be performed with JDViewer application software.

Setting measure setup

Procedure

- 1 Configure test parameters as described in the "Configuring test parameters" on page 100.
- 2 Press the MEASURE SETUP hot key.
- **3** To set up the alarm parameters, complete the following steps:
 - a Press the Alarm soft key.
 - **b** Press the **Alarm at** soft key and select the marker number: M1 to M6.
 - Press the Limit Line soft key to set a threshold for the alarm.
 - d Enter a value by using the numeric keys. You can also use the rotary knob.
 - e Press the dBm soft key.
 - f Toggle the **Alarm** soft key between **On** and **Off** to turn the alarm feature on or off.
 - **g** Optional. Press the **Volume** soft key and adjust the volume.
- **4** To set up the AM/FM audio demodulation, complete the following steps:
 - Press the AM/FM Audio Demod soft key.
 - b Toggle the Audio Demod soft key between On and Off to turn the AM/FM audio demodulation on or off.
 - c Press the **Demod at** soft key, and then select the marker number for the frequency to be demodulated.

NOTE

For the alarm and AM/FM audio demodulation, you must set the marker(s) first by using the **MARKER** hard key as these features use the marker position to sound alarm or demodulate. See "Using marker" on page 57 for more information.

- d Press the Demod Mode soft key, and then select the demodulation mode: AM, FM, and CW.
- e Press the **Dwell Time** soft key, and then turn the rotary knob to set the demodulation interval between 1 and 20.
- f Toggle the **Auto Gain** soft key between **On** and **Off** to enable or disable the automatic gain feature to adjust the interval gain of the demodulator.
- g Optional. Press the **Volume** soft key and adjust the volume.
- 5 To start a new measurement, press the **Reset/Restart** soft key.
- 6 Optional. Go to **SAVE/LOAD** > **Save**, and then select the save option from the choices available for your measurement mode. See "Using save" on page 34 for more information.

Measurement example

Figure 38 Interference measurement in RSSI

NOTE

You can use the *LIMIT* hot key to analyze your measurements with the display line, multi-segment line, and channel limit. See "Setting limit for interference analyzer" on page 117 for more information.

Interference finder

The Interference Finder is an automatic triangulation algorithm that uses GPS coordinates to locate possible interference sources based on three measurements. The interference finder calculates possible interference locations using its inscribed circle or circumscribed circle based on measured intersection points. You can plot up to seven measurement points and select three that are more representative for triangulation. JD700B series automatically logs measurement positions not to lose them while changing measurement modes.

The JD700B Series also supports the RAN-IL (Interference Location) feature that enables you to overlay user experience data obtained through Viavi's ariesoGEO on your base map to help you troubleshoot problems easily and quickly using your instrument. You can generate raster data files on the ariesoGEO application and load them on your instrument.

Loading a map

After you have made connections as described in the "Using an Omni or Yagi antenna" on page 98 and configured test parameters as described in the "Configuring test parameters" on page 100, you need to load a map of the area where you want to go out and do interference hunting.

Procedure

1 Plug in your USB drive that has a map file in .mcf file type created in JDMapCreator. If the JDMapCreator application on your computer is connected to the instrument via USB or LAN, you can send a map file with a single layer to the instrument directly by using the **Send to EQP** menu in JDMapCreator.

NOTE

The JDMapCreator converts and resizes any scanned floor plan or layout to fit onto your instrument's display. JDMapCreator 1.2.0 or later can save a multiple-layered map, providing x1, x2, and x4 views, as a sizable map file so that you can zoom in and out after loading it.

- 2 Press SAVE/LOAD hot key, and then select Load > Load Map.
- Navigate to a map file you want to open.
 The File Information pane displays file properties including file name, map type, and address. If you see "Sizable Map" for Map Type, you can zoom in and out the base map after loading.
- 4 Press the **Load** soft key. The loaded map appears.

Initializing AntennaAdvisor

If you have connected the AntennaAdvisor Handle to your instrument, you need to initialize it so that you get azimuth data as accurately as possible.

Procedure

- 1 Press the MEASURE SETUP hot key. A message appears at the bottom of the screen to alert you if you have not performed initialization of your connected the antenna handle set.
- 2 To adjust the integration bandwidth based on the center frequency of the interfering signal that you have identified in the Spectrum view, complete the following steps:
 - a Press the Bandwidth soft key.
 - **b** Enter a value by using the numeric keys. You can also use the rotary knob.
 - Select the unit option from the choices: GHz, MHz, kHz, and Hz.
- 3 Initialize the antenna handle to calibrate the built-in compass by completing the following steps:
 - Hold your antenna handle horizontally in its upright position.
 - **b** Point the antenna to the north, and then press the **Initialize AntennaAdvisor** soft key.

Setting location

As the Interference Finder uses triangulation to provide a circle of possible source of the interference, you must set three location points so that the straight lines started from the point can create three intersections. If you have the AntennaAdvisor Handle, it makes it easy to determine these points using its built-in compass and GPS antenna while measure power level of the received signal.

Procedure

- 1 Press the **Location Setup** soft key in the Measure Setup menu bar.
- 2 Press the Location soft key to set three location points.
- 3 Press the Point [1|2|3] soft key to set the first location point, and then do one of the following:

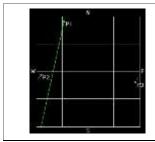
To automatically get the selected point's positioning information with GPS locked, press the **Get GPS Position**. The instrument displays the latitude and longitude information of the signal received by either the GPS antenna or AntennaAdvisor Handle.

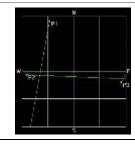
To manually define a position for the selected point, complete the following steps:

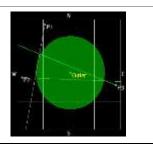
- a Press the Latitude soft key, and then set the properties: North/South, Degree, Minute, and Second.
- b Press the Longitude soft key, and then set the properties: East/West, Degree, Minute, and Second.
- 4 To set an azimuth, do one of the following:

Using the AntennaAdvisor Handle, complete the following steps:

- a Press and hold the TRIGGER button on the handle and pan the antenna handle to scan through until you find the strongest RSSI value.
 RSSI, polarization, elevation and azimuth readings are continuously updated on the screen while pressing the physical button.
- **b** Release the **TRIGGER** button to stop scanning.


Using a compass, complete the following steps:


- a Press the Azimuth soft key.
- Pan your Yagi antenna to find a signal with highest RSSI value, and then measure an azimuth of the interfering signal.
- **c** Enter the measured angle using the numeric keys, and then press the **Enter** soft key. Using your instrument without a compass, complete the following steps:
- a Press the Azimuth soft key.
- **b** Pan your Yagi antenna to find a signal with highest RSSI value.
- c Turn the rotary knob to align the straight line on the base map with the direction of the interfering signal. The azimuth calculated by the instrument appears on the screen.

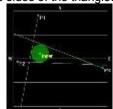


The AntennaAdvisor Handle has a built-in low-noise amplifier (LNA) and you can turn it on and off using the physical On/Off button located on the rear side of the handle unit. For example, if the received signal is weak, you can turn on the switch to improve S/N.

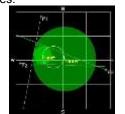
- 5 To save the defined position, press the **Save Position** soft key and then select one of the soft keys to which you want to save the position information. The instrument stores the saved location points in the internal memory so that you can load them by using the **Load Position** soft key.
- 6 Press the Location soft key, and then repeat steps 3-5 to set the second location point.
- 7 Press the Location soft key, and then repeat steps 3-5 to set the third location point. The circumscribed circle appears when the lines from three location points create three intersections or vertices.

Setting display mode

When the triangulation is done with three location points and azimuth for each point, you can view a circumscribed circle by default. You can change the display mode to inscribed circle or double circles to view a narrower area. The center of the green-shaded circle is determined to be where the source of the interfering signal resides.


Procedure

- 1 Press the **Display Setup** soft key in the Measure Setup menu bar.
- 2 Press the **Display Mode** soft key, and then select the option from the following choices:


circumscribed circle that meets three vertices of the triangle.

Circum: It displays a

Inscribed: It displays an inscribed circle that meets the three sides of the triangle.

Double: It displays both circumscribed and inscribed circles

3 Toggle the Screen Mode soft key to select Map or Full as needed.

Map: This option displays what are inside the base map with the map image.

Full: This option displays three location points and defined circle without the map image.

Controlling a map

If you have loaded a sizable map that was created in JDMapCreator 1.2.0 or later, you can use the Map Control feature that enables you to zoom into the green-shaded area on the map and view the location of the interference source in detail.

Procedure

- 1 Press the TRACE/DISPLAY hard key.
- 2 Press the Map Control soft key. This key is active only when you have loaded a sizable map.
- **3** Do one of the following:

To zoom into an area of interest directly, complete the following steps:

- a Toggle the Zoom to soft key and select Area. The black rectangle appears on the map.
- **b** Press the **Zoom In** and **Zoom Out** soft keys, as you need, to decrease and increase the selected area.
- Move the rectangle by using the four arrow keys, as you need, to place it in a specific area of interest.
- **d** Press the center of the rotary knob to zoom into the selected area. You can also press the **Zoom to** soft key again to zoom into the selected area.

To zoom into the center or zoom out from the center, complete the following steps:

- a Toggle the Zoom to soft key and select Center.
- b Press the **Zoom In** and **Zoom Out** soft keys, as you need, to zoom in and zoom out.
- Move the zoomed-in area by using the four arrow keys, as you need.

Measurement example

Figure 39 Interference finder measurement in map view

Loading and displaying raster data

If you have a set of raster data files generated through the ariesoGEO application, you can load and overlay the data on your base map to help you assume suspicious points of interference easily and pinpoint the source of the interference quickly.

Procedure

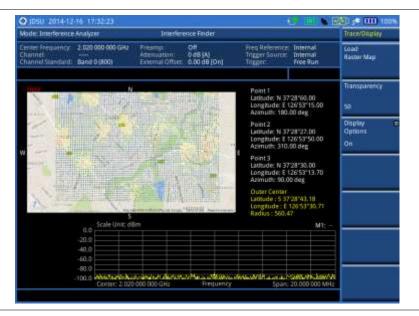
1 Copy a set of raster data files into your USB memory drive, including the following:

ASCII: .tab, .asc, and .clr files
BIL: .tab, .hdr, .bil, and .clr files

NOTE

The .tab file type is a geospatial vector data format used in many geographic information systems. The color file (.clr) is an optional file, but the image will be displayed as a grayscale image without it. The size of the raster map must be 1024 x 1024 or smaller.

- 2 Plug in the USB memory drive to your instrument.
- 3 Press the TRACE/DISPLAY hard key.
- 4 Press the **Load Raster Map** soft key. The file explorer window appears.
- Navigate to the raster file (.tab) you want to open, and then press the **Load** soft key. The raster image appears on top of your base map as shown in Figure 40.



NOTE

If the area of the loaded raster data is not within the boundary of the base map, you will not see the raster image on the screen.

- **6** To select the display option, complete the following steps:
 - Press the Display Options soft key.
 - **b** Select the option you desire from the choices: **On**, **Off**, and **Blink**.
- 7 To adjust the transparency level of the image, complete the following steps:
 - Press the Transparency soft key.
 - **b** Enter a value between **0** for opaque and **100** for clear.
 - c Press the Enter soft key.

Figure 40 Raster image overlaid on the map in interference finder

Spectrum Replayer

The Spectrum Replayer lets you retrieve and replay recorded spectrum analyzer traces in interference analysis mode. These traces can be played back in the spectrogram or RSSI. You can configure the limit line to create failure points when signals exceed it. The failure points are clearly displayed on the trace timeline for quick access during playback.

Setting measure setup

Procedure

- 1 Press the **MEASURE** hot key.
- **2** Press the **Spectrum Replayer** soft key. The file manager window appears.
- 3 Select a file to be loaded, and then press the Load soft key. The Measure Setup screen menus appear.
- 4 Toggle the Replay Direction soft key between FWD and REV to change play direction to forward or reverse.
- 5 Press the Replay Speed soft key, and then select the speed option: x1, x2, x3, and x4.
- 6 Press the Play soft key to start playing.
- 7 Press the **Pause** soft key to pause or stop playing data.
- 8 To move to a particular failure position directly and play from there, complete the following steps:
 - Press the Jump to Fail Index soft key.
 - b Enter a value by using the numeric keys.
 - c Press the Enter soft key.
- 9 Optional. Toggle the Time Cursor soft key between On and Off to display or hide the time cursor on the screen. This key becomes activated when you play logged data in the Spectrogram mode.

NOTE

If you connected a USB drive, do not remove it while playing. Doing so may freeze the USB port, which will require you to restart the instrument to get a USB drive recognized again.

Setting display

You can select the display option.

Procedure

- 1 Press the TRACE/DISPLAY hard key.
- 2 Select the display option: Spectrum, Spectrogram, or RSSI.

NOTE

You can use the *LIMIT* hot key to analyze your measurements with the display line, multi-segment line, and channel limit. See "Setting limit for interference analyzer" on page 122 for more information.

Radar Chart

If you have identified an interfering signal on your spectrum view, you can move to the Radar Chart mode and measure RSSI power level through 360 degrees at a location received by the connected broadband directional antenna so that you can determine the direction of the source of the interference. A set of the AntennaAdvisor Handle with the antenna is mandatory to perform measurements in this mode.

If you have obtained user experience data through Viavi's ariesoGEO and generated raster data files from the application, you can load them onto your base map to help you troubleshoot problems easily and quickly.

Loading a map

After you have connected your AntennaAdvisor Handle set to the JD700B series as described in the "Using an AntennaAdvisor handle" on page 99 and configured test parameters as described in the "Configuring test

parameters" on page 100, you need to load a map of the area where you want to go out and do interference hunting activities.

Procedure

1 Plug in your USB drive that has a map file in .mcf file type created in JDMapCreator. If the JDMapCreator application on your computer is connected to the instrument via USB or LAN, you can send a map file with a single layer to the instrument directly by using the **Send to EQP** menu in JDMapCreator.

NOTE

The JDMapCreator converts and resizes any scanned floor plan or layout to fit onto your instrument's display. JDMapCreator 1.2.0 or later can save a multiple-layered map, providing **x1**, **x2**, and **x4** views, as a sizable map file so that you can zoom in and out after loading it.

- 2 Press SAVE/LOAD hot key, and then select Load > Load Map.
- 3 Navigate to a map file you want to open.
 The File Information pane displays file properties including file name, map type, and address. If you see "Sizable Map" for Map Type, you can zoom in and out the base map after loading.
- 4 Press the Load soft key. The loaded map appears. Before pressing the Get GPS Position soft key, you should not interpret the center of the radar chart as your current geographical location on the map.

Controlling a map

If you have loaded a sizable map that was created in JDMapCreator 1.2.0 or later, you can use the Map Control feature that enables you to zoom into the map and view a specific area of interest in detail.

Procedure

- 1 Press the TRACE/DISPLAY hard key.
- 2 Press the Map Control soft key. This key is active only when you have loaded a sizable map.
- 3 Do one of the following:

To zoom into an area of interest directly, complete the following steps:

- Toggle the Zoom to soft key and select Area. The black rectangle appears on the map.
- b Press the Zoom In and Zoom Out soft keys, as you need, to decrease and increase the selected area.
- Move the rectangle by using the four arrow keys, as you need, to place it in a specific area of interest.
- d Press the center of the rotary knob to zoom into the selected area. You can also press the **Zoom to** soft key again to zoom into the selected area.

To zoom into the center or zoom out from the center, complete the following steps:

- a Toggle the **Zoom to** soft key and select **Center**.
- **b** Press the **Zoom In** and **Zoom Out** soft keys, as you need, to zoom in and zoom out.
- Move the zoomed-in area by using the four arrow keys, as you need.

Initializing AntennaAdvisor

After you have loaded a map for the area of interest, you need to initialize the AntennaAdvisor Handle to calibrate its built-in compass in order to obtain more accurate azimuth information.

Procedure

1 Press the *MEASURE SETUP* hot key. A message appears at the bottom of the screen to alert you if you have not performed initialization of your connected the antenna handle set.

- 2 To adjust the integration bandwidth based on the center frequency of the interfering signal that you have identified in the Spectrum view, complete the following steps:
 - a Press the Bandwidth soft key.
 - **b** Enter a value by using the numeric keys. You can also use the rotary knob.
 - Select the unit option from the choices: GHz, MHz, kHz, and Hz.
- 3 Initialize the antenna handle to calibrate the built-in compass by completing the following steps:
 - a Hold your antenna handle horizontally in its upright position. To avoid unnecessary impact of external magnetic field, position yourself at the location where the value of magnetic field strength displayed on the instrument is green.
 - b Point the antenna to the north, and then press the **Initialize AntennaAdvisor** soft key. The message disappears and the red line for the current antenna direction moves to the 0-degree line and overlaps to let you know that the initialization is done successfully.

NOTE

If is recommended that you re-initialize the AntennaAdvisor Handle after measurements to re-calibrate the compass when you notice that the red line on the radar chart is not aligned with the north on the map even though you are pointing the antenna to the north.

Obtaining RSSI data

After you have connected your antenna handle set and done necessary setups, you can monitor the power level of the received signal, the amount of polarization, and elevation level real time. Using the Trigger button on the antenna handle set, you can plot the RSSI level through 360 degrees at your location.

Procedure

- 1 When you have the green GPS indicator, press the Get GPS Position soft key in the Measure Setup menu bar to set your current location with GPS locked as the center of the radar chart. The latitude and longitude information at the bottom of the display changes from 'Unknown Position' to the obtained position information.
- 2 Optional. To save a position to recall for triangulation in the Interference Finder mode, press the Save Position soft key and then select one of the soft keys to which you want to save.
- 3 Monitor the RSSI reading of the received signal. If the signal is weak, turn on the LNA switch on the antenna handle set to improve S/N.

NOTE

The AntennaAdvisor Handle has a built-in low-noise amplifier (LNA) and you can turn it on and off by toggling the physical On/Off switch located on the rear side of the handle unit.

4 Hold the antenna handle set horizontally and then make the following measurement:

To obtain a RSSI value, complete the following steps:

- a Press the **TRIGGER** button located on the antenna handle. Every time you press the physical button on the handle, a beep is sounded and a power level of the received signal is plotted as a blue dot on the radar chart. Depending on the strength of the measured value, you may hear different tones of beeping.
- b With panning the antenna horizontally to vary the angle of the direction, repeat pressing the TRIGGER button to obtain at least five points if you want to do the localization.

To obtain RSSI values continuously, complete the following steps:

- a Press and hold the TRIGGER button located on the antenna handle to start a continuous measurement.
- **b** Pan the antenna handle horizontally through the angle of 360 degrees you desire. A beep is sounded repeatedly to let you know that the measurement is continuing and measured values are plotted on the radar chart. See Figure 41 for an example.
- c Release the **TRIGGER** button to stop the continuous measurement.

NOTE

- The maximum number you can plot on the radar chart is **500 points** both in the single

and continuous measurements. If your measurement reached to 500 points, you need to reset the measurement by pressing the Localization soft key twice or performing the initialization of the AntennaAdvisor Handle.

- Concentric circles indicate different levels of RSSI. The outer circle, the higher power level is. You can use the **AMP/SCALE** hard to adjust the amplitude scale of the chart.
- 5 To change the display mode, toggle the Screen Mode soft key and select Map or Full as needed.

Map: It displays measured points inside the base map image. If you are in the area outside the base map and continue your measurement with the Trigger button, the instrument continue obtaining data even though the radar chart disappears from the screen. You can view obtained data when you change this display option to Full.

Full: It displays measured points without the base map image. In case that you made measurements in the area outside the map image, selecting this option moves your measured data to the center of the display so that you can view the result.

Localizing RSSI data

The Localization feature lets you view averaged and smoothed measurement data with a bold green line on the radar chart that helps you determine the direction of the highest RSSI value. When you have five or more data points plotted on the radar chart, you can perform this localization.

Procedure

- 1 Press the **Localization** soft key in the Measure Setup menu bar. All the measured points turn to green color and you can view the bold green line that indicates the possible direction of the interference source. See **Figure 42** for an example.
- 2 To clear all the data plots on the radar chart, press the **Localization** soft key again.

Measurement example

Figure 41 RSSI data plotted on the radar chart

Figure 42 Localized RSSI data on the radar chart

Loading and displaying raster data

If you have a set of raster data files generated through the ariesoGEO application, you can load and overlay the data on your background map to help you view suspicious points of interference easily and pinpoint the source of the interference quickly.

Procedure

1 Copy a set of raster data files into your USB memory drive, including the following:

ASCII: .tab, .asc, and .clr files
BIL: .tab, .hdr, .bil, and .clr files

NOTE

The .tab file type is a geospatial vector data format used in many geographic information systems. The color file (.clr) is an optional file, but the image will be displayed as a grayscale image without it. The size of the raster map must be 1024 x 1024 or smaller.

- 2 Plug in the USB memory drive to your instrument.
- 3 Press the TRACE/DISPLAY hard key.
- 4 Press the Load Raster Map soft key. The file explorer window appears.
- Navigate to the raster file (. tab) you want to open, and then press the **Load** soft key. The raster image appears on top of your base map.

NOTE

If the area of the loaded raster data is not within the boundary of the base map, you will not see the raster image on the screen.

- **6** To select the display option, complete the following steps:
 - Press the Display Options soft key.
 - **b** Select the option you desire from the choices: **On**, **Off**, and **Blink**.
- 7 To adjust the transparency level of the image, complete the following steps:
 - Press the Transparency soft key.
 - **b** Enter a value between **0** for opaque and **100** for clear.
 - c Press the Enter soft key.

Setting limit for interference analyzer

The Interference Analyzer function provides you with limit setting options for you to select, as you desire. They are a single limit, a multi-segment line limit, and a channel limit.

Setting a single limit line

Procedure

- 1 Press the LIMIT hot key.
- 2 Press the **Display Line** soft key for a reference line.
- 3 Enter a value, and then press the dBm unit soft key.
- 4 Toggle the Display Line soft key between On and Off to display and dismiss the reference line. The straight line appears across the screen to be used as a visual reference only.
- **5** Optional. Go to **SAVE/LOAD > Save**, and then select **Limit** to save the limit settings. See "Using save" on page 34 for more information.

Setting a multi-segment line

Procedure

- 1 Press the LIMIT hot key.
- 2 Press the Multi Segment Line soft key for Pass/Fail indication.
- 3 Toggle the Limit soft key between Upper and Lower to select the one to be displayed.
- 4 Set the number of segments for the selected upper or lower limit, up to 50 segments.
 - Press the # of Line soft key.
 - **b** Enter a value between **1** and **50** by using the numeric keys.
 - c Press the Enter soft key.
- 5 Press the Autoset soft key to automatically set the limit for each segment and display the line.
- **6** To move the limit line, complete the following steps:
 - Select Limit Up/Down or Limit Left/Right.
 - **b** Turn the rotary knob to move the line as desired. You can also manually enter a value.
- 7 To edit the segment properties, complete the following steps:
 - a Press the Edit Limit soft key.
 - **b** Press the **Move** soft key and then turn the rotary knob to select the segment to edit.
 - c Select the menu option, from the following choices:
 - To hide the line for the selected segment, toggle the Line soft key and select Off.
 - To add a new point, press the Add Point soft key.
 - To delete the selected point, press the **Delete Point** soft key.
 - To change the position, press the Frequency or Amplitude soft key, and then turn the rotary knob to change the value as desired.
- 8 Optional. Go to SAVE/LOAD > Save, and then select Limit to save the limit settings. See "Using save" on page 34 for more information.

Defining a channel limit

- 1 Press the LIMIT hot key.
- 2 Press the Channel Limit soft key.

- **3** To define the index table, complete the following steps:
 - a Toggle the **Table** soft key between **On** and **Off** to display and hide the channel index table on the screen.
 - **b** Press the **Index** soft key.
 - **c** Enter an index number to be set between 1 and 10 by using the numeric keys, and then press the **Enter** soft key.
 - d Press the Start Frequency or Center Frequency soft key depending on your prior frequency setting.
 - Enter a value by using the numeric keys, and then select the unit from the choices: GHz, MHz, kHz, and Hz. You can also use the rotary knob or the arrow keys.
 - f Press the Stop Frequency or Span Width soft key depending on your prior frequency setting.
 - g Enter a value by using the numeric keys, and then select the unit from the choices: **GHz**, **MHz**, **kHz**, and **Hz**. You can also use the rotary knob or the arrow keys.
- 4 To set the limits for Pass/Fail indication, complete the following steps:
 - a Toggle the Limit soft key between On and Off to enable and disable the limit.
 - b Press the High Limit soft key.
 - Enter a value by using the numeric keys. You can also use the rotary knob or the arrow keys, and then press the **dBm** soft key.
 - d Press the Low Limit soft key.
 - Enter a value by using the numeric keys. You can also use the rotary knob or the arrow keys, and then press the **dBm** soft key.
- 5 Optional. Go to SAVE/LOAD > Save, and then select Limit to save the limit settings. See "Using save" on page 34 for more information.

Chapter 6 Using GSM/GPRS/EDGE Signal Analyzer

This chapter provides instructions for using the GSM/GPRS/EDGE Signal Analyzer function (option 022) with GSM//GPRS/EDGE OTA Analyzer function (option 042). Topics discussed in this chapter are as follows:

	Introduction	. 125
-	Display overview	. 125
-	Connecting a cable	. 126
-	Selecting measurement mode	. 128
-	Configuring test parameters	. 128
-	Conducting spectrum measurements	. 132
-	Conducting RF measurements	. 133
-	Conducting power vs. time measurements	. 139
-	Conducting constellation measurements	. 142
-	Performing auto measurements	. 144
	Conducting GSM OTA measurements	. 146

Introduction

The Global System for Mobile Communications (GSM) is a digital cellular standard that uses Time Division Multiple Access (TDMA) multiplexing scheme and Gaussian Minimum Shift Keying (GMSK) modulation. The Enhanced Data Rates for GSM Evolution (EDGE) is an enhancement to GSM that promises to deliver multimedia and other broadband applications. It uses TDMA and $3\pi/8$ 8PSK (phase shift keying) modulation.

This instrument performs measurements using the methods and limits as defined in the 3GPP TS 51.021 Base Station System (BSS) equipment specification: Radio Aspects V8.9.0 (2003-06) and 3GPP TS 45.005 Radio Transmission and Reception (version 12.5.0, release 12). The Pass/Fail indictor helps you to determine base station performance easily.

This instrument provides the following measurement tools for GSM/GPRS/EDGE system:

- Spectrum Analysis
- RF Analysis
 - Channel Power
 - Occupied Bandwidth
 - Spectrum Emission Mask (SEM)
 - Output RF Spectrum
 - Spurious Emissions
- Power vs. Time
 - Power vs. Time (Slot)
 - Power vs. Time (Frame)
- Modulation Analysis
 - Constellation
- Auto Measure
- Over The Air (OTA)
 - Channel Scanner
 - Frequency Scanner
 - Multipath Profile
 - Modulation Analyzer

Display overview

Figure 43 provides descriptions for each segment of the measurement screen.

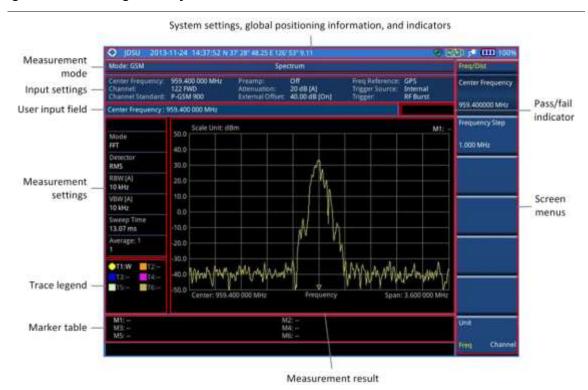


Figure 43 GSM signal analyzer measurement screen

Connecting a cable

Direct connection

Procedure

1 Connect the **Spectrum Analyzer RF In** port of the JD700B series and the power amplifier output port of BTS.

Figure 44 Direct connection



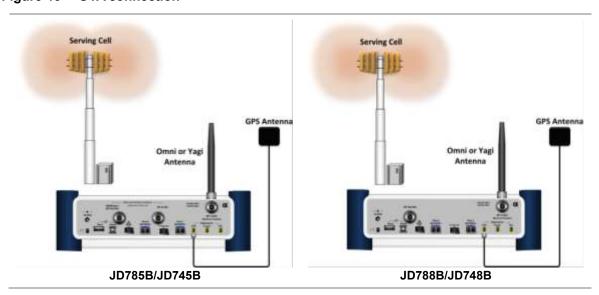
Indirect connection

Procedure

1 Connect the Spectrum Analyzer RF In port of the JD700B series and the monitor (test) port of BTS.

Figure 45 Indirect connection

CAUTION


The maximum power for the **Spectrum Analyzer RF In** port is +25 dBm (0.316 W) for JD780B series and +20 dBm (0.1 W) for JD740B series. If the level of the input signal to be measured is greater than this, use a *High Power Attenuator* to prevent damage when you directly connect the signal to the instrument or connect the signal from the coupling port of a directional coupler.

Over the air (OTA)

Procedure

- 1 Connect an Omni/directional RF antenna to the Spectrum Analyzer RF In port of the JD700B series.
- 2 Connect a GPS antenna to the GPS port of the JD700B series.

Figure 46 OTA connection

CAUTION

If the input signal level to be measured is less than 0 dBm, set 0 dB attenuation or turn on the preamp to have better dynamic range for the OTA testing.

Selecting measurement mode

Procedure

- 1 Press the MODE hard key.
- 2 Press the Signal Analyzer soft key.
- 3 Press the GSM soft key. The Spectrum mode is set by default.
- 4 Press the MEASURE hot key, and then select the measurement mode option from the following choices:

Spectrum

RF Analysis > Channel Power, Occupied BW, Spectrum Emission Mask,

Output RF Spectrum, or Spurious Emissions

Power vs Time > Power vs Time (Slot) or Power vs Time (Frame)

Constellation

Auto Measure

OTA > Channel Scanner, Frequency Scanner, Multipath Profile, or Modulation Analyzer

Configuring test parameters

Setting frequency

You can set the frequency with either frequency or channel number. If a frequency to be set matches to the frequency corresponding to the selected channel standard, the instrument calculates its channel number and updates the screen with it automatically.

Procedure

To set the center frequency:

- 1 Press the FREQ/DIST hard key.
- 2 Toggle the Unit soft key and select Freq.
- 3 Press the Center Frequency soft key.
- 4 Enter a value by using the numeric keys. You can also use the rotary knob.
- 5 Select the unit: GHz, MHz, kHz, or Hz.
- 6 Optional. To define the amount of frequency increment for the rotary knob, complete the following steps:
 - a Press the Frequency Step soft key.
 - **b** Enter a value by using the numeric keys. You can also use the rotary knob.
 - c Press the unit: GHz, MHz, kHz, or Hz.

To set the channel number:

- 1 Press the FREQ/DIST hard key.
- 2 Toggle the Unit soft key and select Channel.
- **3** To select the standard channel, complete the following steps:
 - Press the Channel Std soft key. The standard channel window appears.
 See "Appendix C Band, frequency & channel standard" on page 745 for more information.
 - b Highlight the band to be measured by using the rotary knob, the arrow keys, or the Page Up/Page Down soft keys.
 - c Press the **Select** soft key or the rotary knob to confirm the selection.
- 4 Press the Channel Number soft key.
- 5 Enter a value by using the numeric keys. You can also use the rotary knob.

- 6 Press the Enter soft key.
- 7 The instrument automatically displays the corresponding center frequency value for the selected channel number.
- **8** Optional. To define the amount of channel increment for the rotary knob, complete the following steps:
 - a Press the Channel Step soft key.
 - **b** Enter a value by using the numeric keys. You can also use the rotary knob.
 - c Press the Enter soft key.

This frequency setting is not used in the Spurious Emissions mode.

Setting amplitude

Reference level and attenuation

You can set the reference and attenuation levels automatically or manually to optimize the display of the traces measured, as you desire.

Procedure

To automatically set the reference and attenuation level:

- 1 Press the AMP/SCALE hard key.
- Press the Auto Scale soft key. Each time you press this key, both of the Y-axis scale and input attenuation level change to be optimized with some margin.

To set the reference or attenuation level manually:

- 1 Press the AMP/SCALE hard key.
- 2 To set the maximum reference value on the Y-axis manually, complete the following steps:
 - a Press the Reference Level soft key.
 - **b** Enter a value by using the numeric keys or the rotary knob with 10 dB increments.
 - Press the unit soft key or the ENTER hard key.
 This unit key name changes according to the setting in the Units menu.
- **3** To set the attenuation option, select one from the following choices:

To set the input attenuator's level automatically, select **Attenuation > Auto**.

NOTE

It is recommended that you set the **Attenuation** to **Auto** in most situations so that the level of the input attenuator can be set automatically according to your input signal level.

To set the input attenuation manually up to 55 dB for JD780B series or 50 dB for JD740B series to optimize S/N, complete the following steps:

- a Select Attenuation > Manual.
- b Press the Attenuation Value soft key to set the level.
- c Enter a value in fives by using the numeric keys.
- d Press the dB soft key or the ENTER hard key.

To couple the input attenuator's level with your reference level setting, select **Attenuation > Couple**.

As you increase the reference setting, the attenuation level also increases accordingly.

Optional. To change the scale unit:

- 1 Select More (1/2) > Units.
- 2 Select the unit of the display scale: dBm, dBV, dBmV, dBμV, V, or W. The scale unit on the screen changes accordingly.

This Units menu is available in the Spectrum and RF Analysis modes.

Scale per division

You can use the **Scale/Div** feature available for the spectrum and RF analysis. It represents the value of one division on the horizontal scale. The default setting is 10 dB per division and the maximum value can be set up to 20 dB.

Procedure

- 1 Press the AMP/SCALE hard key.
- 2 Select More (1/2) > Scale/Div.
- 3 Enter a value between 1 and 20 by using the numeric keys.
- 4 Press the dB soft key to complete the entry.

Pre-amplifier

You can turn the internal pre-amplifier on to correct and compensate for the gain of the preamp so that amplitude readings show the value at the input connector.

Procedure

- 1 Press the AMP/SCALE hard key.
- 2 Toggle the **Preamp** soft key and select **On** or **Off** as needed.

NOTE

You can turn the Preamp on when the input attenuation range is from 0 dB to 10 dB. If the attenuation value is manually set to greater than 10 dB, the instrument will automatically turn off the pre-amplifier to display low-level signal properly on the chart.

External offset

You can turn the **External Offset** on and manually set the external offset value. An offset consists of a cable loss and a user offset and the measurement result shows the value reflecting both offset values. When the external offset value is set at 40 dB in the Spectrum mode, the measurement result compensates 40 dB at both the Spectrum Analyzer and Signal Analyzer modes.

Procedure

To set the external offset:

- 1 Press the AMP/SCALE hard key.
- 2 Toggle the External Offset soft key and select On.
- **3** Enter a value by using the numeric keys.
- 4 Press the dB soft key to complete the entry.

To turn the external offset off:

- 1 Press the AMP/SCALE hard key.
- 2 Toggle the External Offset soft key and select Off.

Setting average

You can set the number of measurements to be averaged for the trace presentation. A maximum of 100 times of averaging can be set. When the averaging reaches to your setting, a new measurement value replaces the measurement value in sequence from the earliest.

Procedure

- 1 Press the BW/AVG hard key.
- 2 Press the Average soft key.
- 3 Enter a value between 1 and 100 as needed by using the numeric keys.
- 4 Press the Enter soft key.

Setting sweep mode

The default setting is **Continue** to sweep continuously for most on-going measurements. If you want to hold the measurement or get a single sweep, you can change the sweep mode.

Procedure

To select the single sweep mode:

- 1 Press the **SWEEP** hot key.
- 2 Toggle the Sweep Mode soft key and select Single. You can also use the HOLD hot key. The letter HOLD in red appears and the sweeping is paused.
- 3 Optional. Press the **Sweep Once** soft key to get a new measurement.

To return to the continuous sweep mode:

1 Toggle the Sweep Mode soft key and select Continue. You can also use the HOLD hot key. The letter HOLD in red disappears and the sweeping resumes.

Setting trigger source

You can set the trigger source option for your measurements.

- 1 Press the TRIGGER hot key.
- **2** Select the trigger source option from the following choices:

To set the trigger level	Select	
When using the RF burst (wideband) trigger	RF Burst	
To free burst if there is a frequency burst signal	Internal FB	
To training sequence code	RF Burst & TS	
To external trigger reference	External	
To the free trigger	Free	
To the locked GPS	GPS	

Conducting spectrum measurements

If you have configured test parameters as described in the "Configuring test parameters" on page 128, your measurement result is displayed on the screen as like the following example, Figure 47.

Figure 47 Spectrum measurement screen with GSM signal analyzer

Setting measure setup

Procedure

- 1 Press the **MEASURE SETUP** hot key.
- 2 Press the Time Slot soft key to assign a time slot with which performs RF measurements, and then select your desired time slot number from 0 to 7.
- **3** Optional. To set the delay, complete the following steps:
 - a Press the Miscellaneous soft key.
 - b Press the **Delay** soft key to set the amount of delay in μs.
 - Enter a value by using the numeric keys. You can also use the rotary knob.
 - d Press the µs soft key.

NOTE

The Delay setting is used only when there is a time offset in the signals to be measured.

Setting trace

You can display up to six traces on the measurement chart simultaneously.

- 1 Press the TRACE/DISPLAY hard key.
- 2 Press the **Select Trace** soft key, and then select the trace number: **T1**, **T2**, **T3**, **T4**, **T5**, or **T6**. The legend shape of the selected trace changes from square to round to indicate that the trace is the active one now.
- 3 Do one of the following:

То	Select	Trace Legend
Clear current data and display with new measurements	Clear Write	W
Display the input signal's maximum response only (unlimited or for a certain amount of time)	Max Hold	М
Display the input signal's minimum response only (unlimited or for a certain amount of time)	Min Hold	m
Capture the selected trace and compare traces	Capture	С
Load a saved trace	More (1/2) > Load	L
Hide the displayed trace	Trace View > Off	F
Remove all the traces and initialize the trace settings	More (1/2) > Trace Clear All	

For the **Max Hold** and **Min Hold**, your instrument compares newly acquired data with the active trace and displays larger maximum values or smaller minimum values on the screen. You can set it to **Unlimited** to hold and view maximum or minimum data or specify a certain amount of time up to 60 seconds by using numeric keys or rotary knob.

- 4 Optional. Select More (1/2) > Trace Info, and then select the trace number to view the trace's parameter setting information stored at the time of the measurement or None to hide the information display.
- Optional. If you have the two traces T1 and T2, you can perform trace math. To view the power difference between the traces, press the T1 T2 -> T5 or T2 T1 -> T6 soft key. The result is overlaid on the screen along with the second Y-axis.

Conducting RF measurements

Channel power

The Channel Power measures in-channel power for GSM/GPRS and EDGE systems, which use dynamic power control to ensure that each link is maintained with minimum power. It gives two fundamental benefits of keeping overall system interference to a minimum level and of maximizing battery life in the case of mobile stations. It determines the power delivered to the antenna system on the RF channel under test. The instrument acquires a GSM/GPRS or EDGE signal in the time domain. The average power level above the threshold is then computed and displayed.

Setting measure setup

After configuring test parameters as described in the "Configuring test parameters" on page 128, you can continue your measurement.

- 1 Press the MEASURE SETUP hot key.
- 2 Press the **Time Slot** soft key to assign a time slot with which performs measurements, and then select your desired time slot number from **0** to **7**.
- **3** Optional. To set the delay, complete the following steps:
 - a Press the Miscellaneous soft key.
 - b Press the **Delay** soft key to set the amount of delay in μs.
 - c Enter a value by using the numeric keys. You can also use the rotary knob.
 - d Press the µs soft key.

The Delay setting is used only when there is a time offset in the signals to be measured.

Measurement example

Figure 48 Channel power measurement with GSM signal analyzer

Channel power measurement result shows channel power and spectrum density in a user specified channel bandwidth. The peak to average ratio (PAR) is shown at the bottom of the screen as well. The shaded area on the display indicates the channel bandwidth.

NOTE

You can use the *LIMIT* hot key to analyze your measurements with the user-definable limit and Pass/Fail indication. See "Setting limit for RF tests" on page 138 for more information.

Occupied bandwidth

The Occupied Bandwidth measures the spectrum shape of the carrier. It is defined as the bandwidth, which includes 99% of the transmitted power among total transmitted power.

Setting measure setup

After configuring test parameters as described in the "Configuring test parameters" on page 128, you can continue your measurement.

- 1 Press the **MEASURE SETUP** hot key.
- 2 Press the Time Slot soft key to assign a time slot with which performs measurements, and then select your desired time slot number from 0 to 7.
- **3** Optional. To set the delay, complete the following steps:
 - a Press the Miscellaneous soft key.
 - **b** Press the **Delay** soft key to set the amount of delay in μs.
 - Enter a value by using the numeric keys. You can also use the rotary knob.

d Press the **µs** soft key.

NOTE

The Delay setting is used only when there is a time offset in the signals to be measured.

Measurement example

The Occupied Bandwidth measurement shows both of power across the band and power bandwidth in a user specified percentage to determine the amount of spectrum used by a modulated signal. Occupied bandwidth is typically calculated as the bandwidth containing 99% of the transmitted power.

Figure 49 Occupied bandwidth measurement with GSM signal analyzer

NOTE

You can use the *LIMIT* hot key to analyze your measurements with the user-definable limit and Pass/Fail indication. See "Setting limit for RF tests" on page 138 for more information.

Spectrum emission mask (SEM)

The Spectrum Emission Mask (SEM) measurement is to identify and determine the power level of out-of-band spurious emission outside the necessary channel bandwidth and modulated signal. It measures the power ratio between in-band and adjacent channels. The JD700B series indicates either Pass or Fail based on the specified limit of the signal.

Setting measure setup

After configuring test parameters as described in the "Configuring test parameters" on page 128, you can continue your measurement.

- 1 Press the **MEASURE SETUP** hot key.
- 2 Press the Time Slot soft key to assign a time slot with which performs measurements, and then select your desired time slot number from 0 to 7.
- **3** Optional. To set the delay, complete the following steps:

- a Press the Miscellaneous soft key.
- **b** Press the **Delay** soft key to set the amount of delay in μs.
- **c** Enter a value by using the numeric keys. You can also use the rotary knob.
- d Press the µs soft key.

The Delay setting is used only when there is a time offset in the signals to be measured.

Measurement example

Figure 50 SEM measurement with GSM signal analyzer

NOTE

You can use the *LIMIT* hot key to analyze your measurements with the user-definable limit and Pass/Fail indication. See "Setting limit for RF tests" on page 138 for more information.

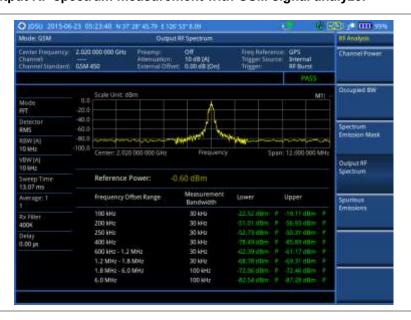
Output RF spectrum

The Output RF Spectrum measures power of the output RF modulation spectrum of the carrier at different frequency offsets in different measurement bandwidths. It is used to determine if the output spectrum due to modulation and wideband noise for all supported RF channels meets the requirements specified in 3GPP TS 45.005 and conforms to the specification.

Setting measure setup

After configuring test parameters as described in the "Configuring test parameters" on page 128, you can continue your measurement.

- 1 Press the **MEASURE SETUP** hot key.
- 2 Press the **Time Slot** soft key to assign a time slot with which performs measurements, and then select your desired time slot number from **0** to **7**.
- **3** Optional. To set the delay, complete the following steps:
 - a Press the Miscellaneous soft key.


- **b** Press the **Delay** soft key to set the amount of delay in μs.
- c Enter a value by using the numeric keys. You can also use the rotary knob.
- d Press the µs soft key.

The Delay setting is used only when there is a time offset in the signals to be measured.

Measurement example

Figure 51 Output RF spectrum measurement with GSM signal analyzer

NOTE

A set of limit values are applied according to the current channel power and automatically displayed in the result table. You can use the *LIMIT* hot key to enable or disable the Pass/Fail indication. See "Setting limit for RF tests" on page 138 for more information.

Spurious emissions

Out-of-band emissions are unwanted emissions immediately outside the channel bandwidth resulting from the modulation process and non-linearity in the transmitter but excluding spurious emissions. The Spurious Emissions measurement is to identify and determine the power level of out-of-band spurious emission within the necessary channel bandwidth and modulated signal measured at the RF port of the Base Station.

Setting measure setup

After configuring test parameters as described in the "Configuring test parameters" on page 128, you can continue your measurement.

Procedure

- 1 Press the **MEASURE SETUP** hot key.
- 2 To set up the range table and parameters, press the Range Table soft key and then complete the following steps:
 - a Press the **Range** soft key, and then select the range number between **1** and **20** to add as a new or change the existing settings.
 - **b** Do the following as desired:

Select Start Frequency, and then specify the start frequency for the selected range.

Select Stop Frequency, and then specify the stop frequency for the selected range.

Select Start Limit, and then specify the lower limit for Pass/Fail indication.

Select Stop Limit, and then specify the upper limit for Pass/Fail indication.

Select More (1/2) > Attenuation, and then specify an value in the multiple of five.

Select More (1/2) > RBW, and then specify a RBW value.

Select More (1/2) > VBW, and then specify a VBW value.

- c Press the PREV hard key.
- d Toggle the Range soft key and select On to display the selected range in the result table or Off to hide it from the table.
- 3 Toggle the **Measure Type** soft key between **Examine** and **Full** to select the measurement type.

NOTE

The **Examine** mode displays only the selected range while the **Full** mode lets the instrument automatically changes the selected range from one another.

- **4** To set the number of measurements to be averaged, complete the following steps:
 - Press the Average soft key.
 - **b** Enter a value between 1 and 100.
 - Press the Enter soft key.
- 5 To move the highlighted bar in the result table to other range, complete the following steps:
 - Press the Range soft key in the Measure Setup menu bar.
 - **b** Enter a value between 1 and 20.
 - c Press the Enter soft key.

Measurement example

Figure 52 Spurious emissions measurement with GSM signal analyzer

NOTE

You can use the *LIMIT* hot key to analyze your measurements with the user-definable limit and Pass/Fail indication. See "Setting limit for RF tests" on page 138 for more information.

Setting limit for RF tests

By default, test limits specified in the standard are set for you. You can change thresholds if you desire.

Procedure

- 1 Press the LIMIT hot key.
- 2 Press the RF Test Limits soft key.
- 3 Select the test item(s) and set the limit(s) depending on your selected measurement mode:

To set the limit for	Select	Set
Channel power	Channel Power	High Limit, Low Limit
Occupied bandwidth	Occupied BW	High Limit
Spectrum emission mask	Spectrum Emission Mask	(On/Off only)
Output RF spectrum	Output RF Spectrum	(On/Off only)
Spurious emissions	Spurious Emissions	(On/Off only)

- **4** Optional. You can enable alarm sound that goes off if the measurement falls outside of the limit. Toggle the Beep soft key between On and Off to enable or disable the beep sound.
- 5 Optional. Go to SAVE/LOAD > Save, and then select Limit to save the limit settings. See "Using save" on page 34 for more information.

Conducting power vs. time measurements

The Power vs. Time measurement measures the mean transmission power during the useful part of GSM bursts and verifies that the power ramp fits within the defined mask. It also lets you view the rise, fall, and useful part of the GSM burst.

This measurement provides masks for both of Base Transceiver Station (BTS) and Mobile Station (MS). The timing masks are referenced to the transition from the bit 13 to the bit 14 of the mid-amble training sequence. For GMSK measurements, the 0 dB reference is determined by measuring the mean transmitted power during the useful part of the burst.

Power vs. time (slot)

Setting measure setup

After configuring test parameters as described in the "Configuring test parameters" on page 128, you can continue your measurement. The measurement settings can be saved and recalled as a file.

Procedure

- 1 Press the **MEASURE SETUP** hot key.
- 2 Press the **Time Slot** soft key to assign a time slot with which performs measurements, and then select your desired time slot number from **0** to **7**.
- 3 Press the Detect Mode soft key, and then select the signal standard option: Auto, GSM, or EDGE. Auto is set by default. The instrument applies a mask automatically based on the selected mode.
- **4** Optional. To set the delay, complete the following steps:
 - a Press the Miscellaneous soft key.
 - **b** Press the **Delay** soft key to set the amount of delay in μs.
 - c Enter a value by using the numeric keys. You can also use the rotary knob.
 - d Press the µs soft key.

NOTE

The Delay setting is used only when there is a time offset in the signals to be measured.

Setting limit for burst power

Procedure

- 1 Press the LIMIT hot key.
- 2 Press the PvsT Test Limits soft key.
- 3 Press the **Burst Power** soft key to set the limit in the Power vs. Time (Slot) measurement.
- 4 Toggle the **Test Limits** soft key between **On** and **Off** to enable or disable the Pass/Fail indication.
- **5** Set the upper threshold:
 - a Press the High Limit soft key.
 - **b** Enter a value for the upper limit, and then press the **dBm** unit soft key.
- 6 Set the lower threshold:
 - a Press the Low Limit soft key.
 - **b** Enter a value for the lower limit, and then press the **dBm** unit soft key.
- 7 Optional. You can enable alarm sound that goes off if the measurement falls outside of the limit. Toggle the Beep soft key between On and Off to enable or disable the beep sound.
- **8** Optional. Go to **SAVE/LOAD > Save**, and then select **Limit** to save the limit settings. See "Using save" on page 34 for more information.

Measurement example

Figure 53 Power vs. time (slot) measurement with GSM signal analyzer

Figure 54 Power vs. time (slot) measurement with GSM signal analyzer

Power vs. time (frame)

Setting measure setup

After configuring test parameters as described in the "Configuring test parameters" on page 128, you can continue your measurement. The measurement settings can be saved and recalled as a file.

Procedure

- 1 Press the **MEASURE SETUP** hot key.
- 2 Press the Detect Mode soft key, and then select the signal standard option: Auto, GSM, or EDGE. Auto is set by default. The instrument applies a mask automatically based on the selected mode.
- 3 Optional. To set the delay, complete the following steps:
 - a Press the Miscellaneous soft key.
 - b Press the **Delay** soft key to set the amount of delay in μs.
 - c Enter a value by using the numeric keys. You can also use the rotary knob.
 - d Press the µs soft key.

NOTE

The Delay setting is used only when there is a time offset in the signals to be measured.

Setting limit for frame average power

- 1 Press the *LIMIT* hot key.
- 2 Press the PvsT Test Limits soft key.
- 3 Press the Frame Avg Power soft key to set the limit in the Power vs. Time (Frame) measurement.
- 4 Toggle the **Test Limits** soft key between **On** and **Off** to enable or disable the Pass/Fail indication.
- 5 Set the upper threshold:
 - a Press the High Limit soft key.
 - b Enter a value for the upper limit.
 - c Press the dBm unit soft key.

- 6 Set the lower threshold:
 - a Press the Low Limit soft key.
 - **b** Enter a value for the lower limit.
 - c Press the dBm unit soft key.
- 7 Optional. You can enable alarm sound that goes off if the measurement falls outside of the limit. Toggle the Beep soft key between On and Off to enable or disable the beep sound.
- 8 Optional. Go to **SAVE/LOAD** > **Save**, and then select **Limit** to save the limit settings. See "Using save" on page 34 for more information.

Measurement example

Figure 55 Power vs. time (frame) measurement with GSM signal analyzer

Conducting constellation measurements

The Constellation is used to observe some aspects of modulation accuracy and can reveal certain fault mechanisms such as I/Q amplitude imbalance or quadrature imbalance. It displays constellation diagram by modulation types.

Setting measure setup

After configuring test parameters as described in the "Configuring test parameters" on page 128, you can continue your measurement. The measurement settings can be saved and recalled as a file.

- 1 Press the **MEASURE SETUP** hot key.
- 2 Press the Time Slot soft key to assign a time slot with which performs measurements, and then select your desired time slot number from 0 to 7.
- 3 Press the Detect Mode soft key, and then select the signal standard option: Auto, GSM, or EDGE. Auto is set by default. The instrument applies a mask automatically based on the selected mode.
- 4 Toggle the PSK Constellation soft key between On and Off to enable or disable the PSK constellation observation.

The PSK constellation must be turned on to analyze EDGE signals.

- **5** Optional. To set the delay, complete the following steps:
 - Press the Miscellaneous soft key.
 - b Press the **Delay** soft key to set the amount of delay in μs.
 - c Enter a value by using the numeric keys. You can also use the rotary knob.
 - d Press the µs soft key.

NOTE

The Delay setting is used only when there is a time offset in the signals to be measured.

Setting limit for constellation

- 1 Press the *LIMIT* hot key.
- 2 Press the Modulation Test Limits soft key to set the limits in the Constellation measurement.
- 3 Select the test item(s) and set the limit(s) depending on your selected measurement mode:

To set the limit for	Select	Set
Frequency error	Frequency Error	High Limit, Low Limit
Phase error rms	Phase Error RMS	High Limit, Low Limit
Phase error peak	Phase Error Peak	High Limit, Low Limit
Error vector magnitude rms	EVM RMS	High Limit
Error vector magnitude peak	EVM Peak	High Limit
I/Q origin offset of the I and Q error (magnitude squared) offset from the origin	IQ Origin Offset	High Limit
Carrier to interference (C/I) ratio	C/I	Low Limit

- 4 Optional. You can enable alarm sound that goes off if the measurement falls outside of the limit. Toggle the Beep soft key between On and Off to enable or disable the beep sound.
- 5 Optional. Go to SAVE/LOAD > Save, and then select Limit to save the limit settings. See "Using save" on page 34 for more information.

Measurement example

Figure 56 Constellation measurement (PSK off) with GSM signal analyzer

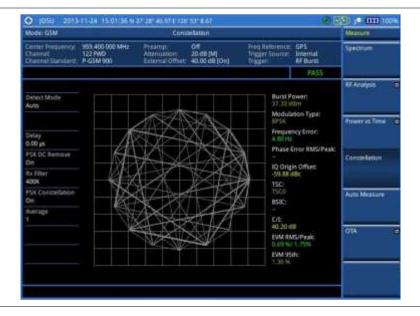



Figure 57 Constellation measurement (PSK on) with GSM signal analyzer

NOTE

Measurement items such as IQ Origin Offset, C/I, EVM RMS/Peak and EVM 95th are applicable only to EDGE signal measurements.

Performing auto measurements

The Auto Measure function of the JD700B series allows a complete signal profiling covering RF characterization and modulation quality parameters of up to 10 different carriers, particularly useful on an overlay architecture where base stations are transmitting in different frequencies.

The Auto Measure can be easily executed either by selecting a menu in the instrument or by running a programmed scenario in the PC-based application so that the instrument automatically configure and perform

tests on every aspect of all the carriers.

Setting limit for auto measure

You can set test limits for test item(s) in the auto measurement.

Procedure

- 1 Press the *LIMIT* hot key.
- 2 Press the RF Test Limits soft key, and then enable test limits as desired.
- 3 Press the PvsT Test Limits soft key, and then enable test limits as desired.
- 4 Press the Modulation Test Limits soft key, and then enable test limits as desired.
- 5 Optional. You can enable alarm sound that goes off if the measurement falls outside of the limit. Toggle the Beep soft key between On and Off to enable or disable the beep sound.
- 6 Optional. Go to SAVE/LOAD > Save, and then select Limit to save the limit settings. See "Using save" on page 34 for more information.

Setting measure setup

After configuring test parameters as described in the "Configuring test parameters" on page 128, you can continue your measurement. The measurement settings can be saved and recalled as a file. You can also use JDViewer, PC application software to configure a measure setup, save as a file, and load the file on to the instrument.

Procedure

- 1 Press the **MEASURE SETUP** hot key.
- 2 Toggle the **Configuration** soft key and select the configuration option:

Current: Lets the instrument use current frequency (single carrier) and determine pass or fail based on the instrument's limit settings in Auto Measure.

Scenario: Runs a test with a programmed scenario in JDViewer.

The Scenario menu becomes activated.

- 3 To load a scenario, press the **Scenario** soft key, and then select a scenario file to load.
- **4** Toggle the **Test Time** soft key and select the test time option:

Now: Lets the instrument run a test only once.

Schedule: Lets the instrument repeat tests as defined in the Set Timing.

The Set Timing menu becomes activated.

- **5** To define a schedule for an auto measurement, complete the following steps:
 - a Press the Set Timing soft key.
 - **b** Press the **Start Time (HH:MM)** soft key.
 - c Enter the time in the HH:MM format, and then press the Enter soft key.
 - d Press the Stop Time (HH:MM) soft key.
 - Enter the time in the HH:MM format, and then press the Enter soft key.
 - f Press the Time Interval soft key.
 - g Enter the amount of time in minutes, and then press the **Enter** soft key.
- 6 To select the type of the measurement data to be taken for the determination of the results, press the Data Type soft key and then select the data type option from the following choices:

Sample: The Auto Measure takes the last measurement data only.

RMS: The Auto Measure takes data from all 20 measurements and averages them.

Peak: The Auto Measure takes only the highest peak of all 20 measurements.

Negative Peak: The Auto Measure takes only the lowest peak of all 20 measurements.

7 To set external offset, complete the following steps:

- a Toggle the External Offset soft key and select On.
- **b** Enter a value by using the numeric keys, and then press the **dB** soft key.
- **8** To save your settings and results, go to **SAVE/LOAD** > **Save** and then perform functions as you desire. See "Using save" on page 34 for more information.
- 9 Press the Run Test soft key to start to run a test. The Auto Measure Results window appears at the end of the test.
- 10 To stop running the test, press the **Abort** soft key.
- 11 To change the view on the screen during the test, press the **Display** and then select the view option from the following choices:

Screen: You can view each measurement screen as the test progresses.

Results: You can view a measurement result table as the test progresses.

Settings: You can view a measurement setting table as the test progresses.

Setting display

After completion of the auto measurement, the screen menu changes to Trace/Display so that you can view the results in different forms.

Procedure

1 Toggle the Display soft key and select the display option:

Result: You can view the result table. The Display Result menu becomes activated.

Settings: You can view the measurement settings for the auto measurement.

2 Toggle the **Display Result** soft key and select the display result option:

Full: You can view detailed measurement readings with the pass/fail indication.

Quick: You can view only the Pass/Fail results.

3 To view the measurement results for a different carrier, press the View Carrier soft key and then select the carrier number to view.

Conducting GSM OTA measurements

This Over-The-Air (OTA) measurement has channel scanner, frequency scanner, multipath profile, and modulation analyzer screens. The GSM OTA has a function to display channel power and related information up to 128 GSM down link signals. This channel scanner can quickly identifies improper power levels that affect network performance. The transmitter performance can be made on a base station from the convenience of your vehicle without taking the base station out of service. It helps you to determine testing area's RF environmental condition with the multipath profile.

Channel scanner

Setting channel

- Press the FREQ/DIST hard key.
- 2 To select the standard channel, complete the following steps:
 - Press the Channel Std soft key. The standard channel window appears.
 See "Appendix C Band, frequency & channel standard" on page 745 for more information.
 - Highlight the band to be measured by using the rotary knob, the arrow keys, or the Page Up/Page Down soft keys.
 - **c** Press the **Select** soft key or the rotary knob to confirm the selection.

- 3 To set the starting channel to be scanned, complete the following steps:
 - Press the Channel Number soft key.
 - **b** Enter a value by using the numeric keys. You can also use the rotary knob.
 - c Press the Enter soft key.
- 4 To set the amount of channel increment in scanning channels, complete the following steps:
 - Press the Channel Step soft key.
 - Enter a value by suing the numeric keys. You can also use the rotary knob.
 - c Press the Enter soft key.
- 5 To set the number of channels to be displayed, complete the following steps:
 - a Press the # of Channels soft key.
 - **b** Enter a value by using the numeric keys. You can also use the rotary knob.
 - c Press the Enter soft key.

Setting zoom position

You can set the starting channel for the Zoom In Window.

Procedure

- 1 Press the TRACE/DISPLAY hard key.
- 2 Press the Zoom Position soft key.
- **3** Enter a value by using the numeric keys. You can also use the rotary knob.
- 4 Press the Enter soft key.

Setting limit for OTA channel scanner

- 1 Press the *LIMIT* hot key.
- 2 Press the Limit Line soft key to set a threshold for the limit line and Pass/Fail indication.
- 3 Enter a value, and then press the dBm unit soft key.
- 4 Toggle the Limit Line soft key between On and Off to display or dismiss the limit line.
- **5** Optional. You can enable alarm sound that goes off if the measurement falls outside of the limit. Toggle the **Beep** soft key between **On** and **Off** to enable or disable the beep sound.
- 6 Optional. Go to **SAVE/LOAD** > **Save**, and then select the save option from the choices available for your measurement mode. See "Using save" on page 34 for more information.

Measurement example

Figure 58 Channel scanner measurement with GSM OTA signal analyzer

Frequency scanner

Setting frequency

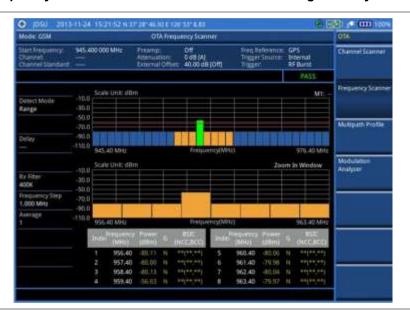
Procedure

- 1 Press the FREQ/DIST hard key.
- 2 To set the starting frequency to be scanned, complete the following steps:
 - a Press the Start Frequency soft key.
 - **b** Enter a value by using the numeric keys. You can also use the rotary knob.
 - c Select the unit: GHz, MHz, kHz, or Hz.
- 3 To set the amount of frequency increment in scanning frequencies, complete the following steps:
 - Press the Frequency Step soft key.
 - **b** Enter a value by suing the numeric keys. You can also use the rotary knob.
 - c Select the unit: GHz, MHz, kHz, or Hz.
- **4** To set the number of frequencies to be displayed, complete the following steps:
 - a Press the # of Frequencies soft key.
 - **b** Enter a value by using the numeric keys. You can also use the rotary knob.
 - c Press the Enter soft key.

Setting zoom position

You can set the starting channel for the Zoom Window.

- 1 Press the TRACE/DISPLAY hard key.
- 2 Press the Zoom Position soft key.
- **3** Enter a value by using the numeric keys. You can also use the rotary knob.
- 4 Press the Enter soft key.


Setting limit for OTA frequency scanner

Procedure

- 1 Press the *LIMIT* hot key.
- 2 Press the **Limit Line** soft key to set a threshold for the limit line and Pass/Fail indication.
- 3 Enter a value, and then press the dBm unit soft key.
- 4 Toggle the Limit Line soft key between On and Off to display or dismiss the limit line.
- **5** Optional. You can enable alarm sound that goes off if the measurement falls outside of the limit. Toggle the **Beep** soft key between **On** and **Off** to enable or disable the beep sound.
- 6 Optional. Go to SAVE/LOAD > Save, and then select Limit to save the limit settings. See "Using save" on page 34 for more information.

Measurement example

Figure 59 Frequency scanner measurement with GSM OTA signal analyzer

Multipath profile

The Multipath Profile let you determine RF environmental conditions of testing area. The multipath profile is the result of portions of the original broadcast signal arriving at the receiving antenna out of phase. This can be caused by the signal being reflected off objects such as buildings, or being refracted through the atmosphere differently from the main signal.

Setting measure setup

After configuring test parameters as described in the "Configuring test parameters" on page 128, you can continue your measurement. The measurement settings can be saved and recalled as a file.

- 1 Press the **MEASURE SETUP** hot key.
- 2 Press the Detect Mode soft key, and then select the signal standard option: Auto, GSM, or EDGE. Auto is set by default. The instrument applies a mask automatically based on the selected mode.
- **3** Optional. To set the delay, complete the following steps:
 - Press the Miscellaneous soft key.


- b Press the **Delay** soft key to set the amount of delay in μs.
- **c** Enter a value by using the numeric keys. You can also use the rotary knob.
- d Press the µs soft key.
- 4 Optional. Go to **SAVE/LOAD** > **Save**, and then select the save option from the choices available for your measurement mode. See "Using save" on page 34 for more information.

The Delay setting is used only when there is a time offset in the signals to be measured.

Measurement example

Figure 60 Multipath profile measurement with GSM OTA signal analyzer

Modulation analyzer

Setting measure setup

After configuring test parameters as described in the "Configuring test parameters" on page 128, you can continue your measurement. The measurement settings can be saved and recalled as a file.

Procedure

- 1 Press the **MEASURE SETUP** hot key.
- 2 Press the Detect Mode soft key, and then select the signal standard option: Auto, GSM, or EDGE. Auto is set by default. The instrument applies a mask automatically based on the selected mode.
- **3** Optional. To set the delay, complete the following steps:
 - a Press the Miscellaneous soft key.
 - b Press the **Delay** soft key to set the amount of delay in μs.
 - Enter a value by using the numeric keys. You can also use the rotary knob.
 - d Press the µs soft key.
- 4 Optional. Go to **SAVE/LOAD** > **Save**, and then select the save option from the choices available for your measurement mode. See "Using save" on page 34 for more information.

NOTE

The Delay setting is used only when there is a time offset in the signals to be measured.

Setting limit for modulation analyzer

Procedure

- 1 Press the *LIMIT* hot key.
- **2** Select the test item(s) and set the limit(s):

To set the limit for	Select	Set
Frame average power	Frame Average Power	High Limit, Low Limit
Frequency error	Frequency Error	High Limit, Low Limit
Burst power	Burst Power	High Limit, Low Limit
ACLR	ACLR	(On/Off only)
Multi-ACLR	Multi-ACLR	(On/Off only)
Spurious emissions	Spurious Emissions	(On/Off only)

- 3 Optional. You can enable alarm sound that goes off if the measurement falls outside of the limit. Toggle the Beep soft key between On and Off to enable or disable the beep sound.
- **4** Optional. Go to **SAVE/LOAD > Save**, and then select **Limit** to save the limit settings. See "Using save" on page 34 for more information.

Measurement example

Figure 61 Modulation analyzer measurement with GSM OTA signal analyzer

Chapter 7 Using WCDMA/HSPA+ Signal Analyzer

This chapter provides instructions for using the WCDMA/HSPA+ Signal Analyzer function (option 023) with the WCDMA/HSPA+ OTA Analyzer function (option 043). Topics discussed in this chapter are as follows:

	Introduction	. 153
	Display overview	. 153
	Connecting a cable	. 154
-	Selecting measurement mode	. 156
	Configuring test parameters	.156
-	Conducting spectrum measurements	.161
-	Conducting RF measurements	.162
-	Conducting modulation measurements	.169
-	Performing auto measurements	.181
-	Performing power statistics CCDF measurement	.182
	Conducting WCDMA/HSPA+ OTA measurements	.183

Introduction

This WCDMA/HSPA+ Signal Analyzer can be used to test a WCDMA transmitter including HSDPA/HSPA+ signals to check the base station's compliance with following standards documentation.

- 3GPP TS 25.104 Base Station radio transmission and reception
- 3GPP TS 25.141 Base Station (BS) conformance test
- 3GPP TS 25.211 Physical channel and mapping of transport channels onto physical channels
- 3GPP TS 25.212 Multiplexing and channel coding
- 3GPP TS 25.213 Spreading and modulation

The instrument automatically makes standard defined measurements using the measurement methods and limits as defined in the standards. Detailed measurement results allow you to analyze WCDMA and HSPA+ system performance. You may alter the measurement parameters for specialized analysis. Pass/Fail testing with standard defined or user defined upper and lower limits and the Pass/Fail indictor help you to determine base station performance easily.

This instrument provides the following measurement tools for WCDMA/HSPA+ system:

- Spectrum Analysis
- RF Analysis
 - Channel Power
 - Occupied Bandwidth
 - Spectrum Emission Mask (SEM)
 - Adjacent Channel Leakage power Ratio (ACLR)
 - Multi-ACLR
 - Spurious Emissions
- Modulation Analysis
 - Constellation
 - Code Domain Power
 - Relative Code Domain Error
 - Codogram
 - Received Code Strength Indicator (RCSI)
 - CDP Table
- Auto Measure
- Power Statistics CCDF
- Over The Air (OTA)
 - Channel Scanner
 - Scramble Scanner
 - Multipath Profile
 - Code Domain Power
 - Route Map

Display overview

Figure 62 provides descriptions for each segment of the measurement screen.

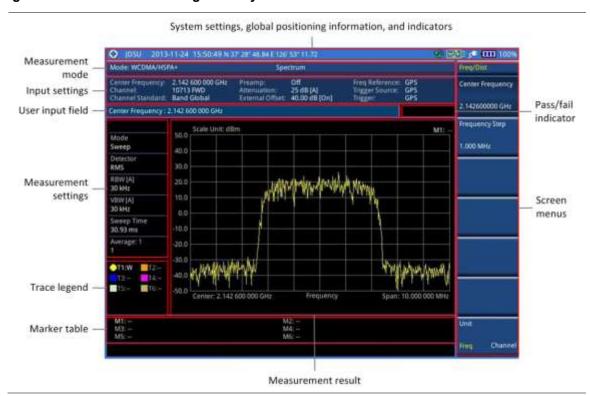
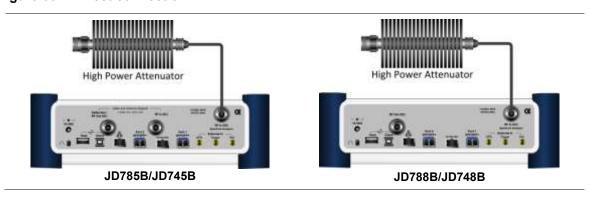


Figure 62 WCDMA/HSPA+ signal analyzer measurement screen

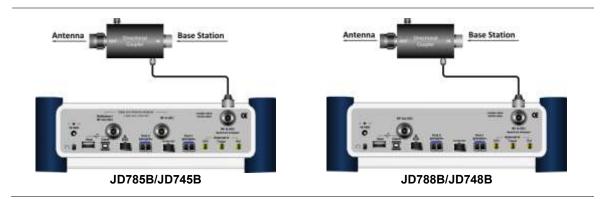

Connecting a cable

Direct connection

Procedure

1 Connect the Spectrum Analyzer RF In port of the JD700B series and the power amplifier output port of BTS.

Figure 63 Direct connection



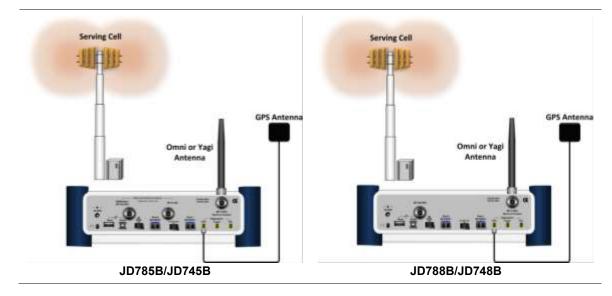
Indirect connection

Procedure

1 Connect the Spectrum Analyzer RF In port of the JD700B series and the monitor (test) port of BTS.

Figure 64 Indirect connection

CAUTION


The maximum power for the **Spectrum Analyzer RF In** port is +25 dBm (0.316 W) for JD780B series and +20 dBm (0.1 W) for JD740B series. If the level of the input signal to be measured is greater than this, use a *High Power Attenuator* to prevent damage when you directly connect the signal to the instrument or connect the signal from the coupling port of a directional coupler.

Over the air (OTA)

Procedure

- 1 Connect an Omni/directional RF antenna to the Spectrum Analyzer RF In port of the JD700B series.
- 2 Connect a GPS antenna to the GPS port of the JD700B series.

Figure 65 OTA connection

CAUTION

If the input signal level to be measured is less than 0 dBm, set 0 dB attenuation or turn on the preamp to have better dynamic range for the OTA testing.

Selecting measurement mode

Procedure

- Press the MODE hard key.
- 2 Press the Signal Analyzer soft key.
- 3 Press the WCDMA soft key. The Spectrum mode is set by default.
- 4 Press the MEASURE hot key, and then select the measurement mode option from the following choices:

Spectrum

RF Analysis > Channel Power, Occupied BW, Spectrum Emission Mask, ACLR, Multi-ACLR, or Spurious Emissions

Modulation > Constellation, Code Domain Power, Relative Code Domain Error, Codogram, RCSI, or CDP Table

Auto Measure

Power Statistics CCDF

OTA > Channel Scanner, Scramble Scanner, Multipath Profile, Code Domain Power, or Route Map

Configuring test parameters

Setting frequency

You can set the frequency with either frequency or channel number. If a frequency to be set matches to the frequency corresponding to the selected channel standard, the instrument calculates its channel number and updates the screen with it automatically.

Procedure

To set the center frequency:

- Press the FREQ/DIST hard key.
- 2 Toggle the Unit soft key and select Freq.
- 3 Press the Center Frequency soft key.
- 4 Enter a value by using the numeric keys. You can also use the rotary knob.
- 5 Select the unit: GHz, MHz, kHz, or Hz.
- 6 Optional. To define the amount of frequency increment for the rotary knob, complete the following steps:
 - a Press the Frequency Step soft key.
 - Enter a value by using the numeric keys. You can also use the rotary knob.
 - c Press the unit: GHz, MHz, kHz, or Hz.

To set the channel number:

- 1 Press the FREQ/DIST hard key.
- 2 Toggle the **Unit** soft key and select **Channel**.
- **3** To select the standard channel, complete the following steps:
 - Press the **Channel Std** soft key. The standard channel window appears. See "Appendix C – Band, frequency & channel standard" on page 745 for more information.
 - b Highlight the band to be measured by using the rotary knob, the arrow keys, or the Page Up/Page Down soft keys.
 - c Press the **Select** soft key or the rotary knob to confirm the selection.
- 4 Press the Channel Number soft key.

- **5** Enter a value by using the numeric keys. You can also use the rotary knob.
- 6 Press the Enter soft key.
- 7 The instrument automatically displays the corresponding center frequency value for the selected channel number.
- 8 Optional. To define the amount of channel increment for the rotary knob, complete the following steps:
 - Press the Channel Step soft key.
 - **b** Enter a value by using the numeric keys. You can also use the rotary knob.
 - c Press the Enter soft key.

This frequency setting is not used in the Multi-ACLR and Spurious Emissions modes.

Setting amplitude

Reference level and attenuation

You can set the reference and attenuation levels automatically or manually to optimize the display of the traces measured, as you desire.

Procedure

To automatically set the reference and attenuation level:

- 1 Press the AMP/SCALE hard key.
- 2 Press the Auto Scale soft key. Each time you press this key, both of the Y-axis scale and input attenuation level change to be optimized with some margin.

To set the reference or attenuation level manually:

- 1 Press the AMP/SCALE hard key.
- 2 To set the maximum reference value on the Y-axis manually, complete the following steps:
 - a Press the Reference Level soft key.
 - **b** Enter a value by using the numeric keys or the rotary knob with 10 dB increments.
 - Press the unit soft key or the **ENTER** hard key.

 This unit key name changes according to the setting in the **Units** menu.

NOTE

In the measurements such as **Code Domain Power**, **Codogram**, and **RCSI**, you may need to select the reference option between **Relative** and **Absolute** before setting the reference level.

3 To set the attenuation option, select one from the following choices:

To set the input attenuator's level automatically, select **Attenuation > Auto**.

NOTE

It is recommended that you set the **Attenuation** to **Auto** in most situations so that the level of the input attenuator can be set automatically according to your input signal level.

To set the input attenuation manually up to 55~dB for JD780B series or 50~dB for JD740B series to optimize S/N, complete the following steps:

- a Select Attenuation > Manual.
- **b** Press the **Attenuation Value** soft key to set the level.
- c Enter a value in fives by using the numeric keys.
- d Press the dB soft key or the ENTER hard key.

To couple the input attenuator's level with your reference level setting, select **Attenuation > Couple**.

As you increase the reference setting, the attenuation level also increases accordingly.

Optional. To change the scale unit:

- 1 Select More (1/2) > Units.
- 2 Select the unit of the display scale: dBm, dBV, dBmV, dBμV, V, or W. The scale unit on the screen changes accordingly.

NOTE

This Units menu is available in the Spectrum and RF Analysis modes.

Scale per division

You can use the **Scale/Div** feature available for the spectrum and RF analysis. It represents the value of one division on the horizontal scale. The default setting is 10 dB per division and the maximum value can be set up to 20 dB.

Procedure

- 1 Press the AMP/SCALE hard key.
- 2 Select More (1/2) > Scale/Div.
- 3 Enter a value between 1 and 20 by using the numeric keys.
- 4 Press the dB soft key to complete the entry.

Pre-amplifier

You can turn the internal pre-amplifier on to correct and compensate for the gain of the preamp so that amplitude readings show the value at the input connector.

Procedure

- 1 Press the AMP/SCALE hard key.
- 2 Toggle the **Preamp** soft key and select **On** or **Off** as needed.

NOTE

You can turn the Preamp on when the input attenuation range is from 0 dB to 10 dB. If the attenuation value is manually set to greater than 10 dB, the instrument will automatically turn off the pre-amplifier to display low-level signal properly on the chart.

External offset

You can turn the **External Offset** on and manually set the external offset value. An offset consists of a cable loss and a user offset and the measurement result shows the value reflecting both offset values. When the external offset value is set at 40 dB in the Spectrum mode, the measurement result compensates 40 dB at both the Spectrum Analyzer and Signal Analyzer modes.

Procedure

To set the external offset:

- 1 Press the AMP/SCALE hard key.
- 2 Toggle the External Offset soft key and select On.
- 3 Enter a value by using the numeric keys.
- 4 Press the **dB** soft key to complete the entry.

To turn the external offset off:

1 Press the AMP/SCALE hard key.

2 Toggle the External Offset soft key and select Off.

Setting average

You can set the number of measurements to be averaged for the trace presentation. A maximum of 100 times of averaging can be set. When the averaging reaches to your setting, a new measurement value replaces the measurement value in sequence from the earliest.

Procedure

- 1 Press the BW/AVG hard key.
- 2 Press the Average soft key.
- 3 Enter a value between 1 and 100 as needed by using the numeric keys.
- 4 Press the Enter soft key.

Setting sweep mode

The default setting is **Continue** to sweep continuously for most on-going measurements. If you want to hold the measurement or get a single sweep, you can change the sweep mode.

Procedure

To select the single sweep mode:

- 1 Press the SWEEP hot key.
- 2 Toggle the Sweep Mode soft key and select Single. You can also use the HOLD hot key. The letter HOLD in red appears and the sweeping is paused.
- 3 Optional. Press the Sweep Once soft key to get a new measurement.

To return to the continuous sweep mode:

1 Toggle the Sweep Mode soft key and select Continue. You can also use the HOLD hot key. The letter HOLD in red disappears and the sweeping resumes.

Setting trigger source

You can set the trigger source option for your measurements.

Procedure

- 1 Press the TRIGGER hot key.
- 2 Select the trigger source option from the choices: Internal, External, and GPS.

Setting external clock

To enhance the reliability of modulation analysis measurements the JD700B series must be synchronized with a base station. When an external clock is not supplied, the instrument works with its built-in internal high-accuracy time base and some measurement results may exhibit inaccurate values. Therefore, it is highly recommended that you use the same reference clock as the signal source. You can use the *TRIGGER* hot key to set the external clock.

Table 10 Standards of external clock operation

Clock	Туре	Reference	Port	Switching Standard
External Reference	Internal	Internal 10 MHz		Default
	External	External Ref Clock	Ext Ref (SMA)	Manual switching (Input signal level >-3 dBm)
	GPS	GPS Clock	GPS (SMA)	Automatic switching (GPS signal received)
Trigger	Internal	Internal Trigger		Default
	External	External Trigger	Trigger (SMA)	Manual switching
	GPS	GPS	GPS (SMA)	Manual switching

Figure 66 Connection ports for external reference clock

Procedure

- 1 Connect an external reference or a GPS antenna to the JD700B series.
- 2 Press the SYSTEM hot key.
- 3 Press the Freq Reference soft key, and then select the reference option from the choices: Internal, External 10 MHz, External 13 MHz, External 15 MHz, and GPS.

NOTE

When a GPS antenna is connected and locked, GPS coordinates (longitude and latitude) are displayed on the screen and frequency reference is automatically set to GPS in the **System > Freq Reference**.

Table 11 External reference indicators

Туре	Indicator	Description
Internal	(green)	The green INT icon indicates that the instrument uses the built-in internal time base.
External	(green)	The green EXT icon indicates that an external reference is connected and locked and that the instrument uses the same reference clock as the signal source.
External	(red)	The red EXT icon indicates that an external reference is connect but not locked.
GPS	(green)	The green GPS antenna icon indicates that a GPS antenna is connected and locked.
GPS	(yellow)	The yellow GPS antenna icon indicates that a GPS antenna is connected and locking is in progress.
GPS	(grey)	The grey GPS antenna icon indicates that a GPS antenna is not connected, failed, or unable to be locked.

Conducting spectrum measurements

If you have configured test parameters as described in the "Configuring test parameters" on page 156, your measurement result is displayed on the screen as like the following example, **Figure 67**.

Figure 67 Spectrum measurement screen with WCDMA signal analyzer

Setting trace

You can display up to six traces on the measurement chart simultaneously.

Procedure

- 1 Press the TRACE/DISPLAY hard key.
- 2 Press the Select Trace soft key, and then select the trace number: T1, T2, T3, T4, T5, or T6. The legend shape of the selected trace changes from square to round to indicate that the trace is the active one now.
- 3 Do one of the following:

То	Select	Trace Legend
Clear current data and display with new measurements	Clear Write	W
Display the input signal's maximum response only (unlimited or for a certain amount of time)	Max Hold	М
Display the input signal's minimum response only (unlimited or for a certain amount of time)	Min Hold	m
Capture the selected trace and compare traces	Capture	С
Load a saved trace	More (1/2) > Load	L
Hide the displayed trace	Trace View > Off	F
Remove all the traces and initialize the trace settings	More (1/2) > Trace Clear All	

NOTE

For the **Max Hold** and **Min Hold**, your instrument compares newly acquired data with the active trace and displays larger maximum values or smaller minimum values on the

screen. You can set it to **Unlimited** to hold and view maximum or minimum data or specify a certain amount of time up to 60 seconds by using numeric keys or rotary knob.

4 To select the detection option, select More (1/2) > Detectors, and then do one of the following:

To display	Select
Random noise better than the peak without missing signals	Normal
The highest value in each data point	Peak
The root mean squared average power across the spectrum	RMS
The lowest value in each data point	Negative Peak
The center value in each data point	Sample

- 5 Optional. Select More (1/2) > Trace Info, and then select the trace number to view the trace's parameter setting information stored at the time of the measurement or None to hide the information display.
- 6 Optional. If you have the two traces T1 and T2, you can perform trace math. To view the power difference between the traces, press the T1 T2 -> T5 or T2 T1 -> T6 soft key. The result is overlaid on the screen along with the second Y-axis.

Conducting RF measurements

Channel power

The Channel Power measurement is a common test used in the wireless industry to measure the total transmitted power of a radio within a defined frequency channel. This procedure measures the total power within the defined channel for WCDMA. This measurement is applied to design, characterize, evaluate, and verify transmitters and their components or devices for base stations and mobile stations.

The channel power measurement identifies the channel power within a specified bandwidth (default is 5 MHz, as per the 3GPP WCDMA technical specifications) and the power spectral density (PSD) in dBm/Hz.

After configuring test parameters as described in the "Configuring test parameters" on page 156, your measurement result is displayed on the screen as like the following example, **Figure 68**.

Figure 68 Channel power measurement with WCDMA/HSPA+ signal analyzer

You can use the *LIMIT* hot key to analyze your measurements with the user-definable limit and Pass/Fail indication. See "Setting limit for RF tests" on page 168 for more information.

Occupied bandwidth

The 3GPP specifications require the occupied bandwidth (OBW) of a transmitted WCDMA signal to be less than 5 MHz, where occupied bandwidth is defined as the bandwidth containing 99% of the total channel power. In this measurement, the total power of the displayed span is measured. Then the power is measured inward from the right and left extremes until 0.5% of the power is accounted for each of the upper and lower part of the span and the calculated difference is the occupied bandwidth.

The spectrum shape of a WCDMA signal can give a useful qualitative insight into the transmitter's operation. Any distortion to the spectrum shape might be an indication of degradation of the transmitter's performance.

After configuring test parameters as described in the "Configuring test parameters" on page 156, your measurement result is displayed on the screen as like the following example, Figure 69.

Mode: WCDMAHSRA
Center Frequency: 2.142 600 000 GHz
Channel 10713 RWO
Attenuation: 2.5 dS IAI
Trigger Source: GPS
Channel Standard: Band Global External Offset: 40.00 dB join; Trigger: GPS
Channel Standard: Band Global External Offset: 40.00 dB join; Trigger: GPS

Scale Unit: dRm

Mode: See Source: GPS
Channel Flower: GPS

Figure 69 Occupied bandwidth measurement with WCDMA/HSPA+ signal analyzer

You can use the *LIMIT* hot key to analyze your measurements with the user-definable limit and Pass/Fail indication. See "Setting limit for RF tests" on page 168 for more information.

Spectrum emission mask (SEM)

The Spectrum Emission Mask (SEM) measurement required by 3GPP specifications encompasses different power limits and different measurement bandwidths (resolution bandwidths) at various frequency offsets. It may be expressed as a ratio of power spectral densities between the carrier and the specified offset frequency band. It provides useful figures-of-merit for the spectral re-growth and emissions produced by components and circuit blocks, without the rigor of performing a full SEM measurement.

The SEM measures spurious signal levels in up to five pairs of offset or region frequencies and relates them to the carrier power.

Setting measure setup

After configuring test parameters as described in the "Configuring test parameters" on page 156, you can set the mask type according to the output power of the base station be tested. Your measurement result is displayed on the screen as like the following example, Figure 70.

- 1 Press the **MEASURE SETUP** hot key.
- 2 Press the Mask Type soft key.
- 3 Select the mask type option: 31 dBm, 31 39 dBm, 39 43 dBm, or 49 dBm -.

| Mode: WCOMM-HSPA- | Spectrum Emission Mask | Sectrum Emission Mask | Sectrum Emission Mask | S

Figure 70 SEM measurement with WCDMA/HSPA+ signal analyzer

You can use the *LIMIT* hot key to analyze your measurements with the user-definable limit and Pass/Fail indication. See "Setting limit for RF tests" on page 168 for more information.

ACLR

The Adjacent Channel Power Ratio (ACPR), designated by the 3GPP WCDMA specifications as the Adjacent Channel Leakage power Ratio (ACLR), is the power contained in a specified frequency channel bandwidth relative to the total carrier power. It may also be expressed as a ratio of power spectral densities between the carrier and the specified offset frequency band.

After configuring test parameters as described in the "Configuring test parameters" on page 156, your measurement result is displayed on the screen as like the following example, Figure 71.

Figure 71 ACLR measurement with WCDMA/HSPA+ signal analyzer

You can use the *LIMIT* hot key to analyze your measurements with the user-definable limit and Pass/Fail indication. See "Setting limit for RF tests" on page 168 for more information.

Multi-ACLR

The Multi-ACLR measurement is used to perform multi-channel ACLR measurements with as many channels as possible. It helps you to measure ACLR in multi-channel transmitting Base Station environment.

Setting frequency for Multi-ACLR

You can set the frequency with either frequency or channel number.

Procedure

- 1 Press the **MEASURE SETUP** hot key.
- 2 To set the frequency, do one of the following:

To set the center frequency, complete the following steps:

- Toggle the Unit soft key and select Freq.
- **b** Press the **Lowest Frequency** soft key to set the starting center frequency.
- c Enter a value by using the numeric keys. You can also use the rotary knob.
- d Select the unit: GHz, MHz, kHz, or Hz.
- Press the Highest Frequency soft key to set the stopping center frequency.
- f Enter a value by using the numeric keys. You can also use the rotary knob.
- g Select the unit: GHz, MHz, kHz, or Hz.

To set the channel number, complete the following steps:

- a Toggle the Unit soft key and select Channel.
- **b** To select the standard channel, press the **Channel Std** soft key and then select the band to be measured.
- Press the Lowest Channel soft key to set the starting channel.
- **d** Enter a value by using the numeric keys. You can also use the rotary knob.
- e Press the Enter soft key.
- f Press the Highest Channel soft key to set the stopping channel.
- g Enter a value by using the numeric keys. You can also use the rotary knob.
- h Press the Enter soft key.

After configuring test parameters, your measurement result is displayed on the screen as like the following example, Figure 72.

Figure 72 Multi-ACLR measurement with WCDMA/HSPA+ signal analyzer

You can use the *LIMIT* hot key to analyze your measurements with the user-definable limit and Pass/Fail indication. See "Setting limit for RF tests" on page 168 for more information.

Spurious emissions

Out-of-band emissions are unwanted emissions immediately outside the channel bandwidth resulting from the modulation process and non-linearity in the transmitter but excluding spurious emissions. The Spurious Emissions measurement is to identify and determine the power level of out-of-band spurious emission within the necessary channel bandwidth and modulated signal measured at the RF port of the Base Station.

Setting measure setup

- 1 Press the **MEASURE SETUP** hot key.
- To set up the range table and parameters, press the Range Table soft key and then complete the following steps:
 - Press the **Range** soft key, and then select the range number between **1** and **20** to add as a new or change the existing settings.
 - **b** Do the following as desired:
 - Select **Start Frequency**, and then specify the start frequency for the selected range.
 - Select Stop Frequency, and then specify the stop frequency for the selected range.
 - Select Start Limit, and then specify the lower limit for Pass/Fail indication.
 - Select Stop Limit, and then specify the upper limit for Pass/Fail indication.
 - Select More (1/2) > Attenuation, and then specify an value in the multiple of five.
 - Select More (1/2) > RBW, and then specify a RBW value.
 - Select More (1/2) > VBW, and then specify a VBW value.
 - c Press the PREV hard key.
 - d Toggle the Range soft key and select On to display the selected range in the result table or Off to hide it from the table.
- 3 Toggle the Measure Type soft key between Examine and Full to select the measurement type.

The **Examine** mode displays only the selected range while the **Full** mode lets the instrument automatically changes the selected range from one another.

- **4** To set the number of measurements to be averaged, complete the following steps:
 - Press the Average soft key.
 - b Enter a value between 1 and 100.
 - c Press the Enter soft key.
- 5 To move the highlighted bar in the result table to other range, complete the following steps:
 - a Press the Range soft key in the Measure Setup menu bar.
 - b Enter a value between 1 and 20.
 - c Press the Enter soft key.

After configuring test parameters as described in the "Configuring test parameters" on page 156, your measurement result is displayed on the screen as like the following example, Figure 73.

Figure 73 Spurious emissions measurement with WCDMA/HSPA+ signal analyzer

NOTE

You can use the *LIMIT* hot key to analyze your measurements with the user-definable limit and Pass/Fail indication. See "Setting limit for RF tests" on page 168 for more information.

Setting limit for RF tests

By default, test limits specified in the standard are set for you. You can change thresholds if you desire.

- 1 Press the *LIMIT* hot key.
- 2 Press the RF Test Limits soft key.
- **3** Select the test item(s) and set the limit(s) depending on your selected measurement mode:

To set the limit for	Select	Set
Channel power	Channel Power	High Limit, Low Limit
Occupied bandwidth	Occupied BW	High Limit

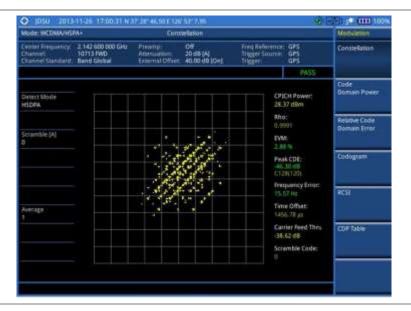
Spectrum emission mask	Spectrum Emission Mask	(On/Off only)
ACLR	ACLR	(On/Off only)
Multi-ACLR	Multi-ACLR	(On/Off only)
Spurious emissions	Spurious Emissions	(On/Off only)

- 4 Optional. You can enable alarm sound that goes off if the measurement falls outside of the limit. Toggle the Beep soft key between On and Off to enable or disable the beep sound.
- 5 Optional. Go to **SAVE/LOAD** > **Save**, and then select **Limit** to save the limit settings. See "Using save" on page 34 for more information.

Conducting modulation measurements

Constellation

The Constellation is used to observe some aspects of modulation accuracy and can reveal certain fault mechanisms such as I/Q amplitude imbalance or quadrature imbalance. It displays constellation diagram by modulation types.


Setting measure setup

After configuring test parameters as described in the "Configuring test parameters" on page 156, you can continue your measurement. The measurement settings can be saved and recalled as a file.

- 1 Press the MEASURE SETUP hot key.
- 2 To set the scramble code, complete the following steps:
 - a Toggle the Scramble soft key between Auto and Manual.
 - **b** Enter a value by using the numeric keys to set manually.
 - c Press the Enter soft key.
- 3 Press the Detect Mode soft key, and then select the signal standard option: WCDMA, HSDPA, or HSPA+. HSDPA is set by default.
- **4** To set the threshold, complete the following steps:
 - a Press the Threshold soft key.
 - **b** Enter a value by using the numeric keys.
 - Press the Enter soft key.

Measurement example

Figure 74 Constellation measurement with WCDMA/HSPA+ signal analyzer

NOTE

You can use the *LIMIT* hot key to analyze your measurements with the user-definable limit and Pass/Fail indication. See "Setting limit for modulation tests" on page 180 for more information.

Code domain power

The Code Domain Power (CDP) measures the distribution of power across the set of code channels, normalized to the total power. It helps to verify that each code channel is operating at its proper level and to identify problems throughout the transmitter design from coding to the RF section. System imperfections such as amplifier non-linearity will present themselves as an undesired distribution of power in the code domain.

Setting measure setup

After configuring test parameters as described in the "Configuring test parameters" on page 156, you can continue your measurement. The measurement settings can be saved and recalled as a file. You can also use JDViewer, PC application software to configure a measure setup, save as a file, and load the file on to the instrument.

- 1 Press the **MEASURE SETUP** hot key.
- 2 Optional. To set the scramble code, complete the following steps:
 - Toggle the Scramble soft key between Auto and Manual.
 - **b** Enter a value by using the numeric keys to set manually.
 - c Press the Enter soft key.
- 3 Optional. Press the Detect Mode soft key, and then select the signal standard option: WCDMA, HSDPA, or HSPA+. HSDPA is set by default.
- **4** To set the S-CCPCH information of the system to be tested, complete the following steps:
 - Press the S-CCPCH soft key.
 - b Toggle the **S-CCPCH** soft key between **On** and **Off** to enable or disable the S-CCPCH.
 - c Press the Spread Factor soft key, and then select the spread factor option: 4, 8, 16, 32, 64, 128, or 256.

- d Press the **Spread Code** soft key to set the spread code.
- e Enter a value by using the numeric keys.
- f Press the Enter soft key.
- **5** To set the PICH information of the system to be tested, complete the following steps:
 - Press the PICH soft key.
 - **b** Toggle the **PICH** soft key between **On** and **Off** to enable or disable the PICH.
 - Press the Spread Factor soft key, and then select the spread factor option: 4, 8, 16, 32, 64, 128, or 256.
 - d Press the Spread Code soft key to set the spread code.
 - e Enter a value by using the numeric keys.
 - f Press the Enter soft key.
- **6** Optional. To set the threshold, complete the following steps:
 - a Press the Threshold soft key.
 - **b** Enter a value by using the numeric keys.
 - Press the **Enter** soft key.

Measurement example

Figure 75 Code domain power measurement with WCDMA/HSPA+ signal analyzer

1) Full screen

2) Full screen with constellation

3) Zoomed screen (Width 64)

4) Zoomed screen with constellation (Width 64)

You can use the *LIMIT* hot key to analyze your measurements with the user-definable limit and Pass/Fail indication. See "Setting limit for modulation tests" on page 180 for more information.

Setting display

You can view your measurement results in a different view option.

Procedure

- 1 Press the TRACE/DISPLAY hard key.
- 2 Toggle the View soft key and select the display option:

Zoom: You can view the result in detail with zoom-in window.

The Position and Width menus become activated.

Full: You can view the full measurement result.

- 3 To define the zoom start position and width, complete the following steps:
 - a Press the Position soft key.
 - **b** Enter a value of the position by using the numeric keys.
 - c Press the Enter soft key.
 - d Press the Width soft key, and then select the Walsh code option: 32, 64, 128, or 256.
- 4 Toggle the **Constellation** soft key between **On** and **Off** to enable or disable the constellation chart on the Code Domain Power screen.
- 5 Toggle the **Control Channel** soft key and select the control channel mode option:

Normal: You can view the relative ratio of each control channel vs. total power.

Delta: You can view the relative ratio of each control channel vs. CPICH channel.

Relative code domain power

The Relative Code Domain Error (RCDE) measurement provides relative code domain error analysis that is particularly required by HSPA+.

Setting measure setup

After configuring test parameters as described in the "Configuring test parameters" on page 156, you can continue your measurement. The measurement settings can be saved and recalled as a file. You can also use JDViewer, PC application software to configure a measure setup, save as a file, and load the file on to the instrument.

Procedure

- 1 Press the **MEASURE SETUP** hot key.
- 2 Optional. To set the scramble code, complete the following steps:
 - a Toggle the Scramble soft key between Auto and Manual.
 - **b** Enter a value by using the numeric keys to set manually.
 - c Press the Enter soft key.
- 3 Optional. Press the Detect Mode soft key, and then select the signal standard option: WCDMA, HSDPA, or HSPA+. HSDPA is set by default.

NOTE

It is recommended that you select **HSPA+** for RCDE testing.

- **4** To set the S-CCPCH information of the system to be tested, complete the following steps:
 - Press the S-CCPCH soft key.
 - **b** Toggle the **S-CCPCH** soft key between **On** and **Off** to enable or disable the S-CCPCH.

- c Press the Spread Factor soft key, and then select the spread factor option: 4, 8, 16, 32, 64, 128, or 256.
- d Press the **Spread Code** soft key to set the spread code.
- Enter a value by using the numeric keys.
- f Press the Enter soft key.
- 5 To set the PICH information of the system to be tested, complete the following steps:
 - a Press the PICH soft key.
 - **b** Toggle the **PICH** soft key between **On** and **Off** to enable or disable the PICH.
 - c Press the Spread Factor soft key, and then select the spread factor option: 4, 8, 16, 32, 64, 128, or 256.
 - d Press the Spread Code soft key to set the spread code.
 - e Enter a value by using the numeric keys.
 - f Press the Enter soft key.
- **6** Optional. To set the threshold, complete the following steps:
 - a Press the Threshold soft key.
 - b Enter a value by using the numeric keys.
 - c Press the Enter soft key.
- 7 Optional. Go to SAVE/LOAD > Save, and then select the save option from the choices available for your measurement mode. See "Using save" on page 34 for more information.

Measurement example

Figure 76 Relative code domain error with WCDMA/HSPA+ signal analyzer

NOTE

You can use the *LIMIT* hot key to analyze your measurements with the user-definable limit and Pass/Fail indication. See "Setting limit for modulation tests" on page 180 for more information.

Setting display

You can view your measurement results in a different view option.

Procedure

1 Press the TRACE/DISPLAY hard key.

2 Toggle the View soft key and select the display option:

Zoom: You can view the result in detail with zoom-in window.

The Position and Width menus become activated.

Full: You can view the full measurement result.

- 3 To define the zoom start position and width, complete the following steps:
 - Press the Position soft key.
 - Enter a value of the position by using the numeric keys.
 - c Press the Enter soft key.
 - d Press the Width soft key, and then select the Walsh code option: 32, 64, 128, or 256.
- **4** Toggle the **Constellation** soft key between **On** and **Off** to enable or disable the constellation chart on the Code Domain Power screen.
- 5 Toggle the **Control Channel** soft key and select the control channel mode option:

Normal: You can view the relative ratio of each control channel vs. total power.

Delta: You can view the relative ratio of each control channel vs. CPICH channel.

Codogram

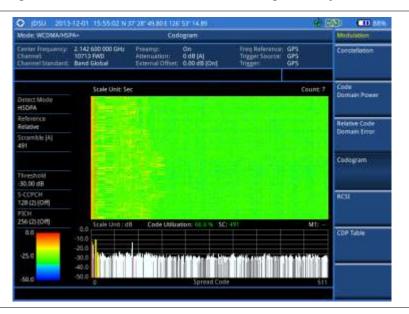
The Codogram displays how the code level is changing over time and makes it easier for you to view traffic channels as they initiate and terminate and to track traffic channels call levels over time. The Codogram measurements can be saved into an external USB memory so that a post-analysis can be done with the application software JDViewer.

Setting measure setup

After configuring test parameters as described in the "Configuring test parameters" on page 156, you can continue your measurement. The measurement settings can be saved and recalled as a file. You can also use JDViewer, PC application software to configure a measure setup, save as a file, and load the file on to the instrument.

- 1 Press the MEASURE SETUP hot key.
- **2** *Optional.* To set the scramble code, complete the following steps:
 - Toggle the Scramble soft key between Auto and Manual.
 - **b** Enter a value by using the numeric keys to set manually.
 - c Press the Enter soft key.
- 3 Optional. Press the Detect Mode soft key, and then select the signal standard option: WCDMA, HSDPA, or HSPA+. HSDPA is set by default.
- 4 To set the S-CCPCH information of the system to be tested, complete the following steps:
 - a Press the S-CCPCH soft key.
 - b Toggle the S-CCPCH soft key between On and Off to enable or disable the S-CCPCH.
 - c Press the Spread Factor soft key, and then select the spread factor option: 4, 8, 16, 32, 64, 128, or 256.
 - d Press the **Spread Code** soft key to set the spread code.
 - e Enter a value by using the numeric keys.
 - f Press the Enter soft key.
- 5 To set the PICH information of the system to be tested, complete the following steps:
 - a Press the PICH soft key.
 - **b** Toggle the **PICH** soft key between **On** and **Off** to enable or disable the PICH.
 - Press the Spread Factor soft key, and then select the spread factor option: 4, 8, 16, 32, 64, 128, or 256.
 - d Press the Spread Code soft key to set the spread code.

- e Enter a value by using the numeric keys.
- f Press the Enter soft key.
- 6 Optional. To set the threshold, complete the following steps:
 - Press the Threshold soft key.
 - **b** Enter a value by using the numeric keys.
 - c Press the Enter soft key.
- **7** To set the time interval, complete the following steps:
 - a Press the Time Interval soft key.
 - **b** Enter a value by using the numeric keys.
 - c Press the Enter soft key.
- 8 To place the time cursor to analyze your measurements, complete the following steps:
 - a Toggle the Time Cursor soft key between On and Off to enable or disable the time cursor.
 - **b** Enter a value by using the numeric keys.
 - c Press the Enter soft key.



When the time cursor is enabled, the measurement is put on hold and information about the time cursor is displayed.

- 9 To start a new measurement, press the Reset/Restart soft key.
- **10** Optional. Go to **SAVE/LOAD** > **Save**, and then select the save option from the choices available for your measurement mode. See "Using save" on page 34 for more information.

Measurement example

Figure 77 Codogram in full view with WCDMA/HSPA+ signal analyzer

Setting display

You can view your measurement results in a different view option.

Procedure

- 1 Press the TRACE/DISPLAY hard key.
- 2 Toggle the **View** soft key and select the display option:

Zoom: You can view the result in detail with zoom-in window.

The Position and Width menus become activated.

Full: You can view the full measurement result.

- 3 To define the zoom start position and width, complete the following steps:
 - Press the Position soft key.
 - **b** Enter a value of the position by using the numeric keys.
 - c Press the Enter soft key.
- 4 Press the Width soft key, and then select the Walsh code option: 32, 64, 128, or 256.

RCSI

The Received Code Strength indicator (RCSI) is used to track the code channels such as CPICH, P-CCPCH, S-CCPCH, PICH, P-SCH, and S-SCH. It is particularly useful to observe signal fluctuations of the dedicated control channels over the time. The RCSI measurements can be saved into an external USB memory so that a post-analysis can be done with the application software JDViewer.

Setting measure setup

After configuring test parameters as described in the "Configuring test parameters" on page 156, you can continue your measurement. The measurement settings can be saved and recalled as a file. You can also use JDViewer, PC application software to configure a measure setup, save as a file, and load the file on to the instrument.

- 1 Press the **MEASURE SETUP** hot key.
- **2** Optional. To set the scramble code, complete the following steps:
 - a Toggle the Scramble soft key between Auto and Manual.
 - b Enter a value by using the numeric keys to set manually.
 - c Press the Enter soft key.
- 3 Optional. Press the Detect Mode soft key, and then select the signal standard option: WCDMA, HSDPA, or HSPA+. HSDPA is set by default.
- **4** To set the S-CCPCH information of the system to be tested, complete the following steps:
 - a Press the S-CCPCH soft key.
 - **b** Toggle the **S-CCPCH** soft key between **On** and **Off** to enable or disable the S-CCPCH. Setting this on makes the S-CCPCH in the Alarm Code menu activated.
 - Press the Spread Factor soft key, and then select the spread factor option: 4, 8, 16, 32, 64, 128, or 256.
 - d Press the **Spread Code** soft key to set the spread code.
 - e Enter a value by using the numeric keys.
 - f Press the **Enter** soft key.
- 5 To set the PICH information of the system to be tested, complete the following steps:
 - Press the PICH soft key.
 - **b** Toggle the **PICH** soft key between **On** and **Off** to enable or disable the PICH. Setting this on makes the PICH in the Alarm Code menu activated.
 - Press the Spread Factor soft key, and then select the spread factor option: 4, 8, 16, 32, 64, 128, or 256.
 - d Press the **Spread Code** soft key to set the spread code.
 - Enter a value by using the numeric keys.
 - f Press the Enter soft key.
- **6** Optional. To set the threshold, complete the following steps:
 - a Press the Threshold soft key.
 - **b** Enter a value by using the numeric keys.
 - c Press the Enter soft key.
- 7 Press the Alarm Code soft key, and then select the alarm code option: None, CPICH, P-

CCPCH, S-CCPCH, PICH, P-SCH, or S-SCH.

NOTE

The alarm codes S-CCPCH and PICH become activated in case that you have enabled the S-CCPCH and PICH respectively.

- 8 To set the alarm mask, complete the following steps:
 - a Press the Set Mask soft key.
 - **b** Enter a value by using the numeric keys.
 - Press the Enter soft key.
- 9 Optional. Go to **SAVE/LOAD** > **Save**, and then select the save option from the choices available for your measurement mode. See "Using save" on page 34 for more information.

Measurement example

Figure 78 RCSI measurement with WCDMA/HSPA+ signal analyzer

Setting display

You can view your measurement results in a different view option.

Procedure

- 1 Press the TRACE/DISPLAY hard key.
- **2** Toggle the **View** soft key and select the display option:

Zoom: You can view the result in detail with zoom-in window.

The Position and Width menus become activated.

Full: You can view the full measurement result.

- **3** To define the zoom start position and width, complete the following steps:
 - Press the Position soft key.
 - **b** Enter a value of the position by using the numeric keys.
 - c Press the Enter soft key.
 - d Press the Width soft key, and then select the Walsh code option: 32, 64, 128, or 256.

CDP Table

The CDP Table is used to look at a numeric and textual description of all the active code channels in the signal.

Setting measure setup

After configuring test parameters as described in the "Configuring test parameters" on page 156, you can continue your measurement. The measurement settings can be saved and recalled as a file. You can also use JDViewer, PC application software to configure a measure setup, save as a file, and load the file on to the instrument.

- 1 Press the **MEASURE SETUP** hot key.
- **2** Optional. To set the scramble code, complete the following steps:
 - Toggle the Scramble soft key between Auto and Manual.
 - **b** Enter a value by using the numeric keys to set manually.
 - c Press the Enter soft key.
- 3 Optional. Press the Detect Mode soft key, and then select the signal standard option: WCDMA, HSDPA, or HSPA+. HSDPA is set by default.
- **4** To set the S-CCPCH information of the system to be tested, complete the following steps:
 - Press the S-CCPCH soft key.
 - **b** Toggle the **S-CCPCH** soft key between **On** and **Off** to enable or disable the S-CCPCH.
 - Press the Spread Factor soft key, and then select the spread factor option: 4, 8, 16, 32, 64, 128, or 256.
 - d Press the **Spread Code** soft key to set the spread code.
 - e Enter a value by using the numeric keys.
 - f Press the **Enter** soft key.
- 5 To set the PICH information of the system to be tested, complete the following steps:
 - a Press the PICH soft key.
 - **b** Toggle the **PICH** soft key between **On** and **Off** to enable or disable the PICH.
 - Press the Spread Factor soft key, and then select the spread factor option: 4, 8, 16, 32, 64, 128, or 256.
 - d Press the **Spread Code** soft key to set the spread code.
 - Enter a value by using the numeric keys.
 - f Press the Enter soft key.
- **6** Optional. To set the threshold, complete the following steps:
 - a Press the Threshold soft key.
 - **b** Enter a value by using the numeric keys.
 - c Press the Enter soft key.

Measurement example

Figure 79 CDP Table measurement with WCDMA/HSPA+ signal analyzer

Setting display

If the CDP table spans over to the next page(s), you can change pages up and down to view your measurement results.

Procedure

- 1 Press the TRACE/DISPLAY hard key.
- 2 Select Page Up or Page Down as needed.

Setting limit for modulation tests

- 1 Press the *LIMIT* hot key.
- 2 Press the Modulation Test Limits soft key to set the limits.
- **3** Select the test item(s) and set the limit(s) depending on your selected measurement mode:

To set the limit for	Select	Set
Frequency error	Frequency Error	High Limit, Low Limit
Error vector magnitude	EVM	High Limit
Peak code domain error	PCDE	High Limit
Carrier feed through	Carrier Feed Through	High Limit
Correlated power in coded channel	CPICH	High Limit [Abs Rel] Low Limit [Abs Rel]
Highest level among inactive channels	Max Inactive	High Limit
Relative code domain error	RCDE	High Limit (QPSK) High Limit (16 QAM) High Limit (64 QAM)

- 4 Optional. You can enable alarm sound that goes off if the measurement falls outside of the limit. Toggle the Beep soft key between On and Off to enable or disable the beep sound.
- 5 Optional. Go to SAVE/LOAD > Save, and then select Limit to save the limit settings. See "Using save" on page 34 for more information.

NOTE

The Carrier Feed Through is a result of the RF carrier signal feeding through the I/Q modulator and riding on the output circuitry without being modulated.

Performing auto measurements

The Auto Measure function of the JD700B series allows a complete signal profiling covering RF characterization and modulation quality parameters of up to 10 different carriers, particularly useful on an overlay architecture where base stations are transmitting in different frequencies.

The Auto Measure can be easily executed either by selecting a menu in the instrument or by running a programmed scenario in the PC-based application so that the instrument automatically configure and perform tests on every aspect of all the carriers.

Setting limit for auto measure

You can set test limits for test item(s) in the auto measurement.

Procedure

- 1 Press the LIMIT hot key.
- 2 Press the RF Test Limits soft key, and then enable test limits as desired.
- 3 Press the Modulation Test Limits soft key, and then enable test limits as desired.
- **4** Optional. You can enable alarm sound that goes off if the measurement falls outside of the limit. Toggle the **Beep** soft key between **On** and **Off** to enable or disable the beep sound.
- 5 Optional. Go to SAVE/LOAD > Save, and then select Limit to save the limit settings. See "Using save" on page 34 for more information.

Setting measure setup

After configuring test parameters as described in the "Configuring test parameters" on page 156, you can continue your measurement. The measurement settings can be saved and recalled as a file. You can also use JDViewer, PC application software to configure a measure setup, save as a file, and load the file on to the instrument.

Procedure

- 1 Press the **MEASURE SETUP** hot key.
- 2 Toggle the **Configuration** soft key and select the configuration option:

Current: Lets the instrument use current frequency (single carrier) and determine pass or fail based on the instrument's limit settings in Auto Measure.

Scenario: Runs a test with a programmed scenario in JDViewer.

The Scenario menu becomes activated.

- 3 To load a scenario, press the **Scenario** soft key, and then select a scenario file to load.
- 4 Toggle the **Test Time** soft key and select the test time option:

Now: Lets the instrument run a test only once.

Schedule: Lets the instrument repeat tests as defined in the Set Timing. The Set Timing menu becomes activated.

- 5 To define a schedule for an auto measurement, complete the following steps:
 - a Press the Set Timing soft key.
 - b Press the Start Time (HH:MM) soft key.
 - Enter the time in the HH:MM format, and then press the **Enter** soft key.
 - d Press the Stop Time (HH:MM) soft key.
 - e Enter the time in the HH:MM format, and then press the Enter soft key.
 - f Press the Time Interval soft kev.
 - g Enter the amount of time in minutes, and then press the **Enter** soft key.
- **6** To set external offset, complete the following steps:
 - a Toggle the External Offset soft key and select On.
 - **b** Enter a value by using the numeric keys, and then press the **dB** soft key.
- 7 To save your settings and results, go to SAVE/LOAD > Save and then perform functions as you desire. See "Using save" on page 34 for more information.
- 8 Press the Run Test soft key to start to run a test. The Auto Measure Results window appears at the end of the test.
- **9** To stop running the test, press the **Abort** soft key.
- 10 To change the view on the screen during the test, press the Display and then select the view option from the following choices:

Screen: You can view each measurement screen as the test progresses.

Results: You can view a measurement result table as the test progresses.

Settings: You can view a measurement setting table as the test progresses.

Setting display

After completion of the auto measurement, the screen menu changes to Trace/Display so that you can view the results in different forms.

Procedure

1 Toggle the **Display** soft key and select the display option:

Result: You can view the result table.

The Display Result menu becomes activated.

Settings: You can view the measurement settings for the auto measurement.

2 Toggle the **Display Result** soft key and select the display result option:

Full: You can view detailed measurement readings with the pass/fail indication.

Quick: You can view only the Pass/Fail results.

3 To view the measurement results for a different carrier, press the View Carrier soft key and then select the carrier number to view.

Performing power statistics CCDF measurement

The Power Statistics Complementary Cumulative Distribution Function (CCDF) measurement characterizes the power statistics of the input signal. It provides PAR (Peak to Average power Ratio) versus different probabilities.

Setting measure setup

After configuring test parameters as described in the "Configuring test parameters" on page 156, you can

continue your measurement. The measurement settings can be saved and recalled as a file. You can also use JDViewer, PC application software to configure a measure setup, save as a file, and load the file on to the instrument.

Procedure

- 1 Press the MEASURE SETUP hot key.
- 2 Press the CCDF Length soft key to set the length of the CCDF.
- 3 Enter a value between 1 and 100 by using the numeric keys. You can also use the rotary knob.
- 4 Press the Enter soft key.

Measurement example

Figure 80 CCDF measurement with WCDMA/HSPA+ signal analyzer

Conducting WCDMA/HSPA+ OTA measurements

This Over The Air (OTA) measurement has channel scanner, scramble scanner, multipath profile, code domain power, and route map screens. Scramble scanner displays six scrambling codes and powers to inform neighbor cells existence and its power. The multipath profile graph helps you to determine testing area's RF environmental condition. The code domain power shows not only modulation performance metric but also amplifier capacity and code utilization metric. The amplifier capacity (code utilization) measurement is an estimate of the amount of power amplifier capacity (code utilization) that is being used expressed in percent of maximum.

Channel scanner

Setting channel/frequency

Procedure

To set the channels to be scanned:

- 1 Press the FREQ/DIST hard key.
- 2 Toggle the **Unit** soft key and select **Channel**.

- 3 Press the Index soft key, and then enter an index number by turning the rotary knob or using the numeric keys.
- **4** To select the standard channel, complete the following steps:
 - Press the Channel Std soft key. The standard channel window appears.
 See "Appendix C Band, frequency & channel standard" on page 745 for more information.
 - b Highlight the band to be measured by using the rotary knob, the arrow keys, or the Page Up/Page Down soft keys.
 - c Press the **Select** soft key or the rotary knob to confirm the selection.
- 5 To set the channel number for the selected index, complete the following steps:
 - a Press the Channel Number soft key.
 - **b** Enter a value by using the numeric keys. You can also use the rotary knob.
 - c Press the Enter soft key.
- **6** The instrument displays a corresponding center frequency for the channel number.
- 7 To set the integration bandwidth for the selected index, complete the following steps:
 - a Press the Integration Bandwidth soft key.
 - **b** Enter a value by using the numeric keys. You can also use the rotary knob.
 - c Select the unit: GHz, MHz, kHz, or Hz.
- 8 To add more channels to be scanned, repeat steps 3-6.
- 9 Press the ESC hard key to dismiss the channel list window and view the scanning result.

To set the frequencies to be scanned:

- 1 Press the FREQ/DIST hard key.
- 2 Toggle the Unit soft key and select Freq.
- 3 Press the Index soft key, and then enter an index number by turning the rotary knob or using the numeric keys.
- 4 To set the center frequency for the selected index, complete the following steps:
 - Press the Center Frequency soft key.
 - **b** Enter a value by using the numeric keys. You can also use the rotary knob.
 - Select the unit: GHz, MHz, kHz, or Hz.
- 5 To set the integration bandwidth for the selected index, complete the following steps:
 - a Press the Integration Bandwidth soft key.
 - **b** Enter a value by using the numeric keys. You can also use the rotary knob.
 - Select the unit: GHz, MHz, kHz, or Hz.
- **6** To add more channels to be scanned, repeat steps **3-5**.
- 7 Press the ESC hard key to dismiss the channel list window and view the scanning result.

Setting limit for OTA channel scanner

- 1 Press the *LIMIT* hot key.
- 2 Press the Limit Line soft key to set a threshold for the limit line and Pass/Fail indication.
- 3 Enter a value, and then press the dBm unit soft key.
- 4 Toggle the Limit Line soft key between On and Off to display or dismiss the limit line.
- 5 Optional. You can enable alarm sound that goes off if the measurement falls outside of the limit. Toggle the Beep soft key between On and Off to enable or disable the beep sound.
- **6** Optional. Go to **SAVE/LOAD > Save**, and then select **Limit** to save the limit settings. See "Using save" on page 34 for more information.

Measurement example

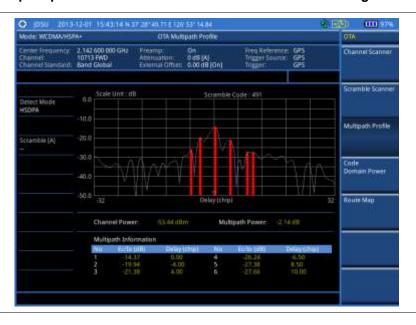
Figure 81 Channel scanner measurement with WCDMA/HSPA+ OTA signal analyzer

Scramble scanner

The WCDMA/HSPA+ mobile receives signals from multiple base stations that all of these signals share the same spectrum and are present at the same time. Each base station has a unique scrambling code assigned to the particular base station and it differentiates its signal from other base stations in the area.

Measurement example

Figure 82 Scramble scanner measurement with WCDMA/HSPA+ OTA signal analyzer


Multipath profile

The Multipath Profile enables you to determine RF environmental conditions of testing area. It indicates the amount of power of the dominant pilot signal that is dispersed outside the main correlation peak due to multipath echoes that are expressed in dB. This value should be very small ideally.

The multipath profile is the result of portions of the original broadcast signal arriving at the receiving antenna out of phase. This can be caused by the signal being reflected off objects such as buildings, or being refracted through the atmosphere differently from the main signal.

Measurement example

Figure 83 Multipath profile measurement with WCDMA/HSPA+ OTA signal analyzer

Code domain power

Channels with high correlation factors are determined to be active channels and are indicated as such on the display. Once the channels are decoded, the analyzer determines the power of each channel relative to the total signal power.

This measurement helps to verify that each code channel is operating at its proper level and helps to identify problems throughout the transmitter design from the coding to the RF section. System imperfections, such as the non-linearity of amplifiers, will present themselves as an undesired distribution of power in the code domain.

Setting measure setup

After configuring test parameters, you can set the measure setup to continue your measurement. The measurement settings can be saved and recalled as a file. You can also use JDViewer, PC application software to configure a measure setup, save as a file, and load the file on to the instrument.

- 1 Press the **MEASURE SETUP** hot key.
- 2 To set the scramble code, complete the following steps:
 - a Toggle the Scramble soft key between Auto and Manual.
 - **b** Enter a value by using the numeric keys to set manually.
 - c Press the Enter soft key.
- 3 Press the Detect Mode soft key, and then select the signal standard option: WCDMA, HSDPA, or HSPA+. HSDPA is set by default.
- **4** To set the threshold, complete the following steps:
 - a Press the Threshold soft key.

- **b** Enter a value by using the numeric keys.
- c Press the Enter soft key.
- 5 To set the S-CCPCH information of the system to be tested, complete the following steps:
 - a Press the S-CCPCH soft key.
 - Toggle the S-CCPCH soft key between On and Off to enable or disable the S-CCPCH.
 - c Press the Spread Factor soft key, and then select the spread factor option: 4, 8, 16, 32, 64, 128, or 256.
 - d Press the **Spread Code** soft key to set the spread code.
 - Enter a value by using the numeric keys.
 - f Press the Enter soft key.
- 6 To set the PICH information of the system to be tested, complete the following steps:
 - a Press the PICH soft key.
 - **b** Toggle the **PICH** soft key between **On** and **Off** to enable or disable the PICH.
 - Press the Spread Factor soft key, and then select the spread factor option: 4, 8, 16, 32, 64, 128, or 256.
 - d Press the Spread Code soft key to set the spread code.
 - e Enter a value by using the numeric keys.
 - f Press the Enter soft key.
- 7 To set the maximum amplifier power, complete the following steps:
 - Press the Max Amplifier Power soft key.
 - b Enter a value by using the numeric keys.
 - c Press the dBm soft key.
- **8** To set the CPICH power, complete the following steps:
 - a Press the More (1/2) soft key.
 - b Press the CPICH soft key.
 - c Enter a value by using the numeric keys.
 - d Press the dBm soft key.
- **9** To set the threshold for CPICH dominance, complete the following steps:
 - Press the CPICH Dominance > soft key.
 - **b** Enter a value by using the numeric keys.
 - c Press the Enter soft key.

NOTE

Recommended value is 10. Color of the CPICH Dominance indicator on the screen bases on this setting.

- **10** To set the threshold for multipath power, complete the following steps:
 - a Press the Multipath Power < soft key.</p>
 - **b** Enter a value by using the numeric keys.
 - c Press the Enter soft key.


NOTE

Recommended value is one. Color of the multipath power indicator on the screen bases on this setting.

11 Optional. Go to **SAVE/LOAD** > **Save**, and then select the save option from the choices available for your measurement mode. See "Using save" on page 34 for more information.

Measurement example

Figure 84 Code domain power measurement with WCDMA/HSPA+ OTA signal analyzer

NOTE

You can use the *LIMIT* hot key to analyze your measurements with the user-definable limit and Pass/Fail indication.

Route map

The JD700B Series provides the Route Map function that allows you to collect data of points in an indoor or outdoor environment and track the received signals and coverage of RF transmitters by plotting data real time directly on top of a loaded floor plan or a map.

The JD700B Series also supports the RAN-IL (Interference Location) feature that enables you to overlay user experience data obtained through Viavi's ariesoGEO on your base map to help you troubleshoot problems easily and quickly using your instrument. You can generate raster data files on the ariesoGEO application and load them on your instrument.

Setting measure setup

Procedure

- 1 If required, connect a GPS receiver to your JD700B series for outdoor mapping. Indoor mapping does not necessarily need a GPS antenna.
- 2 Configure test parameters as described in the "Configuring test parameters" on page 156.
- **3** To load your map file, complete the following steps:
 - Plug in your USB drive that has a floor map or .mcf file type created in JDMapCreator. If the JDMapCreator application on your computer is connected to the instrument via USB or LAN, you can send a map file with a single layer to the instrument directly by using the **Send to EQP** menu in JDMapCreator.

NOTE

The JDMapCreator converts and resizes any scanned floor plan or layout to fit onto your instrument's display. JDMapCreator 1.2.0 or later can save a multiple-layered map, providing **x1**, **x2**, and **x4** views, as a sizable map file so that you can zoom in and out after loading it.

b Press SAVE/LOAD hot key, and then select Load > Load Map. See "Using load" on page 36 for more information.

- 4 Press the **MEASURE SETUP** hot key.
- 5 Press the **Plot Point** soft key, and then select the plot point option from the following choices:

To collect data/plot points automatically as you move around in a vehicle or outside, press the **GPS** soft key and then toggle the **Screen Mode** soft key between **Map** and **Full**.

NOTE

With the **Map** setting, you can view only the collected points that can be seen within the boundary of the loaded map. If a point is off the map, the instrument displays an arrow to indicate the direction of the current location on the map and the distance from the center to the location at the top of the screen.

With the **Full** setting, you can view all the collected points of the route without the loaded map.

To collect data/plot points manually without a GPS antenna in an indoor environment, press the **Position** soft key.

- 6 Press the Plot Item soft key, and then select the measurement option: CPICH Power or Ec/lo.
- 7 Toggle the **Plot** soft key and select **Start**.
- 8 Touch directly on the screen or press the ENTER hard key to collect data and plot points on the loaded map for the Position setting.

NOTE

For the **Position** setting, you can change the direction of the route with the arrow keys and the distance with the rotary knob.

- **9** Toggle the **Plot** soft key and select **Stop** to stop plotting.
- 10 Press the SAVE/LOAD hot key to save the result. See "Using save" on page 34 for more information.

NOTE

The instrument does not automatically save the collected data. It is recommended that you save the result. Otherwise, you will lose all the collected data.

Setting limit

You can set the thresholds for the four different color indicators for CPICH power or Ec/lo.

Procedure

- 1 Press the *LIMIT* hot key.
- 2 Select the plot items and set the limits as needed:

To set the limit for	Select	Set
CPICH Power	CPICH Power	Excellent, Very Good, Good, Fair, Poor (dBm)
CPICH Ec/lo	Ec/lo	Good, Fair, Poor (dB)

3 Optional. Go to SAVE/LOAD > Save, and then select Limit to save the limit settings. See "Using save" on page 34 for more information.

Measurement example

Figure 85 Route map measurement (CPICH Power) with WCDMA/HSPA+ OTA signal analyzer

Figure 86 Route map measurement (CPICH Ec/lo) with WCDMA/HSPA+ OTA signal analyzer

Controlling a map

If you have loaded a sizable map that was created in JDMapCreator 1.2.0 or later, you can use the Map Control feature that enables you to zoom into the map and view a specific area of interest in detail.

Procedure

- 1 Press the TRACE/DISPLAY hard key.
- 2 Press the **Map Control** soft key. This key is active only when you have loaded a sizable map.
- 3 Do one of the following:

To zoom into an area of interest directly, complete the following steps:

a Toggle the Zoom to soft key and select Area. The black rectangle appears on the map.

- b Press the Zoom In and Zoom Out soft keys, as you need, to decrease and increase the selected area.
- Move the rectangle by using the four arrow keys, as you need, to place it in a specific area of interest.
- **d** Press the center of the rotary knob to zoom into the selected area. You can also press the **Zoom to** soft key again to zoom into the selected area.

To zoom into the center or zoom out from the center, complete the following steps:

- a Toggle the Zoom to soft key and select Center.
- b Press the Zoom In and Zoom Out soft keys, as you need, to zoom in and zoom out.
- Move the zoomed-in area by using the four arrow keys, as you need.
- To set the location mode, toggle the **Location Mode** soft key between **Auto** and **Manual** and select the one you desire.

Auto: The instrument compares the coordinates of the displayed map with recevied GPS information. If your current location goes out of the displayed area and enters into the next zoomed-in section within the base map, the map display changes automatically to the next section in which your current position is.

Manual: The map display of the zoomed-in area remains unchanged even if your current location goes out of the displayed area. You can change the displayed area manually by using the arrow keys.

Loading and displaying raster data

If you have a set of raster data files generated through the ariesoGEO application, you can load and overlay the data on your base map to help you check the signal quality and the strength of interferences while driving toward the area of interest.

Procedure

1 Copy a set of raster data files into your USB memory drive, including the following:

ASCII: .tab, .asc, and .clr files
BIL: .tab, .hdr, .bil, and .clr files

NOTE

The .tab file type is a geospatial vector data format used in many geographic information systems. The color file (.clr) is an optional file, but the image will be displayed as a grayscale image without it. The size of the raster map must be 1024 x 1024 or smaller.

- 2 Plug in the USB memory drive to your instrument.
- 3 Press the TRACE/DISPLAY hard key.
- 4 Press the **Load Raster Map** soft key. The file explorer window appears.
- 5 Navigate to the raster file (.tab) you want to open, and then press the **Load** soft key. The raster image appears on top of your base map as shown in Figure 87.

NOTE

If the area of the loaded raster data is not within the boundary of the base map, you will not see the raster image on the screen.

- **6** To select the display option, complete the following steps:
 - Press the Display Options soft key.
 - Select the option you desire from the choices: On, Off, and Blink.
- 7 To adjust the transparency level of the image, complete the following steps:
 - Press the Transparency soft key.
 - **b** Enter a value between **0** for opaque and **100** for clear.
 - c Press the Enter soft key.

Figure 87 Raster image overlaid on the base map in WCDMA/HSPA+ OTA signal analyzer

Chapter 8 Using LTE-FDD Signal Analyzer

This chapter provides instructions for using the LTE-FDD Signal Analyzer (option 028) and LTE-Advanced FDD Analyzer (option 030) with the LTE-FDD OTA Analyzer (option 048), LTE-FDD 256 QAM Demodulator (option 032), and the LTE-FDD RAN Performance Indicator (option 014). Topics discussed in this chapter are as follows:

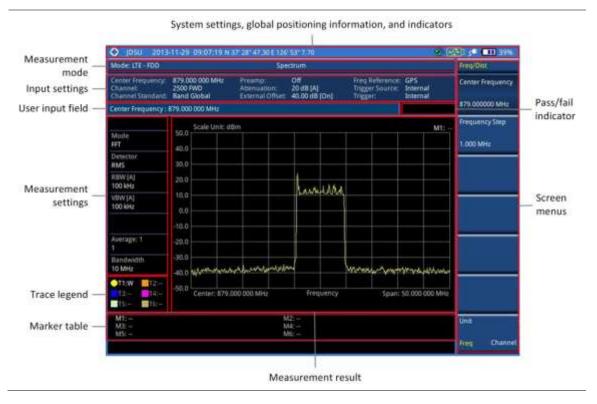
Introduction	. 194
Display overview	. 195
Connecting a cable	. 195
Selecting measurement mode	. 197
Configuring test parameters	. 197
Conducting spectrum measurements	.202
Conducting RF measurements	. 203
Conducting power vs. time (frame) measurements	.210
Conducting modulation measurements	. 211
Performing auto measurements	.230
Performing power statistics CCDF measurements	.237
Performing carrier aggregation measurements	.238
Conducting LTE-FDD OTA measurements	. 241
Performing RAN performance testing	. 255
Performing NB-IoT modulation analysis	. 258

Introduction

The LTE (Long-Term Evolution) Signal Analyzer of the JD700B series performs power and spectrum measurements as well as modulation analysis to test the proper transmitter performance of FDD LTE systems. It performs conformance testing according to the following standards providing a simple Pass/Fail indication on each test.

- 3GPP TS 36.104. Evolved Universal Terrestrial Radio Access (E-UTRA); Base Station (BS) Radio Transmission and Reception
- 3GPP TS 36.141. Evolved Universal Terrestrial Radio Access (E-UTRA); Base Station (BS)
 Conformance Testing
- 3GPP TS 36.211. Evolved Universal Terrestrial Radio Access (E-UTRA); Physical Channels and Modulation
- 3GPP TS 36.212. Evolved Universal Terrestrial Radio Access (E-UTRA); Multiplexing and Channel Coding
- 3GPP TS 36.213 V8.2.0. Evolved Universal Terrestrial Radio Access (E-UTRA); Physical Layer Procedures

This instrument provides the following measurement tools for FDD LTE system:


- Spectrum Analysis
- RF Analysis
 - Channel Power
 - Occupied Bandwidth
 - Spectrum Emission Mask
 - Adjacent Channel Leakage power Ratio (ACLR)
 - Multi-ACLR
 - Spurious Emissions
- Power vs. Time (Frame)
- Modulation Analysis
 - Constellation
 - Data Channel
 - Control Channel
 - Subframe
 - Frame
 - Time Alignment Error
 - Data Allocation Map
- Auto Measure:
 - Conformance Test
 - Maintenance Test
 - Signal Performance Test
 - DAS Test

- Power Statistics CCDF
- Carrier Aggregation
- Over The Air (OTA)
 - Channel Scanner
 - ID Scanner
 - Multipath Profile
 - Control Channel
 - Datagram
 - Route Map
- RAN Performance Indicator

Display overview

Figure 88 provides descriptions for each segment of the measurement screen.

Figure 88 LTE-FDD signal analyzer measurement screen

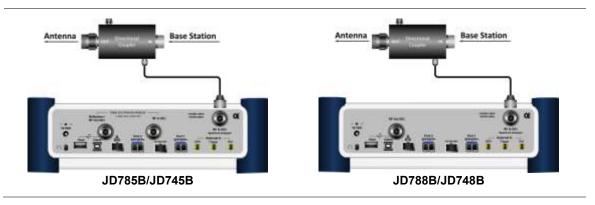
Connecting a cable

Direct connection

Procedure

1 Connect the **Spectrum Analyzer RF In** port of the JD700B series and the Power amplifier output port of BTS.

Figure 89 Direct connection

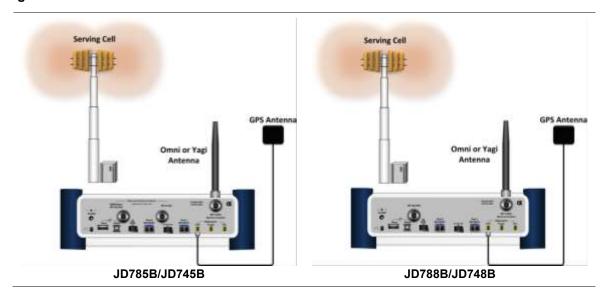


Indirect connection

Procedure

1 Connect the Spectrum Analyzer RF In port of the JD700B series and the monitor (test) port of BTS.

Figure 90 Indirect connection


CAUTION

The maximum power for the **Spectrum Analyzer RF In** port is +25 dBm (0.316 W) for JD780B series and +20 dBm (0.1 W) for JD740B series. If the level of the input signal to be measured is greater than this, use a *High Power Attenuator* to prevent damage when you directly connect the signal to the instrument or connect the signal from the coupling port of a directional coupler.

Over the air (OTA)

- 1 Connect an Omni/directional RF antenna to the Spectrum Analyzer RF In port of the JD700B series.
- **2** Connect a GPS antenna to the **GPS** port of the JD700B series.

Figure 91 OTA connection

CAUTION

If the input signal level to be measured is less than 0 dBm, set 0 dB attenuation or turn on the preamp to have better dynamic range for the OTA testing.

Selecting measurement mode

Procedure

- 1 Press the MODE hard key.
- 2 Press the Signal Analyzer soft key.
- 3 Press the LTE FDD soft key. The Spectrum mode is set by default.
- 4 Press the MEASURE hot key, and then select the measurement mode option from the following choices:

Spectrum

RF Analysis > Channel Power, Occupied BW, Spectrum Emission Mask, ACLR, Multi-ACLR, or Spurious Emissions

Power vs Time (Frame)

Modulation Analysis > Constellation, Data Channel, Control Channel, Subframe, Frame, Time Alignement Error, or Data Allocation Map

Auto Measure > Conformance Test, Maintenance Test, Signal Perfomance, or **DAS Test**

Power Statistics CCDF

More (1/2) > Carrier Aggregation

More (1/2) > OTA > Channel Scanner, ID Scanner, Multipath Profile, Control Channel, Datagram, or Route Map

More (1/2) > RAN Performance Indicator

More (1/2) > NB-IoT Modulation Analysis

NOTE

The **Carrier Aggregation** soft key is activated if the license for the option 030 LTE-Advanced FDD is installed and so does the **RAN Performance Indicator** for the option 014 LTE-FDD RAN Performance Indicator.

Configuring test parameters

Setting frequency

You can set the frequency with either frequency or channel number. If a frequency to be set matches to the frequency corresponding to the selected channel standard, the instrument calculates its channel number and updates the screen with it automatically.

Procedure

To set the center frequency:

- 1 Press the FREQ/DIST hard key.
- 2 Toggle the Unit soft key and select Freq.
- 3 Press the Center Frequency soft key.
- 4 Enter a value by using the numeric keys. You can also use the rotary knob.
- 5 Select the unit: GHz, MHz, kHz, or Hz.
- 6 Optional. To define the amount of frequency increment for the rotary knob, complete the following steps:
 - a Press the Frequency Step soft key.
 - **b** Enter a value by using the numeric keys. You can also use the rotary knob.
 - c Press the unit: GHz, MHz, kHz, or Hz.

To set the channel number:

- 1 Press the FREQ/DIST hard key.
- 2 Toggle the Unit soft key and select Channel.

NOTE

Selecting **Channel** sets the standard channel to **Band Global** automatically so that you can set the **Channel Number** without choosing a standard channel band from the list.

- 3 Press the Channel Number soft key.
- 4 Enter a value by using the numeric keys. You can also use the rotary knob.
- 5 Press the Enter soft key.

The instrument automatically displays the corresponding center frequency value for the selected channel number.

- **6** Optional. To define the amount of channel increment for the rotary knob, complete the following steps:
 - Press the Channel Step soft key.
 - **b** Enter a value by using the numeric keys. You can also use the rotary knob.
 - c Press the Enter soft key.

NOTE

This frequency setting is not used in the Multi-ACLR and Spurious Emissions modes.

Setting amplitude

Reference level and attenuation

You can set the reference and attenuation levels automatically or manually to optimize the display of the traces measured, as you desire.

Procedure

To automatically set the reference and attenuation level:

- 1 Press the AMP/SCALE hard key.
- 2 Press the Auto Scale soft key.
 Each time you press this key, both of the Y-axis scale and input attenuation level change to be

optimized with some margin.

To set the reference or attenuation level manually:

- Press the AMP/SCALE hard key.
- 2 To set the maximum reference value on the Y-axis manually, complete the following steps:
 - a Press the Reference Level soft key.
 - **b** Enter a value by using the numeric keys or the rotary knob with 10 dB increments.
 - Press the unit soft key or the ENTER hard key.

NOTE

In the measurements such as **Control Channel**, **Subframe**, and **Frame**, you can select the reference option between **Relative** and **Absolute** instead.

3 To set the attenuation option, select one from the following choices:

To set the input attenuator's level automatically, select **Attenuation > Auto**.

NOTE

It is recommended that you set the **Attenuation** to **Auto** in most situations so that the level of the input attenuator can be set automatically according to your input signal level.

To set the input attenuation manually up to 55 dB for JD780B series or 50 dB for JD740B series to optimize S/N, complete the following steps:

- a Select Attenuation > Manual.
- b Press the Attenuation Value soft key to set the level.
- c Enter a value in fives by using the numeric keys.
- d Press the dB soft key or the ENTER hard key.

To couple the input attenuator's level with your reference level setting, select **Attenuation > Couple**. As you increase the reference setting, the attenuation level also increases accordingly.

Optional. To change the scale unit:

- 1 Select More (1/2) > Units.
- 2 Select the unit of the display scale: dBm, dBV, dBmV, dBμV, V, or W. The scale unit on the screen changes accordingly.

NOTE

This Units menu is available in the Spectrum and RF Analysis modes.

Scale per division

You can use the **Scale/Div** feature available for the spectrum and RF analysis. It represents the value of one division on the horizontal scale. The default setting is 10 dB per division and the maximum value can be set up to 20 dB.

Procedure

- 1 Press the AMP/SCALE hard key.
- 2 Select More (1/2) > Scale/Div.
- 3 Enter a value between 1 and 20 by using the numeric keys.
- **4** Press the **dB** soft key to complete the entry.

Pre-amplifier

You can turn the internal pre-amplifier on to correct and compensate for the gain of the preamp so that amplitude readings show the value at the input connector.

Procedure

- 1 Press the AMP/SCALE hard key.
- 2 Toggle the **Preamp** soft key and select **On** or **Off** as needed.

NOTE

You can turn the Preamp on when the input attenuation range is from 0 dB to 10 dB. If the attenuation value is manually set to greater than 10 dB, the instrument will automatically turn off the pre-amplifier to display low-level signal properly on the chart.

External offset

You can turn the **External Offset** on and manually set the external offset value. An offset consists of a cable loss and a user offset and the measurement result shows the value reflecting both offset values. When the external offset value is set at 40 dB in the Spectrum mode, the measurement result compensates 40 dB at both the Spectrum Analyzer and Signal Analyzer modes.

Procedure

To set the external offset:

- 1 Press the AMP/SCALE hard key.
- 2 Toggle the External Offset soft key and select On.
- **3** Enter a value by using the numeric keys.
- 4 Press the **dB** soft key to complete the entry.

To turn the external offset off:

- Press the AMP/SCALE hard key.
- 2 Toggle the External Offset soft key and select Off.

Setting average

You can set the number of measurements to be averaged for the trace presentation. A maximum of 100 times of averaging can be set. When the averaging reaches to your setting, a new measurement value replaces the measurement value in sequence from the earliest.

Procedure

- 1 Press the BW/AVG hard key.
- 2 Press the Average soft key.
- 3 Enter a value between 1 and 100 as needed by using the numeric keys.
- 4 Press the Enter soft key.

Setting sweep mode

The default setting is **Continue** to sweep continuously for most on-going measurements. If you want to hold the measurement or get a single sweep, you can change the sweep mode.

Procedure

To select the single sweep mode:

- 1 Press the SWEEP hot key.
- Toggle the Sweep Mode soft key and select Single. You can also use the HOLD hot key. The letter HOLD in red appears and the sweeping is paused.

3 Optional. Press the Sweep Once soft key to get a new measurement.

To return to the continuous sweep mode:

1 Toggle the Sweep Mode soft key and select Continue. You can also use the HOLD hot key. The letter HOLD in red disappears and the sweeping resumes.

Setting trigger source

You can set the trigger source option for your measurements.

Procedure

- 1 Press the TRIGGER hot key.
- 2 Select the trigger source option from the choices: Internal, External, and GPS.

Setting external clock

To enhance the reliability of modulation analysis measurements the JD700B series must be synchronized with a base station. When an external clock is not supplied, the instrument works with its built-in internal high-accuracy time base and some measurement results may exhibit inaccurate values. Therefore, it is highly recommended that you use the same reference clock as the signal source. You can use the *TRIGGER* hot key to set the external clock.

Figure 92 Connection ports for external reference clock

- 1 Connect an external reference or a GPS antenna to the JD700B series.
- 2 Press the SYSTEM hot key.
- 3 Press the Freq Reference soft key, and then select the reference option from the choices: Internal, External 10 MHz, External 13 MHz, External 15 MHz, and GPS.

Table 12 External reference indicators

Туре	Indicator	Description
Internal	(green)	The green INT icon indicates that the instrument uses the built-in internal time base.
External	(green)	The green EXT icon indicates that an external reference is connected and locked and that the instrument uses the same reference clock as the signal source.
External	(red)	The red EXT icon indicates that an external reference is connect but not locked.

GPS	(green)	The green GPS antenna icon indicates that a GPS antenna is connected and locked.
GPS	(yellow)	The yellow GPS antenna icon indicates that a GPS antenna is connected and locking is in progress.
GPS	(grey)	The grey GPS antenna icon indicates that a GPS antenna is not connected, failed, or unable to be locked.

Conducting spectrum measurements

Setting measure setup

After configuring test parameters as described in the "Configuring test parameters" on page 197, you can continue your measurement.

Procedure

- 1 Press the *MEASURE SETUP* hot key.
- 2 Press the Bandwidth soft key.
- 3 Select the nominal channel bandwidth to be measured, from the choices: 1.4 MHz, 3 MHz, 5 MHz, 10 MHz, 15 MHz, and 20 MHz.

Your measurement result is displayed on the screen as like the following example, Figure 93.

Figure 93 Spectrum measurement screen with LTE-FDD signal analyzer

Setting trace

You can display up to six traces on the measurement chart simultaneously.

- 1 Press the TRACE/DISPLAY hard key.
- Press the Select Trace soft key, and then select the trace number: T1, T2, T3, T4, T5, or T6. The legend shape of the selected trace changes from square to round to indicate that the trace is the active one now.

3	Do one	of the	following:
J	DO OHE	OI LIIC	TOHOWITIG.

То	Select	Trace Legend
Clear current data and display with new measurements	Clear Write	W
Display the input signal's maximum response only (unlimited or for a certain amount of time)	Max Hold	M
Display the input signal's minimum response only (unlimited or for a certain amount of time)	Min Hold	m
Capture the selected trace and compare traces	Capture	С
Load a saved trace	More (1/2) > Load	L
Hide the displayed trace	Trace View > Off	F
Remove all the traces and initialize the trace settings	More (1/2) > Trace Clear All	

NOTE

For the **Max Hold** and **Min Hold**, your instrument compares newly acquired data with the active trace and displays larger maximum values or smaller minimum values on the screen. You can set it to **Unlimited** to hold and view maximum or minimum data or specify a certain amount of time up to 60 seconds by using numeric keys or rotary knob.

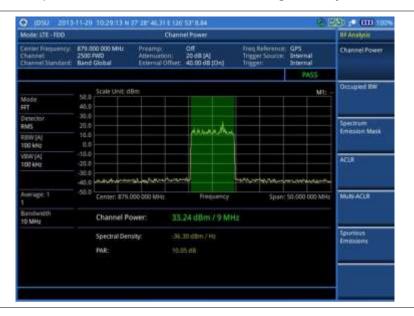
- 4 Optional. Select More (1/2) > Trace Info, and then select the trace number to view the trace's parameter setting information stored at the time of the measurement or None to hide the information display.
- Optional. If you have the two traces T1 and T2, you can perform trace math. To view the power difference between the traces, press the T1 T2 -> T5 or T2 T1 -> T6 soft key. The result is overlaid on the screen along with the second Y-axis.

Conducting RF measurements

Channel power

The Channel Power measurement is a common test used in the wireless industry to measure the total transmitted power of a radio within a defined frequency channel. It acquires a number of points representing the input signal in the time domain, transforms this information into the frequency domain using Fast Fourier Transform (FFT), and then calculates the channel power. The effective resolution bandwidth of the frequency domain trace is proportional to the number of points acquired for the FFT.

The channel power measurement identifies the total RF power and power spectral density (PSD) of the signal in the LTE channel bandwidth.


Setting measure setup

After configuring test parameters as described in the "Configuring test parameters" on page 197, you can continue your measurement.

- 1 Press the **MEASURE SETUP** hot key.
- 2 Press the Bandwidth soft key.
- 3 Select the nominal channel bandwidth to be measured, from the choices: 1.4 MHz, 3 MHz, 5 MHz, 10 MHz, 15 MHz, and 20 MHz.

Measurement example

Figure 94 Channel power measurement with LTE-FDD signal analyzer

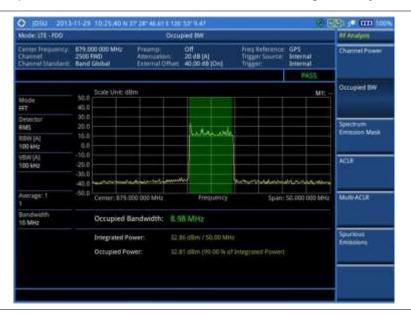
D

NOTE

You can use the *LIMIT* hot key to analyze your measurements with the user-definable limit and Pass/Fail indication. See "Setting limit for RF tests" on page 210 for more information.

Occupied bandwidth

The Occupied Bandwidth measures the spectrum shape of the carrier. It is defined as the bandwidth, which includes 99% of the transmitted power among total transmitted power.


Setting measure setup

After configuring test parameters as described in the "Configuring test parameters" on page 197, you can continue your measurement.

- 1 Press the **MEASURE SETUP** hot key.
- 2 Press the Bandwidth soft key.
- 3 Select the nominal channel bandwidth to be measured, from the choices: 1.4 MHz, 3 MHz, 5 MHz, 10 MHz, 15 MHz, and 20 MHz.

Measurement example

Figure 95 Occupied bandwidth measurement with LTE-FDD signal analyzer

NOTE

You can use the *LIMIT* hot key to analyze your measurements with the user-definable limit and Pass/Fail indication. See "Setting limit for RF tests" on page 210 for more information.

Spectrum emission mask (SEM)

The Spectrum Emission Mask (SEM) measurement required by 3GPP specifications encompasses different power limits and different measurement bandwidths (resolution bandwidths) at various frequency offsets. It may be expressed as a ratio of power spectral densities between the carrier and the specified offset frequency band. It provides useful figures-of-merit for the spectral re-growth and emissions produced by components and circuit blocks, without the rigor of performing a full SEM measurement.

The SEM measures spurious signal levels in up to five pairs of offset or region frequencies and relates them to the carrier power.

Setting measure setup

After configuring test parameters as described in the "Configuring test parameters" on page 197, you can continue your measurement.

Procedure

- 1 Press the **MEASURE SETUP** hot key.
- 2 To set the nominal channel bandwidth to be measured, complete the following steps:
 - a Press the Bandwidth soft key.
 - Select the bandwidth option from the choices: 1.4 MHz, 3 MHz, 5 MHz, 10 MHz, 15 MHz, and 20 MHz.
- **3** To select the mask type, complete the following steps:
 - Press the Mask Type soft key.
 - **b** Select the mask type option, from the following choices:

Wide Area BS Category A

Wide Area BS Category B Local Area BS Home BS

Measurement example

Figure 96 SEM measurement with LTE-FDD signal analyzer

NOTE

You can use the *LIMIT* hot key to analyze your measurements with the user-definable limit and Pass/Fail indication. See "Setting limit for RF tests" on page 210 for more information.

ACLR

The Adjacent Channel Leakage power Ratio (ACLR) measures the amount of interference or power in an adjacent frequency channel according to the standards.

Setting measure setup

After configuring test parameters as described in the "Configuring test parameters" on page 197, you can continue your measurement.

- 1 Press the **MEASURE SETUP** hot key.
- 2 Press the Bandwidth soft key.
- 3 Select the nominal channel bandwidth to be measured, from the following choices: 1.4 MHz, 3 MHz, 5 MHz, 10 MHz, 15 MHz, and 20 MHz.

Measurement example

Figure 97 ACLR measurement with LTE-FDD signal analyzer

NOTE

You can use the *LIMIT* hot key to analyze your measurements with the user-definable limit and Pass/Fail indication. See "Setting limit for RF tests" on page 210 for more information.

Multi-ACLR

The Multi-ACLR measurement is used to perform multi-channel ACLR measurements with as many channels as possible. It helps you to measure ACLR in multi-channel transmitting Base Station environment.

Setting measure setup

After configuring test parameters as described in the "Configuring test parameters" on page 197, you can continue your measurement.

Procedure

- 1 Press the **MEASURE SETUP** hot key.
- 2 To set the nominal channel bandwidth to be measured, complete the following steps:
 - Press the Bandwidth soft key.
 - b Select the bandwidth option from the choices: 1.4 MHz, 3 MHz, 5 MHz, 10 MHz, 15 MHz, and 20 MHz.
- 3 To set the frequency, do one of the following:

To set the center frequency, complete the following steps:

- a Toggle the **Unit** soft key and select **Freq**.
- **b** Press the **Lowest Frequency** soft key to set the starting center frequency.
- **c** Enter a value by using the numeric keys. You can also use the rotary knob.
- d Select the unit: GHz, MHz, kHz, or Hz.
- Press the Highest Frequency soft key to set the stopping center frequency.
- f Enter a value by using the numeric keys. You can also use the rotary knob.
- g Select the unit: GHz, MHz, kHz, or Hz.

To set the channel number, complete the following steps:

a Toggle the **Unit** soft key and select **Channel**.

NOTE

Selecting **Channel** sets the standard channel to **Band Global** automatically so that you can set the **Channel Number** without choosing a standard channel band from the list.

- **b** Press the **Lowest Channel** soft key to set the starting channel.
- **c** Enter a value by using the numeric keys. You can also use the rotary knob.
- d Press the Enter soft key.
- e Press the **Highest Channel** soft key to set the stopping channel.
- f Enter a value by using the numeric keys. You can also use the rotary knob.
- Press the Enter soft key.

Measurement example

Figure 98 Multi-ACLR measurement with LTE-FDD signal analyzer

NOTE

You can use the *LIMIT* hot key to analyze your measurements with the user-definable limit and Pass/Fail indication. See "Setting limit for RF tests" on page 210 for more information.

Spurious emissions

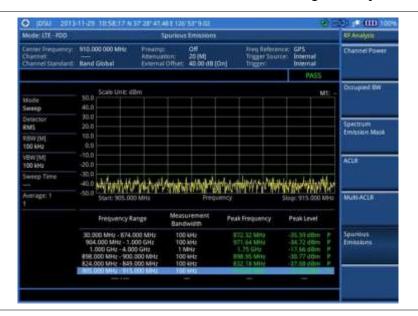
Out-of-band emissions are unwanted emissions immediately outside the channel bandwidth resulting from the modulation process and non-linearity in the transmitter but excluding spurious emissions. The Spurious Emissions measurement is to identify and determine the power level of out-of-band spurious emission within the necessary channel bandwidth and modulated signal measured at the RF port of the Base Station.

Setting measure setup

After configuring test parameters as described in the "Configuring test parameters" on page 197, you can continue your measurement.

- 1 Press the **MEASURE SETUP** hot key.
- 2 To set up the range table and parameters, press the Range Table soft key and then complete the following steps:

- a Press the Range soft key, and then select the range number between 1 and 20 to add as a new or change the existing settings.
- **b** Do the following as desired:
 - Select **Start Frequency**, and then specify the start frequency for the selected range.
 - Select **Stop Frequency**, and then specify the stop frequency for the selected range.
 - Select **Start Limit**, and then specify the lower limit for Pass/Fail indication.
 - Select Stop Limit, and then specify the upper limit for Pass/Fail indication.
 - Select More (1/2) > Attenuation, and then specify an value in the multiple of five.
 - Select More (1/2) > RBW, and then specify a RBW value.
 - Select More (1/2) > VBW, and then specify a VBW value.
- Press the PREV hard key.
- d Toggle the Range soft key and select On to display the selected range in the result table or Off to hide it from the table.
- 3 Toggle the Measure Type soft key between Examine and Full to select the measurement type.


NOTE

The **Examine** mode displays only the selected range while the **Full** mode lets the instrument automatically changes the selected range from one another.

- **4** To set the number of measurements to be averaged, complete the following steps:
 - Press the Average soft key.
 - **b** Enter a value between **1** and **100**, and then press the **Enter** soft key.
- 5 To move the highlighted bar in the result table to other range, complete the following steps:
 - Press the Range soft key in the Measure Setup menu bar.
 - **b** Enter a value between 1 and 20, and then press the Enter soft key.

Measurement example

Figure 99 Spurious emissions measurement with LTE-FDD signal analyzer

NOTE

You can use the *LIMIT* hot key to analyze your measurements with the user-definable limit and Pass/Fail indication. See "Setting limit for RF tests" on page 210 for more information.

Setting limit for RF tests

By default, test limits specified in the standard are set for you. You can change thresholds if you desire.

Procedure

- 1 Press the LIMIT hot key.
- 2 Press the RF Test Limits soft key.
- 3 Select the test item(s) and set the limit(s) depending on your selected measurement mode:

To set the limit for	Select	Set
Channel power	Channel Power	High Limit Low Limit
Occupied bandwidth	Occupied BW	High Limit
Spectrum emission mask	Spectrum Emission Mask	(On/Off only)
ACLR	ACLR	(On/Off only)
Multi-ACLR	Multi-ACLR	(On/Off only)
Spurious emissions	Spurious Emissions	(On/Off only)

- 4 Optional. You can enable alarm sound that goes off if the measurement falls outside of the limit. Toggle the Beep soft key between On and Off to enable or disable the beep sound.
- 5 Optional. Go to SAVE/LOAD > Save, and then select Limit to save the limit settings. See "Using save" on page 34 for more information.

Conducting power vs. time (frame) measurements

The Power vs. Time (Frame) measures the modulation envelope in the time domain, showing the power of each time slot in an LTE signal.

Setting measure setup

After configuring test parameters as described in the "Configuring test parameters" on page 197, you can continue your measurement. The measurement settings can be saved and recalled as a file.

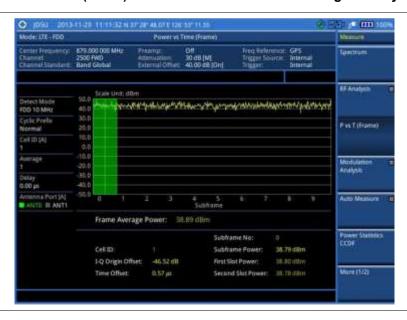
Procedure

- 1 Press the **MEASURE SETUP** hot key.
- 2 To set the nominal channel bandwidth to be measured, complete the following steps:
 - Press the Bandwidth soft key.
 - Select the bandwidth option from the choices: 1.4 MHz, 3 MHz, 5 MHz, 10 MHz, 15 MHz, and 20 MHz.
- 3 To select the subframe number to be measured, complete the following steps:
 - a Press the Subframe No soft key.
 - **b** Enter a value by using the numeric keys. You can also use the rotary knob.
 - c Press the Enter soft key.
- 4 Toggle the **Cell ID** soft key and select **Auto** or **Manual** as desired:

Auto: Lets the instrument detect the Cell ID for the LTE signal automatically.

Manual: Sets a specific Cell ID for the LTE signal manually in order to speed up the synchronization with a BTS.

5 Optional. Press the Miscellaneous soft key, and then do the following as needed:


To select the number of antenna ports, toggle the **MIMO** soft key and select **2x2** or **4x4**. This MIMO (Multiple Input Multiple Output) setting is activated only if the option 030 LTE-Advanced FDD is installed with a license number. If not, the instrument sets this option to 2x2 by default. A 2x1 or 4x1 RF combiner is also required to able to test on MIMO channels.

To assign a antenna port number automatically or manually, press the **Antenna Port** soft key and select the option: **Auto**, **0**, **1**, **2**, and **3**. If the option 030 LTE-Advanced FDD is not installed or if the MIMO is set to 2x2, the antenna ports 2 and 3 are disabled.

To select the cyclic prefix, toggle the **Cyclic Prefix** soft key and select **Normal** or **Extended**. See "Appendix E – Cyclic prefix table" on page 749 for OFDM parameter details by different bandwidth.

Measurement example

Figure 100 Power vs. time (frame) measurement with LTE - FDD signal analyzer

Conducting modulation measurements

Constellation

The Constellation is used to observe some aspects of modulation accuracy and can reveal certain fault mechanisms such as I/Q amplitude imbalance or quadrature imbalance. It displays constellation diagram by modulation types.

Setting measure setup

After configuring test parameters as described in the "Configuring test parameters" on page 197, you can continue your measurement. The measurement settings can be saved and recalled as a file.

- 1 Press the **MEASURE SETUP** hot key.
- 2 To set the nominal channel bandwidth to be measured, complete the following steps:

- a Press the Bandwidth soft key.
- b Select the bandwidth option from the choices: 1.4 MHz, 3 MHz, 5 MHz, 10 MHz, 15 MHz, and 20 MHz.
- 3 To select the subframe number to be measured, complete the following steps:
 - Press the Subframe No soft key.
 - Enter a value by using the numeric keys. You can also use the rotary knob.

NOTE

For MBMS testing, this subframe number must be neither 0 nor 5 as these subframes 0 and 5 are not available for MBMS and it must be set to the MBMS transmitted channel's subframe number.

- c Press the Enter soft key.
- 4 Optional. Toggle the Cell ID soft key and select Auto or Manual as desired:

Auto: Lets the instrument detect the Cell ID for the LTE signal automatically.

Manual: Sets a specific Cell ID for the LTE signal manually in order to speed up the synchronization with a BTS.

5 Optional. Toggle the CFI soft key and select Auto or Manual as desired:

Auto: Lets the instrument set the number of OFDM symbols used for transmitting PDCCHs in a subframe.

Manual: Sets the number of OFDM symbols manually. The set of OFDM symbols that can be used for PDCCH in a subframe is given by **0**, **2**, **3** or **4** in 1.4 MHz bandwidth and **1**, **2**, or **3** in other bandwidths.

- 6 Optional. Press the PHICH Ng soft key, and then select the option for the number of PHICH groups (Ng): 1/6, 1/2, 1, 2, E-1/6, E-1/2, E-1, or E-2.
- 7 Optional. Press the Miscellaneous soft key, and then do the following as needed:

To select the number of antenna ports, toggle the **MIMO** soft key and select **2x2** or **4x4**. This MIMO (Multiple Input Multiple Output) setting is activated only if the option 030 LTE-Advanced FDD is installed with a license number. If not, the instrument sets this option to 2x2 by default. A 2x1 or 4x1 RF combiner is also required to able to test on MIMO channels.

To assign a antenna port number automatically or manually, press the **Antenna Port** soft key and select the option: **Auto**, **0**, **1**, **2**, and **3**. If the option 030 LTE-Advanced FDD is not installed or if the MIMO is set to 2x2, the antenna ports 2 and 3 are disabled.

To turn the Multimedia Broadcast Multicast Service (MBMS) feature on or off, toggle the **MBMS** soft key and select **On** or **Off**. For proper MBMS testing, you need to set the **Subframe No** with the same PMCH subframe number. If this setting is on, either PMCH or PDSCH appears on the screen depending on the detected channel.

To set the Multicast Broadcast Single Frequency Network (MBSFN) detection automatically or manually for MBMS testing, toggle the **MBSFN** soft key and select **Auto** or **Manual**. An automatically detected or manually entered MBSFN ID appears on the screen.

To select the cyclic prefix, toggle the **Cyclic Prefix** soft key and select **Normal** or **Extended**. See "Appendix E – Cyclic prefix table" on page 749 for OFDM parameter details by different bandwidth.

Press the **PDSCH Modulation Type** soft key, and then select the modulation type option: **Auto**, **QPSK**, **16 QAM**, **64 QAM**, **E-TM3.3**, **E-TM3.2**, **E-TM3.1**, **E-TM2**, **E-TM1.2**, and **E-TM1.1**. If two or more modulation types are used in a frame, select **Auto**. If the PDSCH uses the same modulation type in a frame or in a subframe, select a specific modulation type to get more accurate EVM.

NOTE

If you have installed a license for the option **032 LTE-FDD 256 QAM Demodulator** on your CellAdvisor, you will have additional PDSCH modulation types of **256 QAM**, **E-TM3.1a**, and **E-TM2a**.

To set the threshold for PDSCH, complete the following steps:

- a Press the PDSCH Threshold soft key.
- **b** Enter a value by using the numeric keys.
- c Press the dB soft key.

Toggle the **PDSCH Precoding** soft key between **On** and **Off** to enable or disable the PDSCH precoding.

Measurement example

Figure 101 Constellation measurement with LTE-FDD signal analyzer

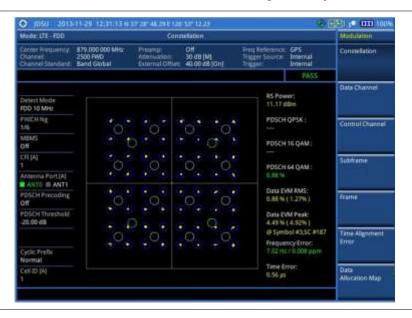


Figure 102 Constellation measurement with LTE-FDD signal analyzer (MBMS On)

NOTE

You can use the *LIMIT* hot key to analyze your measurements with the user-definable limit and Pass/Fail indication. See "Setting limit for modulation tests" on page 229 for more information.

Data channel

The Data Channel measures the constellation for the specified resource block as well as the modulation accuracy of each PDSCH at the specified subframe.

Setting measure setup

After configuring test parameters as described in the "Configuring test parameters" on page 197, you can continue your measurement. The measurement settings can be saved and recalled as a file.

Procedure

- 1 Press the **MEASURE SETUP** hot key.
- 2 To set the nominal channel bandwidth to be measured, complete the following steps:
 - a Press the Bandwidth soft key.
 - b Select the bandwidth option from the choices: 1.4 MHz, 3 MHz, 5 MHz, 10 MHz, 15 MHz, or 20 MHz.
- 3 To select the subframe number to be measured, complete the following steps:
 - Press the Subframe No soft key.
 - **b** Enter a value by using the numeric keys. You can also use the rotary knob.

NOTE

For MBMS testing, this subframe number must be neither 0 nor 5 as these subframes 0 and 5 are not available for MBMS and it must be set to the MBMS transmitted channel's subframe number.

- c Press the Enter soft key.
- 4 Optional. Toggle the Cell ID soft key and select Auto or Manual as desired:

Auto: Lets the instrument detect the Cell ID for the LTE signal automatically.

Manual: Sets a specific Cell ID for the LTE signal manually in order to speed up the synchronization with a BTS.

5 Optional. Toggle the **CFI** soft key and select **Auto** or **Manual** as desired:

Auto: Lets the instrument set the number of OFDM symbols used for transmitting PDCCHs in a subframe.

Manual: Sets the number of OFDM symbols manually. The set of OFDM symbols that can be used for PDCCH in a subframe is given by **0**, **2**, **3** or **4** in 1.4 MHz bandwidth and **1**, **2**, or **3** in other bandwidths.

- 6 Optional. Press the PHICH Ng soft key, and then select the option for the number of PHICH groups (Ng): 1/6, 1/2, 1, 2, E-1/6, E-1/2, E-1, or E-2.
- 7 Toggle the Event Hold soft key between On and Off to enable or disable the event hold feature. When enabled, the display line for the PDSCH threshold appears. When an event occurs, the measurement is put on hold until you press the HOLD hot key.
- 8 Optional. Press the **Miscellaneous** soft key, and then do the following as needed:

To select the number of antenna ports, toggle the **MIMO** soft key and select **2x2** or **4x4**. This MIMO (Multiple Input Multiple Output) setting is activated only if the option 030 LTE-Advanced FDD is installed with a license number. If not, the instrument sets this option to 2x2 by default. A 2x1 or 4x1 RF combiner is also required to able to test on MIMO channels.

To assign a antenna port number automatically or manually, press the **Antenna Port** soft key and select the option: **Auto**, **0**, **1**, **2**, and **3**. If the option 030 LTE-Advanced FDD is not installed or if the MIMO is set to 2x2, the antenna ports 2 and 3 are disabled.

To turn the Multimedia Broadcast Multicast Service (MBMS) feature on or off, toggle the **MBMS** soft key and select **On** or **Off**. For proper MBMS testing, you need to set the **Subframe No** with the same PMCH subframe number. If this setting is on, either PMCH or PDSCH appears on the screen depending on the detected channel.

To set the Multicast Broadcast Single Frequency Network (MBSFN) detection automatically or manually for MBMS testing, toggle the **MBSFN** soft key and select **Auto** or **Manual**. An automatically detected or manually entered MBSFN ID appears on the screen.

To select the cyclic prefix, toggle the **Cyclic Prefix** soft key and select **Normal** or **Extended**. See "Appendix E – Cyclic prefix table" on page 749 for OFDM parameter details by different bandwidth.

Press the $\mbox{\bf PDSCH}$ $\mbox{\bf Modulation}$ $\mbox{\bf Type}$ soft key, and then select the modulation type option:

Auto, QPSK, 16 QAM, 64 QAM, E-TM3.3, E-TM3.2, E-TM3.1, E-TM2, E-TM1.2, and E-TM1.1. If two or more modulation types are used in a frame, select **Auto**. If the PDSCH uses the same modulation type in a frame or in a subframe, select a specific modulation type to get more accurate EVM.

NOTE

If you have installed a license for the option **032 LTE-FDD 256 QAM Demodulator** on your CellAdvisor, you will have additional PDSCH modulation types of **256 QAM**, **E-TM3.1a**, and **E-TM2a**.

To set the threshold for PDSCH, complete the following steps:

- a Press the PDSCH Threshold soft key.
- **b** Enter a value by using the numeric keys, and then press the **dB** soft key. Toggle the **PDSCH Precoding** soft key between **On** and **Off** to enable or disable the PDSCH precoding.

Setting display

You can use the TRACE/DISPLAY hard key to change the display mode to NB-IoT.

Procedure

- 1 Press the TRACE/DISPLAY hard key.
- 2 Toggle the **NB-IoT** soft key between **On** and **Off** to display or dismiss the result of the selected resource block. If this setting is on, the **MARKER** hard key is activated.
- 3 To adjust the NB-IoT PBR Index, press the NB-IoT PBR Index soft key, and then turn the rotary knob clockwise or counter clockwise.

Measurement example

Figure 103 Data channel measurement with LTE-FDD signal analyzer

Figure 104 Data channel measurement with LTE-FDD signal analyzer (MBMS On)

D

NOTE

You can use the *LIMIT* hot key to analyze your measurements with the user-definable limit and Pass/Fail indication. See "Setting limit for modulation tests" on page 229 for more information.

Figure 105 Data channel measurement with LTE-FDD signal analyzer (NB-IoT On)

NOTE

You can see the resource block displayed in red, and if the value of Marker and NB-IoT PRB Index are same, only RB Power is displayed.

Using marker

You can use the **MARKER** hard key to place a marker on a resource block and display the IQ diagram for the selected resource block.

Procedure

- 1 Press the MARKER hard key.
- 2 Press the RB Number soft key to select the resource block to be marked.
- 3 Enter the resource block number by using the numeric keys.
- 4 Press the Enter soft key. The marker appears on the selected resource block.
- 5 Toggle the Marker View soft key between On and Off to display or dismiss the result of the selected resource block.

Control channel

The Control Channel measures the constellation for the specified control channel as well as modulation accuracy of the control channel at the specified subframe.

Setting measure setup

After configuring test parameters as described in the "Configuring test parameters" on page 197, you can continue your measurement. The measurement settings can be saved and recalled as a file.

Procedure

- 1 Press the **MEASURE SETUP** hot key.
- 2 To set the nominal channel bandwidth to be measured, complete the following steps:
 - a Press the Bandwidth soft key.
 - Select the bandwidth option from the choices: 1.4 MHz, 3 MHz, 5 MHz, 10 MHz, 15 MHz, or 20 MHz.
- 3 To select the subframe number to be measured, complete the following steps:
 - a Press the Subframe No soft key.
 - Enter a value by using the numeric keys. You can also use the rotary knob.

NOTE

For MBMS testing, this subframe number must be neither 0 nor 5 as these subframes 0 and 5 are not available for MBMS and it must be set to the MBMS transmitted channel's subframe number.

- c Press the Enter soft key.
- Optional. Toggle the Cell ID soft key and select Auto or Manual as desired:

Auto: Lets the instrument detect the Cell ID for the LTE signal automatically.

Manual: Sets a specific Cell ID for the LTE signal manually in order to speed up the synchronization with a BTS.

5 Optional. Toggle the CFI soft key and select Auto or Manual as desired:

Auto: Lets the instrument set the number of OFDM symbols used for transmitting PDCCHs in a subframe.

Manual: Sets the number of OFDM symbols manually. The set of OFDM symbols that can be used for PDCCH in a subframe is given by **0**, **2**, **3** or **4** in 1.4 MHz bandwidth and **1**, **2**, or **3** in other bandwidths.

- 6 Optional. Press the PHICH Ng soft key, and then select the option for the number of PHICH groups (Ng): 1/6, 1/2, 1, 2, E-1/6, E-1/2, E-1, or E-2.
- 7 Toggle the EVM Detection Mode soft key and select Single or Combine as desired:

Single: Testing on one single antenna connected to your JD700B series with a cable.

Combine: Testing on multiple antennas connected to your JD700B series with a 2x1 or 4x1 combiner or an antenna.

8 Optional. Press the Miscellaneous soft key, and then do the following as needed:

To select the number of antenna ports, toggle the MIMO soft key and select 2x2 or 4x4.

This MIMO (Multiple Input Multiple Output) setting is activated only if the option 030 LTE-Advanced FDD is installed with a license number. If not, the instrument sets this option to 2x2 by default. A 2x1 or 4x1 RF combiner is also required to able to test on MIMO channels.

To assign a antenna port number automatically or manually, press the **Antenna Port** soft key and select the option: **Auto**, **0**, **1**, **2**, and **3**. If the option 030 LTE-Advanced FDD is not installed or if the MIMO is set to 2x2, the antenna ports 2 and 3 are disabled.

To turn the Multimedia Broadcast Multicast Service (MBMS) feature on or off, toggle the **MBMS** soft key and select **On** or **Off**. For proper MBMS testing, you need to set the **Subframe No** with the same PMCH subframe number. If this setting is on, the measurement item "MBSFN RS" appears in the result table.

To set the Multicast Broadcast Single Frequency Network (MBSFN) detection automatically or manually for MBMS testing, toggle the **MBSFN** soft key and select **Auto** or **Manual**. An automatically detected or manually entered MBSFN ID appears on the screen.

To select the cyclic prefix, toggle the **Cyclic Prefix** soft key and select **Normal** or **Extended**. See "Appendix E – Cyclic prefix table" on page 749 for OFDM parameter details by different bandwidth.

To set the threshold for PDCCH, complete the following steps:

- Press the PDCCH Threshold soft key.
- **b** Enter a value by using the numeric keys.
- c Press the dB soft key.

Toggle the **PDCCH Mode** soft key and select **REG** to calculate EVM based on Resource Element Group or **Avg** to calculate EVM after adding all the PDCCH signals from one subframe.

Figure 106 Control channel measurement with LTE-FDD signal analyzer

Figure 107 Control channel measurement with LTE-FDD signal analyzer (MBMS On)

NOTE

You can use the *LIMIT* hot key to analyze your measurements with the user-definable limit and Pass/Fail indication. See "Setting limit for modulation tests" on page 229 for more information.

Using marker

You can use the **MARKER** hard key to place a marker on a control channel and display the IQ diagram for the selected channel.

Procedure

- 1 Press the MARKER hard key.
- Press the Channel soft key to select the channel to be displayed in the IQ diagram. The channel P-SS is selected by default.
- 3 Turn the rotary knob to move the highlight from one to another in the channel summary table.
- 4 Toggle the Marker View soft key between On and Off to display or hide the result of the selected channel.

Subframe

The Subframe measures the modulation accuracy of all the data and control channels at the specified subframe (1 ms).

Setting measure setup

After configuring test parameters as described in the "Configuring test parameters" on page 197, you can continue your measurement. The measurement settings can be saved and recalled as a file.

- 1 Press the **MEASURE SETUP** hot key.
- 2 To set the nominal channel bandwidth to be measured, complete the following steps:
 - a Press the Bandwidth soft key.
 - Select the bandwidth option from the choices: 1.4 MHz, 3 MHz, 5 MHz, 10 MHz, 15 MHz,

and 20 MHz.

- 3 To select the subframe number to be measured, complete the following steps:
 - Press the Subframe No soft key.
 - **b** Enter a value by using the numeric keys. You can also use the rotary knob.

NOTE

For MBMS testing, this subframe number must be neither 0 nor 5 as these subframes 0 and 5 are not available for MBMS and it must be set to the MBMS transmitted channel's subframe number.

- Press the Enter soft key.
- 4 Optional. Toggle the Cell ID soft key and select Auto or Manual as desired:

Auto: Lets the instrument detect the Cell ID for the LTE signal automatically. **Manual:** Sets a specific Cell ID for the LTE signal manually in order to speed up the synchronization with a BTS.

5 Optional. Toggle the CFI soft key and select Auto or Manual as desired:

Auto: Lets the instrument set the number of OFDM symbols used for transmitting PDCCHs in a subframe.

Manual: Sets the number of OFDM symbols manually. The set of OFDM symbols that can be used for PDCCH in a subframe is given by **0**, **2**, **3** or **4** in 1.4 MHz bandwidth and **1**, **2**, or **3** in other bandwidths.

- 6 Optional. Press the **PHICH Ng** soft key, and then select the option for the number of PHICH groups (Ng): 1/6, 1/2, 1, 2, E-1/6, E-1/2, E-1, or E-2.
- 7 Toggle the **EVM Detection Mode** soft key and select **Single** or **Combine** as desired:

Single: Testing on one single antenna connected to your JD700B series with a cable. **Combine:** Testing on multiple antennas connected to your JD700B series with a 2x1 or 4x1 combiner or an antenna.

8 Optional. Press the Miscellaneous soft key, and then do the following as needed:

To select the number of antenna ports, toggle the **MIMO** soft key and select **2x2** or **4x4**. This MIMO (Multiple Input Multiple Output) setting is activated only if the option 030 LTE-Advanced FDD is installed with a license number. If not, the instrument sets this option to 2x2 by default. A 2x1 or 4x1 RF combiner is also required to able to test on MIMO channels.

To assign a antenna port number automatically or manually, press the **Antenna Port** soft key and select the option: **Auto**, **0**, **1**, **2**, and **3**. If the option 030 LTE-Advanced FDD is not installed or if the MIMO is set to 2x2, the antenna ports 2 and 3 are disabled.

To turn the Multimedia Broadcast Multicast Service (MBMS) feature on or off, toggle the **MBMS** soft key and select **On** or **Off**. For proper MBMS testing, you need to set the **Subframe No** with the same PMCH subframe number. If this setting is on, the measurement item "MBSFN RS" appears in the result table and either PMCH or PDSCH appears as well depending on the detected channel.

To set the Multicast Broadcast Single Frequency Network (MBSFN) detection automatically or manually for MBMS testing, toggle the **MBSFN** soft key and select **Auto** or **Manual**. An automatically detected or manually entered MBSFN ID appears on the screen.

To select the cyclic prefix, toggle the **Cyclic Prefix** soft key and select **Normal** or **Extended**. See "Appendix E – Cyclic prefix table" on page 749 for OFDM parameter details by different bandwidth.

Press the **PDSCH Modulation Type** soft key, and then select the modulation type option: **Auto**, **QPSK**, **16 QAM**, **64 QAM**, **E-TM3.3**, **E-TM3.2**, **E-TM3.1**, **E-TM2**, **E-TM1.2**, and **E-TM1.1**. If two or more modulation types are used in a frame, select **Auto**. If the PDSCH uses the same modulation type in a frame or in a subframe, select a specific modulation type to get more accurate EVM.

NOTE

If you have installed a license for the option **032 LTE-FDD 256 QAM Demodulator** on your CellAdvisor, you will have additional PDSCH modulation types of **256 QAM**, **E-TM3.1a**, and **E-TM2a**.

To set the threshold for PDSCH, complete the following steps:

Press the PDSCH Threshold soft key.

- **b** Enter a value by using the numeric keys, and then press the **dB** soft key. To set the threshold for PDCCH, complete the following steps:
- a Press the PDCCH Threshold soft key.
- **b** Enter a value by using the numeric keys, and then press the **dB** soft key.

Toggle the **PDCCH Mode** soft key and select **REG** to calculate EVM based on Resource Element Group or **Avg** to calculate EVM after adding all PDCCH signals from one subframe.

Toggle the **PDSCH Precoding** soft key between **On** and **Off** to enable or disable the PDSCH precoding.

Figure 108 Subframe measurement with LTE-FDD signal analyzer

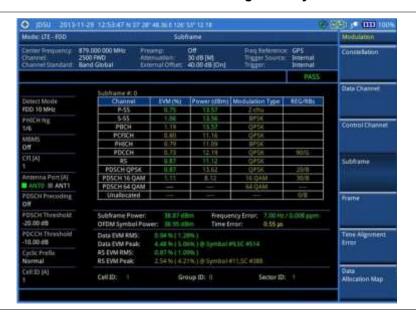


Figure 109 Subframe measurement with LTE-FDD signal analyzer (Chart On)

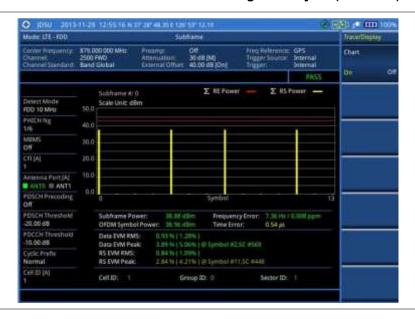
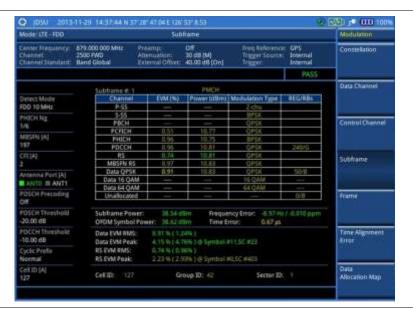



Figure 110 Subframe measurement with LTE-FDD signal analyzer (MBMS On)

NOTE

You can use the *LIMIT* hot key to analyze your measurements with the user-definable limit and Pass/Fail indication. See "Setting limit for modulation tests" on page 229 for more information.

Setting display

You can use the TRACE/DISPLAY hard key to view the RE and RS power at the symbol.

Procedure

- 1 Press the TRACE/DISPLAY hard key.
- 2 Toggle the Chart soft key between On and Off to display or dismiss the chart. If this setting is on, the MARKER hard key is activated.

Using marker

If you turn the Chart view on, you can use the **MARKER** hard key to place the marker at a specific symbol.

Procedure

- 1 Press the MARKER hard key.
- 2 Toggle the Marker View soft key between On and Off to display or dismiss the marker on the chart.
- **3** Press the **Symbol** soft key to select the symbol number, to which the marker is placed.
- 4 Enter a value by using the numeric keys.
- 5 Press the Enter soft key.

Frame

The Frame measures the modulation accuracy of all the data and control channels at the frame (10 ms).

Setting measure setup

After configuring test parameters as described in the "Configuring test parameters" on page 197, you can continue your measurement. The measurement settings can be saved and recalled as a file.

Procedure

- 1 Press the **MEASURE SETUP** hot key.
- 2 To set the nominal channel bandwidth to be measured, complete the following steps:
 - a Press the Bandwidth soft key.
 - b Select the bandwidth option from the choices: 1.4 MHz, 3 MHz, 5 MHz, 10 MHz, 15 MHz, and 20 MHz.
- 3 Optional. Toggle the Cell ID soft key and select Auto or Manual as desired:

Auto: Lets the instrument detect the Cell ID for the LTE signal automatically.

Manual: Sets a specific Cell ID for the LTE signal manually in order to speed up the synchronization with a BTS.

4 Optional. Toggle the CFI soft key and select Auto or Manual as desired:

Auto: Lets the instrument set the number of OFDM symbols used for transmitting PDCCHs in a subframe

Manual: Sets the number of OFDM symbols manually. The set of OFDM symbols that can be used for PDCCH in a subframe is given by **0**, **2**, **3** or **4** in 1.4 MHz bandwidth and **1**, **2**, or **3** in other bandwidths.

- 5 Optional. Press the PHICH Ng soft key, and then select the option for the number of PHICH groups (Ng): 1/6, 1/2, 1, 2, E-1/6, E-1/2, E-1, or E-2.
- 6 Toggle the EVM Detection Mode soft key and select Single or Combine as desired:

Single: Testing on one single antenna connected to your JD700B series with a cable.

Combine: Testing on multiple antennas connected to your JD700B series with a 2x1 or 4x1 combiner or an antenna.

7 Optional. Press the Miscellaneous soft key, and then do the following as needed:

To select the number of antenna ports, toggle the **MIMO** soft key and select **2x2** or **4x4**. This MIMO (Multiple Input Multiple Output) setting is activated only if the option 030 LTE-Advanced FDD is installed with a license number. If not, the instrument sets this option to 2x2 by default. A 2x1 or 4x1 RF combiner is also required to able to test on MIMO channels.

To assign a antenna port number automatically or manually, press the **Antenna Port** soft key and select the option: **Auto**, **0**, **1**, **2**, and **3**. If the option 030 LTE-Advanced FDD is not installed or if the MIMO is set to 2x2, the antenna ports 2 and 3 are disabled.

To turn the Multimedia Broadcast Multicast Service (MBMS) feature on or off, toggle the **MBMS** soft key and select **On** or **Off**. If this setting is on, the measurement items MBSFN RS, PMCH QPSK, PMCH 16 QAM, and PMCH 64 QAM appear in the result table.

To set the Multicast Broadcast Single Frequency Network (MBSFN) detection automatically or manually for MBMS testing, toggle the **MBSFN** soft key and select **Auto** or **Manual**. An automatically detected or manually entered MBSFN ID appears on the screen.

To select the cyclic prefix, toggle the **Cyclic Prefix** soft key and select **Normal** or **Extended**. See "Appendix E – Cyclic prefix table" on page 749 for OFDM parameter details by different bandwidth.

Press the **PDSCH Modulation Type** soft key, and then select the modulation type option: **Auto**, **QPSK**, **16 QAM**, **64 QAM**, **E-TM3.3**, **E-TM3.2**, **E-TM3.1**, **E-TM2**, **E-TM1.2**, and **E-TM1.1**. If two or more modulation types are used in a frame, select **Auto**. If the PDSCH uses the same modulation type in a frame or in a subframe, select a specific modulation type to get more accurate EVM.

NOTE

If you have installed a license for the option **032 LTE-FDD 256 QAM Demodulator** on your CellAdvisor, you will have additional PDSCH modulation types of **256 QAM**, **E-TM3.1a**, and **E-TM2a**.

To set the threshold for PDSCH, complete the following steps:

- a Press the PDSCH Threshold soft key.
- **b** Enter a value by using the numeric keys.
- c Press the dB soft key.

To set the threshold for PDCCH, complete the following steps:

- a Press the PDCCH Threshold soft key.
- **b** Enter a value by using the numeric keys.
- c Press the dB soft key.

Toggle the **PDCCH Mode** soft key and select **REG** to calculate EVM based on Resource Element Group or **Avg** to calculate EVM after adding up all the PDCCH signals from one subframe.

Toggle the **PDSCH Precoding** soft key between **On** and **Off** to enable or disable the PDSCH precoding.

Figure 111 Frame measurement with LTE-FDD signal analyzer



Figure 112 Frame measurement with LTE-FDD signal analyzer (MBMS On)

NOTE

You can use the *LIMIT* hot key to analyze your measurements with the user-definable limit and Pass/Fail indication. See "Setting limit for modulation tests" on page 229 for more information.

Time alignment error

In eNode-B supporting Tx Diversity transmission, signals are transmitted from two or more antennas. These signals shall be aligned. The time alignment error in Tx diversity is specified as the delay between the signals from two antennas at the antenna ports.

Setting measure setup

After configuring test parameters as described in the "Configuring test parameters" on page 197, you can continue your measurement. The measurement settings can be saved and recalled as a file.

Procedure

- 1 Press the MEASURE SETUP hot key.
- 2 To set the nominal channel bandwidth to be measured, complete the following steps:
 - Press the Bandwidth soft key.
 - b Select the bandwidth option from the choices: 1.4 MHz, 3 MHz, 5 MHz, 10 MHz, 15 MHz, and 20 MHz.
- 3 Optional. Toggle the Cell ID soft key and select Auto or Manual as desired:

Auto: Lets the instrument detect the Cell ID for the LTE signal automatically.

Manual: Sets a specific Cell ID for the LTE signal manually in order to speed up the synchronization with a BTS.

4 Optional. Press the Miscellaneous soft key, and then do the following as needed:

To select the number of antenna ports, toggle the **MIMO** soft key and select **2x2** or **4x4**. This MIMO (Multiple Input Multiple Output) setting is activated only if the option 030 LTE-Advanced FDD is installed with a license number. If not, the instrument sets this option to 2x2 by default. A 2x1 or 4x1 RF combiner is also required to able to test on MIMO channels.

To assign a antenna port number automatically or manually, press the **Antenna Port** soft key and select the option: **Auto**, **0**, **1**, **2**, and **3**. If the option 030 LTE-Advanced FDD is not

installed or if the MIMO is set to 2x2, the antenna ports 2 and 3 are disabled.

To select the cyclic prefix, toggle the **Cyclic Prefix** soft key and select **Normal** or **Extended**. See "Appendix E – Cyclic prefix table" on page 749 for OFDM parameter details by different bandwidth.

Measurement example

Figure 113 Time alignment error measurement with LTE-FDD signal analyzer

NOTE

You can use the *LIMIT* hot key to analyze your measurements with the user-definable limit and Pass/Fail indication. See "Setting limit for modulation tests" on page 229 for more information.

Data allocation map

The Data Allocation Map function represents data allocation as a frame.

Setting measure setup

After configuring test parameters as described in the "Configuring test parameters" on page 197, you can continue your measurement. The measurement settings can be saved and recalled as a file. You can also use JDViewer, PC application software to configure a measure setup, save as a file, and load the file on to the instrument.

- 1 Press the MEASURE SETUP hot key.
- 2 To set the nominal channel bandwidth to be measured, complete the following steps:
 - a Press the Bandwidth soft key.
 - b Select the bandwidth option from the choices: 1.4 MHz, 3 MHz, 5 MHz, 10 MHz, 15 MHz, and 20 MHz.
- **3** To select the subframe number to be measured, complete the following steps:
 - Press the Subframe No soft key.
 - **b** Enter a value by using the numeric keys. You can also use the rotary knob.

NOTE

For MBMS testing, this subframe number must be neither 0 nor 5 as these subframes 0 and 5 are not available for MBMS and it must be set to the MBMS transmitted channel's subframe number.

- c Press the Enter soft key.
- **4** To set the threshold for PDSCH, complete the following steps:
 - a Press the PDSCH Threshold soft key.
 - b Enter a value by using the numeric keys.
 - c Press the dB soft key.
- 5 Optional. Toggle the Cell ID soft key and select Auto or Manual as desired:

Auto: Lets the instrument detect the Cell ID for the LTE signal automatically.

Manual: Sets a specific Cell ID for the LTE signal manually in order to speed up the synchronization with a BTS.

6 Optional. Press the **Miscellaneous** soft key, and then do the following as needed:

To select the number of antenna ports, toggle the **MIMO** soft key and select **2x2** or **4x4**. This MIMO (Multiple Input Multiple Output) setting is activated only if the option 030 LTE-Advanced FDD is installed with a license number. If not, the instrument sets this option to 2x2 by default. A 2x1 or 4x1 RF combiner is also required to able to test on MIMO channels.

To assign a antenna port number automatically or manually, press the **Antenna Port** soft key and select the option: **Auto**, **0**, **1**, **2**, and **3**. If the option 030 LTE-Advanced FDD is not installed or if the MIMO is set to 2x2, the antenna ports 2 and 3 are disabled.

To turn the Multimedia Broadcast Multicast Service (MBMS) feature on or off, toggle the **MBMS** soft key and select **On** or **Off**. For proper MBMS testing, you need to set the **Subframe No** with the same PMCH subframe number. If this setting is on, either PMCH or PDSCH appears on the screen depending on the detected channel.

To set the Multicast Broadcast Single Frequency Network (MBSFN) detection automatically or manually for MBMS testing, toggle the **MBSFN** soft key and select **Auto** or **Manual**. An automatically detected or manually entered MBSFN ID appears on the screen.

To select the cyclic prefix, toggle the **Cyclic Prefix** soft key and select **Normal** or **Extended**. See "Appendix E – Cyclic prefix table" on page 749 for OFDM parameter details by different bandwidth.

Setting display

You can use the TRACE/DISPLAY hard key to change the display mode to Display Channel and NB-IoT.

- 1 Press the TRACE/DISPLAY hard key.
- 2 Press the Display Channel soft key.
- 3 Select the display mode from the choice: PDSCH, PMCH, and Both.
- 4 Toggle the NB-IoT soft key between On and Off to display or dismiss the result of the selected resource block. If this setting is on, the MARKER hard key is activated.
- 5 To adjust the NB-IoT PBR Index, press the NB-IoT PBR Index soft key, and then turn the rotary knob clockwise or counter clockwise.

Figure 114 Data allocation map measurement with LTE-FDD signal analyzer

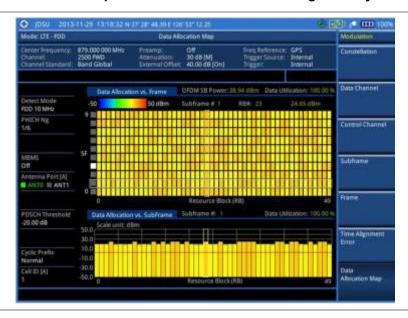


Figure 115 Data allocation map measurement with LTE-FDD signal analyzer (MBMS On)

Figure 116 Data allocation map measurement with LTE-FDD signal analyzer (NB-IoT On)

Using marker

You can use the MARKER hard key to place the marker at a specific resource block and subframe.

Procedure

- 1 Press the **MARKER** hard key.
- 2 Toggle the Marker View soft key between On and Off to display or hide the marker on the chart.
- **3** To select the resource block number, complete the following steps:
 - Press the RB Number soft key.
 - **b** Enter the resource block number to select by using the numeric keys. You can also use the rotary knob to move the marker side by side.
 - Press the Enter soft key.
- **4** To select the subframe block number, complete the following steps:
 - a Press the Subframe No soft key.
 - **b** Enter the subframe number to select by using the numeric keys. You can also use the rotary knob to move the marker up and down.
 - c Press the Enter soft key.

Setting limit for modulation tests

- 1 Press the *LIMIT* hot key.
- 2 Press the Modulation Test Limits soft key to set the limits.
- 3 Select the test item(s) and set the limit(s) depending on your selected measurement mode:

To set the limit for	Select	Set
Frequency error	Frequency Error	High Limit, Low Limit
PDSCH error vector magnitude if MBMS is off	EVM > PDSCH EVM	High Limit (QPSK) High Limit (16 QAM) High Limit (64 QAM) <i>High Limit (</i> 256 <i>QAM)</i> *

PMCH error vector magnitude if MBMS is on and a PMCH is detected	EVM > PMCH EVM	High Limit (QPSK) High Limit (16 QAM) High Limit (64 QAM) High Limit (256 QAM)*
RMS for data error vector magnitude	EVM > Data EVM RMS	High Limit
Peak for data error vector magnitude	EVM> Data EVM Peak	High Limit
RS error vector magnitude	EVM > RS EVM	High Limit
P-SS error vector magnitude	EVM > P-SS EVM	High Limit
S-SS error vector magnitude	EVM > S-SS EVM	High Limit
Downlink RS power	Power > DL RS Power	High Limit, Low Limit
P-SS power	Power > P-SS Power	High Limit, Low Limit
S-SS power	Power > S-SS Power	High Limit, Low Limit
PBCH power	Power > PBCH Power	High Limit, Low Limit
Subframe power	Power > Subframe Power	High Limit, Low Limit
OFDM symbol power	Power > OFDM Symbol Power	High Limit, Low Limit
Frame average power	Power > Frame Avg Power	High Limit, Low Limit
Time alignment error for MIMO	Time Alignment Error > MIMO	High Limit
Time alignment error for aggregation of component carriers (intra-band contiguous, intra-band non-contiguous, and inter-band)	Time Alignment Error > Carrier Aggregation	Intra Cont Intra Non-cont Inter Band
Time error	Time Error	High Limit, Low Limit
I-Q origin offset	IQ Origin Offset	High Limit

⁴ Optional. You can enable alarm sound that goes off if the measurement falls outside of the limit. Toggle the **Beep** soft key between **On** and **Off** to enable or disable the beep sound.

Performing auto measurements

Conformance test

The Conformance Test is to test if eNode-B meets some specified standards that have been developed for verification. Its test procedure and test setups have been developed by 3GPP. Test results can be saved as a .csv file type.

Setting limit for conformance test

You can set test limits for test item(s) in the auto measurement. Turning the test limit on for a test item makes the test item included in the conformance test.

⁵ Optional. Go to **SAVE/LOAD** > **Save**, and then select **Limit** to save the limit settings. See "Using save" on page 34 for more information.

Procedure

- 1 Press the *LIMIT* hot key.
- **2** To set the limit for BTS output power, complete the following steps:
 - a Press the BTS Output Power soft key.
 - b Toggle the **Test Limits** soft key between **On** and **Off** to enable or disable the limit.
 - c Press the High Limit soft key.
 - d Enter a value for the upper limit, and then press the dBm unit soft key.
 - e Press the Low Limit soft key.
 - f Enter a value for the lower limit, and then press the dBm unit soft key.
- 3 To set the limit for total power dynamic, complete the following steps:
 - Press the Total Power Dynamic soft key.
 - **b** Toggle the **Test Limits** soft key between **On** and **Off** to enable or disable the limit.
 - c Press the Low Limit soft key.
 - d Enter a value for the lower limit, and then press the **dBm** unit soft key.
- 4 To verify signal quality, press the **Signal Quality** soft key, and then do the following as needed:

To set the limit for	Select	Set
Frequency error	Frequency Error > Test Limits[E-TM2 <i>E-TM2a</i> E-TM3.1 <i>E-TM3.1a</i> E-TM3.2 E-TM3.3]	High Limit, Low Limit
Error vector magnitude	EVM > Test Limits [E-TM2 <i>E-TM2a</i> E-TM3.1 <i>E-TM3.1a</i> E-TM3.2 E-TM3.3]	High Limit (QPSK) High Limit (16 QAM) High Limit (64 QAM) High Limit (256 QAM)*
Time alignment error	Time Alignment Error	High Limit
RS power	RS Power	High Limit, Low Limit

To verify unwanted emissions, press the **Unwanted Emissions** soft key, and then do the following as needed:

To set the limit for	Select	Set
Occupied bandwidth	Occupied BW	High Limit
Adjacent channel power ratio	ACLR	
Spectrum emission mask	SEM	Mask Type
Spurious emissions	Spurious Emissions	Range Table

- **6** Optional. You can enable alarm sound that goes off if the measurement falls outside of the limit. Toggle the **Beep** soft key between **On** and **Off** to enable or disable the beep sound.
- **7** Optional. Go to **SAVE/LOAD > Save**, and then select **Limit** to save the limit settings. See "Using save" on page 34 for more information.

Setting measure setup

After setting frequency as described in the "Configuring test parameters" on page 197, you can continue your measurement.

- 1 Press the **MEASURE SETUP** hot key.
- 2 Press the Bandwidth soft key.
- 3 Select the nominal channel bandwidth to be measured, from the choices: 1.4 MHz, 3 MHz,

5 MHz, 10 MHz, 15 MHz, and 20 MHz.

- 4 Press the **Sector** soft key, and then select the sector option: **Alpha**, **Beta**, or **Gamma**.
- 5 To set external offset, complete the following steps:
 - a Toggle the External Offset soft key and select On.
 - **b** Enter a value by using the numeric keys.
 - c Press the dB soft key.
- 6 To save your settings and results, go to SAVE/LOAD > Save and then perform functions as you desire. See "Using save" on page 34 for more information.
- 7 Press the Run Test soft key to start to run a test. The Auto Measure Results window appears at the end of the test.
- When prompted on the screen, connect the cable from the Spectrum Analyzer RF In port of the instrument to either Antenna Port 0 or Antenna Port 1 of the eNode-B, and then change the TM mode on the eNode-B side.
- **9** Press the **Continue** soft key to continue testing.
- **10** Repeat the steps 8-9 until completion of the test. A conformance test report appears at the end of the test.
- 11 Optional. To stop running the test, press the Abort soft key.

Maintenance test

The Auto Measure function of the JD700B series allows a complete signal profiling covering RF characterization and modulation quality parameters of up to 20 different carriers, particularly useful on an overlay architecture where base stations are transmitting in different frequencies.

Following settings are required only when you run the Auto Measure Maintenance Test on the instrument using "Current" configuration setting. Additional settings are not required when you run Auto Measure using a scenario generated in the PC application software, JDViewer.

Setting limit for maintenance test

You can set test limits for test item(s) in the auto measurement.

Procedure

- 1 Press the *LIMIT* hot key.
- 2 Press the RF Test Limits soft key, and then enable test limits as desired.
- 3 Press the Modulation Test Limits soft key, and then enable test limits as desired.
- **4** Optional. You can enable alarm sound that goes off if the measurement falls outside of the limit. Toggle the **Beep** soft key between **On** and **Off** to enable or disable the beep sound.
- 5 Optional. Go to SAVE/LOAD > Save, and then select Limit to save the limit settings. See "Using save" on page 34 for more information.

NOTE

You can use the **Allowed % Change** soft key for each test item to compare two measurement values displayed in the result table. This requires setting the **Display** mode to **Compare** in advance.

Setting measure setup

After configuring test parameters as described in the "Configuring test parameters" on page 197, you can continue your measurement. The measurement settings can be saved and recalled as a file. You can also use JDViewer, PC application software to configure a measure setup, save as a file, and load the file on to the instrument.

Procedure

- 1 Press the MEASURE SETUP hot key.
- 2 Toggle the **Configuration** soft key and select the configuration option:

Current: Lets the instrument use current frequency (single carrier) and determine pass or fail based on the instrument's limit settings in Auto Measure.

Scenario: Runs a test with a programmed scenario in JDViewer.

The Scenario menu becomes activated.

- 3 To load a scenario, press the **Scenario** soft key, and then select a scenario file to load.
- 4 Toggle the **Test Time** soft key and select the test time option:

Now: Lets the instrument run a test only once.

Schedule: Lets the instrument repeat tests as defined in the Set Timing. The Set Timing menu becomes activated.

- To define a schedule for an auto measurement, complete the following steps:
 - Press the Set Timing soft key.
 - b Press the Start Time (HH:MM) soft key.
 - **c** Enter the time in the HH:MM format, and then press the **Enter** soft key.

- d Press the Stop Time (HH:MM) soft key.
- Enter the time in the HH:MM format, and then press the Enter soft key.
- f Press the Time Interval soft key.
- g Enter the amount of time in minutes, and then press the Enter soft key.
- 6 Press the Settings soft key, and then set the following as needed:
 - Press the Bandwidth soft key, and then select the nominal channel bandwidth to be measured, from the choices: 1.4 MHz, 3 MHz, 5 MHz, 10 MHz, 15 MHz, and 20 MHz.
 - **b** Toggle the **Cell ID** soft key and select **Auto** or **Manual** as desired:

Auto: Lets the instrument detect the Cell ID for the LTE signal automatically.

Manual: Sets a specific Cell ID for the LTE signal manually in order to speed up the synchronization with a BTS.

- Press the MIMO soft key, and then select the antenna number option: 2x2 or 4x4. This MIMO (Multiple Input Multiple Output) setting is activated only if the option 030 LTE-Advanced FDD is installed with a license number. If not, the instrument sets this option to 2x2 by default. A 2x1 or 4x1 RF combiner is also required to able to test on MIMO channels.
- d Press the **Antenna Port** soft key, and then select the option: **Auto**, **0**, **1**, **2**, or **3**. If the option 030 LTE-Advanced FDD is not installed or if the MIMO is set to 2x2, the antenna ports 2 and 3 are disabled.
- Toggle the External Offset soft key and select On.
- f Enter a value by using the numeric keys, and then press the dB soft key.
- To turn the Multimedia Broadcast Multicast Service (MBMS) feature on or off, toggle the **MBMS** soft key and select **On** or **Off**. For proper MBMS testing, you need to set the Subframe No with the same PMCH subframe number.
- h To set the Multicast Broadcast Single Frequency Network (MBSFN) detection automatically or manually for MBMS testing, toggle the **MBSFN** soft key and select **Auto** or **Manual**. An automatically detected or manually entered MBSFN ID appears on the screen.
- 7 To save your settings and results, go to **SAVE/LOAD** > **Save** and then perform functions as you desire. See "Using save" on page 34 for more information.
- 8 Press the Run Test soft key to start to run a test. The Auto Measure Results window appears at the end of the test.
- 9 To stop running the test, press the Abort soft key.
- 10 To change the view on the screen during the test, press the Display and then select the view option from the following choices:

Screen: You can view each measurement screen as the test progresses.

Results: You can view a measurement result table as the test progresses.

Settings: You can view a measurement setting table as the test progresses.

Setting display

After completion of the auto measurement, the screen menu changes to Trace/Display so that you can view the results in different forms.

Procedure

1 Toggle the **Display** soft key and select the display option:

Result: You can view the result table.

The Display Result menu becomes activated.

Settings: You can view the measurement settings for the auto measurement.

2 Toggle the **Display Result** soft key and select the display result option:

Full: You can view detailed measurement readings with the pass/fail indication.

Quick: You can view only the Pass/Fail results.

Compare: You can compare two measurement values for each test time with the Allowed % Change setting on. You can view results vs. factory-defined or user-defined

references.

- 3 To view the measurement results for a different carrier, press the View Carrier soft key and then select the carrier number to view.
- 4 Press the **Replace Reference** soft key to replace existing reference values for comparison with new measurement data.
- 5 Press the Load From soft key to select the location from which references file to be loaded.

Signal performance test

Unlike the other auto measurement tests, the Signal Performance Test runs measurements continuously.

Setting limit for signal performance test

You can set test limits for test item(s) in the auto measurement.

Procedure

- 1 Press the *LIMIT* hot key.
- 2 Press the RF Test Limits > Channel Power soft key, and then set the limits for the channel power. Other RF test items are not used in the signal performance test.
- 3 Press the Modulation Test Limits soft key, and then enable test limits as desired.
- 4 Optional. You can enable alarm sound that goes off if the measurement falls outside of the limit. Toggle the **Beep** soft key between **On** and **Off** to enable or disable the beep sound.
- **5** Optional. Go to **SAVE/LOAD > Save**, and then select **Limit** to save the limit settings. See "Using save" on page 34 for more information.

Setting measure setup

After configuring test parameters as described in the "Configuring test parameters" on page 197, you can continue your measurement. The measurement settings can be saved and recalled as a file. You can also use JDViewer, PC application software to configure a measure setup, save as a file, and load the file on to the instrument.

Procedure

- 1 Press the MEASURE SETUP hot key.
- 2 Toggle the Cell ID soft key and select Auto or Manual as desired:

Auto: Lets the instrument detect the Cell ID for the LTE signal automatically.

Manual: Sets a specific Cell ID for the LTE signal manually in order to speed up the synchronization with a BTS.

- 3 Press the MIMO soft key, and then select the antenna number option: 2x2 or 4x4.

 This MIMO (Multiple Input Multiple Output) setting is activated only if the option 030 LTE-Advanced FDD is installed with a license number. If not, the instrument sets this option to 2x2 by default. A 2x1 or 4x1 RF combiner is also required to able to test on MIMO channels.
- 4 Press the **Antenna Port** soft key, and then select the option: **Auto**, **0**, **1**, **2**, or **3**. If the option 030 LTE-Advanced FDD is not installed or if the MIMO is set to 2x2, the antenna ports 2 and 3 are disabled.
- 5 Press the Bandwidth soft key, and then select the nominal channel bandwidth to be measured, from the choices: 1.4 MHz, 3 MHz, 5 MHz, 10 MHz, 15 MHz, and 20 MHz.
- 6 Toggle the **RF Profile** soft key between **On** and **Off** to turn on or off the RF profiling such as channel power and subframe frequency error.
- 7 Toggle the **Modulation Profile** soft key between **On** and **Off** to turn on or off the modulation profiling such as P-SS, S-SS, Data QPSK, Data 16 QAM, and Data 64 QAM.
- 8 Toggle the MIMO Profile soft key between On and Off to turn on or off the MIMO profiling such

- as TX1 RS0, TX2 RS1, and time alignment error.
- 9 Toggle the External Offset soft key and select On to set the external offset value.
- 10 To save your settings and results, go to SAVE/LOAD > Save and then perform functions as you desire. See "Using save" on page 34 for more information.

DAS test

The Distributed Antenna System (DAS) testing enables you to check the degradation of performance in the signal transmission from a radio band to antennas distributed from it. You can save measurement values at both the radio band and antennas and then compare results with percentage of changes. You can also save test results in the .csv file format for ease of analysis.

Setting measure setup

- 1 Press the MEASURE SETUP hot key.
- 2 Press the Settings soft key and then set the following;
 - Press the Bandwidth soft key and then select the nominal channel bandwidth to be measured from the choices: 1.4 MHz, 3 MHz, 5 MHz, 10 MHz, 15 MHz, and 20 MHz.
 - b Press the **MIMO** soft key, and then select the antenna number option: **2x2** or **4x4**. This MIMO (Multiple Input Multiple Output) setting is activated only if the option 030 LTE-Advanced FDD is installed with a license number. If not, the instrument sets this option to 2x2 by default. A 2x1 or 4x1 RF combiner is also required to able to test on MIMO channels.
 - Toggle the Cell ID soft key and select Auto or Manual as desired:
 - Auto: Lets the instrument detect the Cell ID for the LTE signal automatically.
 - **Manual:** Sets a specific Cell ID for the LTE signal manually in order to speed up the synchronization with a BTS.
 - d Press the **Antenna Port** soft key, and then select the option: **Auto**, **0**, **1**, **2**, or **3**. If the option 030 LTE-Advanced FDD is not installed or if the MIMO is set to 2x2, the antenna ports 2 and 3 are disabled.
 - e Toggle the External Offset soft key and select On to set the external offset value.
 - f To turn the Multimedia Broadcast Multicast Service (MBMS) feature on or off, toggle the **MBMS** soft key and select **On** or **Off**.
 - To set the Multicast Broadcast Single Frequency Network (MBSFN) detection automatically or manually for MBMS testing, toggle the **MBSFN** soft key and select **Auto** or **Manual**. An automatically detected or manually entered MBSFN ID appears on the screen.
- 3 To save your settings, go to SAVE/LOAD > Save > Save Setup and then perform functions as you desire. See "Using save" on page 34 for more information.
- 4 Press the **Continue** soft key to do the reference test first or press the **Skip Reference Test** soft key if you already saved test results from the radio band under test.
- 5 Press the FREQ/DIST hard key and then set the frequency to be measured. See "Setting frequency" on page 266 for more information.
- 6 Press the PREV hard key.
- 7 Press the **Limit** soft key and then set the limits and allowed percentage change for each test item. See "Maintenance test" on page 301 for more information on setting limits.
- 8 Keep pressing the PREV hard key until you see the Run Test soft key.
- **9** Press the **Run Test** soft key. The instrument runs specified tests to gather reference measurement values. The measurement table appears when the reference test is done.
- **10** Press the **Continue** soft key to run the testing on an antenna (Ant 1).
- 11 Optional. To change the settings such as **External Offset**, press the **Settings** and then change the settings as needed.
- 12 Press the Continue soft key.

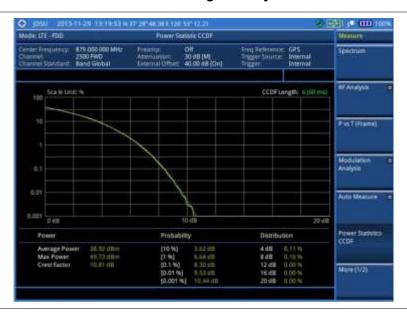
- The instrument runs the testing on Ant 1. The Ant 1 tab appears with the updated result table when the test is done.
- 13 To run the testing on the next antenna (Ant 2), press the **Run Test** soft key and then repeat the steps **11-12**. You can do the testing on up to 10 distributed antennas for one radio band.
- 14 To view test results for each antenna, press the **Select Antenna** soft key and then select the antenna tab number to display on the screen.
- 15 Optional. Press the **Delete** Test soft key to delete the selected antenna tab.
- 16 Optional. Press the Retest Reference soft key to obtain reference measurement values again.
- 17 Optional. To save your measurement results, go to SAVE/LOAD > Save and then perform functions as you desire. See "Using save" on page 34 for more information.

Measurement Example

Figure 117 DAS measurement with LTE-FDD signal analyzer

Performing power statistics CCDF measurements

The Power Statistics Complementary Cumulative Distribution Function (CCDF) measurement characterizes the power statistics of the input signal. It provides PAR (Peak to Average power Ratio) versus different probabilities.


Setting measure setup

After configuring test parameters as described in the "Configuring test parameters" on page 197, you can continue your measurement. The measurement settings can be saved and recalled as a file. You can also use JDViewer, PC application software to configure a measure setup, save as a file, and load the file on to the instrument.

- 1 Press the **MEASURE SETUP** hot key.
- 2 Press the CCDF Length soft key to set the length of the CCDF.
- 3 Enter a value between 1 and 100 by using the numeric keys. You can also use the rotary knob.
- 4 Press the **Enter** soft key.

Measurement example

Figure 118 CCDF measurement with LTE-FDD signal analyzer

Performing carrier aggregation measurements

Carrier aggregation enables a maximum of five multiple LTE carriers to be used together in order to provide high data rate required for LTE-Advanced. Component carriers to be aggregated can be intra-band contiguous, intra-band non-contiguous, or inter-band. The JD700B series provides carrier aggregation measurements supporting for all the different modes with carrier aggregation bands added to the channel standard. This functionality is activated if the license for the option 030 LTE-Advanced FDD is installed.

Setting measure setup

After configuring test parameters as described in the "Configuring test parameters" on page 197, you can continue your measurement. The measurement settings can be saved and recalled as a file. You can also use JDViewer, PC application software to configure a measure setup, save as a file, and load the file on to the instrument.

- 1 Press the MEASURE SETUP hot key.
- 2 To configure parameters for up to 5 component carriers, complete the following steps:
 - a Press the CA Configuration soft key.
 The component carrier configuration window appears.
 - b Press the CA Range soft key.
 - **c** Enter the number of the component carrier to be set between one and five.
 - d Press the Enter soft key.
 - Toggle the Turn On soft key and select On to set parameters and view the results for the selected component carrier on the screen or Off to turn it off.
 - f Set the following parameters as needed:
 - Center Frequency, Channel, Bandwidth, Cell ID, CFI, PHICH Ng, Antenna Port, MBMS On/Off, Cyclic Prefix, and PDSCH Modulation Type
 - g To set more component carriers, repeat the steps c-f.
- 3 Press the **MEASURE SETUP** hot key again

4 Toggle the EVM Detection Mode soft key and select Single or Combine as desired:

Single: Testing on one single antenna connected to your JD700B series with a cable.

Combine: Testing on multiple antennas connected to your JD700B series with a 2x1 or 4x1 combiner or an antenna.

5 To select the subframe number to be measured, do one of the following:

If the **EVM Detection Mode** is set to **Single**, press the **Subframe No** soft key and then set the subframe number.

NOTE

For MBMS testing, this subframe number must be neither 0 nor 5 as these subframes 0 and 5 are not available for MBMS and it must be set to the MBMS transmitted channel's subframe number.

If the **EVM Detection Mode** is set to **Combine**, toggle the **Subframe No** soft key, and then select **0** or **5**.

- **6** To set the threshold for PDSCH, complete the following steps:
 - Press the PDSCH Threshold soft key.
 - Enter a value by using the numeric keys.
 - c Press the dB soft key.
- 7 Toggle the PDSCH Precoding soft key between On and Off to enable or disable the PDSCH precoding.
- 8 To select the number of antenna ports, toggle the **MIMO** soft key and select **2x2** or **4x4**. This MIMO (Multiple Input Multiple Output) setting is activated only if the option 030 LTE-Advanced FDD is installed with a license number. If not, the instrument sets this option to 2x2 by default. A 2x1 or 4x1 RF combiner is also required to able to test on MIMO channels.

Setting display

You can use the TRACE/DISPLAY hard key to select modulation analysis or spectrum analysis.

- 1 Press the TRACE/DISPLAY hard key.
- 2 Toggle the Display soft key and select MA for modulation analysis or SA for spectrum analysis. The screen changes according to the selected option.

Measurement example

Figure 119 Carrier aggregation measurement with LTE-FDD signal analyzer (MA)

Figure 120 Carrier aggregation measurement with LTE-FDD signal analyzer (SA)

NOTE

You can use the *LIMIT* hot key to analyze your measurements with the user-definable limit and Pass/Fail indication. See "Setting limit for modulation tests" on page 229 for more information.

Using marker

You can use the MARKER hard key to place the marker at a specific channel.

- 1 Press the MARKER hard key.
- 2 Toggle the IQ Diagram soft key between On and Off to display or dismiss data on the IQ

- diagram for each component carrier.
- 3 Press the Channel soft key to select the channel to be displayed on the IQ diagram.
- 4 Use the rotary knob to move and select an item under EVM.

Conducting LTE-FDD OTA measurements

The FDD LTE Over The Air (OTA) measurement has Channel Scanner, ID Scanner, Multipath Profile, Datagram, and Control Channel screens. The ID Scanner displays key parameters such as RSRP, RSRQ, RS-SINR, and S-SS RSSI. The Multipath Profile enables you to determine RF environmental conditions of testing area. The OTA Control Channel provides summary of all control channels including RS power variation over time.

Channel scanner

The Channel Scanner is a radio receiver that can automatically tune or scan two or more discrete frequencies and multi-channels, indicating when it finds a signal on one of them and then continuing scanning when that frequency goes silent.

Setting channel/frequency

Procedure

To set the channels to be scanned:

- 1 Press the FREQ/DIST hard key.
- 2 Toggle the Unit soft key and select Channel.
- 3 Press the Index soft key, and then enter an index number between one and six by turning the rotary knob or using the numeric keys.
- **4** To select the standard channel, complete the following steps:
 - Press the Channel Std soft key. The standard channel window appears.
 See "Appendix C Band, frequency & channel standard" on page 745 for more information.
 - b Highlight the band to be measured by using the rotary knob, the arrow keys, or the Page Up/Page Down soft keys.
 - c Press the **Select** soft key or the rotary knob to confirm the selection.
- 5 To set the channel number for the selected index, complete the following steps:
 - a Press the Channel Number soft key.
 - **b** Enter a value by using the numeric keys. You can also use the rotary knob.
 - c Press the Enter soft key.
- 6 The instrument displays a corresponding center frequency for the channel number.
- 7 To set the integration bandwidth for the selected index, complete the following steps:
 - Press the Integration Bandwidth soft key.
 - **b** Enter a value by using the numeric keys. You can also use the rotary knob.
 - c Select the unit: GHz, MHz, kHz, or Hz.
- 8 To add more channels to be scanned, repeat steps 3-6.
- **9** Press the **ESC** hard key to dismiss the channel list window and view the scanning result.

To set the frequencies to be scanned:

- Press the FREQ/DIST hard key.
- 2 Toggle the Unit soft key and select Freq.
- 3 Press the **Index** soft key, and then enter an index number between one and six by turning the rotary knob or using the numeric keys.
- **4** To set the center frequency for the selected index, complete the following steps:

- a Press the Center Frequency soft key.
- **b** Enter a value by using the numeric keys. You can also use the rotary knob.
- Select the unit: GHz, MHz, kHz, or Hz.
- 5 To set the integration bandwidth for the selected index, complete the following steps:
 - a Press the Integration Bandwidth soft key.
 - **b** Enter a value by using the numeric keys. You can also use the rotary knob.
 - Select the unit: GHz, MHz, kHz, or Hz.
- 6 To add more channels to be scanned, repeat steps 3-5.
- 7 Press the ESC hard key to dismiss the channel list window and view the scanning result.

Setting number of antenna ports

Procedure

- 1 Press the **MEASURE SETUP** hot key.
- 2 Toggle the MIMO soft key and select 2x2 or 4x4. This MIMO (Multiple Input Multiple Output) setting is activated only if the option 030 LTE-Advanced FDD is installed with a license number. If not, the instrument sets this option to 2x2 by default. A 2x1 or 4x1 RF combiner is also required to able to test on MIMO channels.

Measurement example

Figure 121 Channel scanner measurement with LTE-FDD OTA signal analyzer

ID scanner

The LTE mobile receives signals from multiple base stations that all of these signals share the same spectrum and are present at the same time. Each base station has unique scrambling code assigned to the particular base station and it differentiates its signal from other base stations in the area.

The ID Scanner shows key parameters such as RSRP (Reference Signal Received Power) and RSRQ (Reference Signal Received Quality) that predict the downlink coverage quickly.

RSRPs from entire cells help to rank between the different cells as input for handover and cell reselection decisions. RSRQ provides additional information when RSRP is not sufficient to make a reliable handover or cell reselection decision.

All of the parameters for OTA ID scanner can be plotted on map data such as Google Maps and Google Earth by using JDViewer.

Setting measure setup

After configuring test parameters as described in the "Configuring test parameters" on page 197, you can continue your measurement.

Procedure

- 1 Press the **MEASURE SETUP** hot key.
- 2 To set the nominal channel bandwidth to be measured, complete the following steps:
 - Press the Bandwidth soft key.
 - b Select the bandwidth option from the choices: 1.4 MHz, 3 MHz, 5 MHz, 10 MHz, 15 MHz, and 20 MHz.
- 3 Optional. Press the Miscellaneous soft key, and then do the following as needed:

To select the number of antenna ports, toggle the **MIMO** soft key and select **2x2** or **4x4**. This MIMO (Multiple Input Multiple Output) setting is activated only if the option 030 LTE-Advanced FDD is installed with a license number. If not, the instrument sets this option to 2x2 by default. A 2x1 or 4x1 RF combiner is also required to able to test on MIMO channels.

To select the cyclic prefix, toggle the **Cyclic Prefix** soft key and select **Normal** or **Extended**. See "Appendix E – Cyclic prefix table" on page 749 for OFDM parameter details by different bandwidth.

4 Optional. Go to **SAVE/LOAD** > **Save**, and then select the save option from the choices available for your measurement mode. See "Using save" on page 34 for more information.

Figure 122 ID scanner measurement with LTE-FDD OTA signal analyzer

Multipath profile

The Multipath Profile enables you to determine RF environmental conditions of testing area. It indicates the amount of power of the dominant pilot signal that is dispersed outside the main correlation peak due to multipath echoes that are expressed in dB. This value should be very small ideally.

The multipath profile is the result of portions of the original broadcast signal arriving at the receiving antenna out of phase. This can be caused by the signal being reflected off objects such as buildings, or being refracted through the atmosphere differently from the main signal.

Setting measure setup

After configuring test parameters as described in the "Configuring test parameters" on page 197, you can continue your measurement.

Procedure

- 1 Press the MEASURE SETUP hot key.
- 2 To set the nominal channel bandwidth to be measured, complete the following steps:
 - a Press the Bandwidth soft key.
 - b Select the bandwidth option from the choices: 1.4 MHz, 3 MHz, 5 MHz, 10 MHz, 15 MHz, and 20 MHz.
- 3 Toggle the Display soft key and select RS or Sync. The RS Window soft key becomes activated if RS is selected.
- 4 Press the RS Window soft key, if RS is selected, and then select the RS window option: 2 μs, 4 μs, or 8 μs.
- 5 Optional. Press the **Miscellaneous** soft key, and then do the following as needed:

To select the number of antenna ports, toggle the **MIMO** soft key and select **2x2** or **4x4**. This MIMO (Multiple Input Multiple Output) setting is activated only if the option 030 LTE-Advanced FDD is installed with a license number. If not, the instrument sets this option to 2x2 by default. A 2x1 or 4x1 RF combiner is also required to able to test on MIMO channels.

To select the cyclic prefix, toggle the **Cyclic Prefix** soft key and select **Normal** or **Extended**. See "Appendix E – Cyclic prefix table" on page 749 for OFDM parameter details by different bandwidth.

6 Optional. Go to **SAVE/LOAD** > **Save**, and then select the save option from the choices available for your measurement mode. See "Using save" on page 34 for more information.

Measurement example

Figure 123 Multipath profile measurement with LTE-FDD OTA signal analyzer

Control channel

DL RS power is the resource element power of Downlink Reference Symbol. The absolute DL RS power is indicated on the BCH. The absolute accuracy is defined as the maximum deviation between the DL RS power indicated on the BCH and the DL RS power at the BS antenna connector.

The OTA Control Channel provides summary of all control channels including RS power trend over time. GPS coordinates (latitude and longitude) will be displayed on the screen if a GPS antenna is connected and locked to the GPS satellites.

Setting measure setup

After configuring test parameters as described in the "Configuring test parameters" on page 197, you can continue your measurement. The measurement settings can be saved and recalled as a file. You can also use JDViewer, PC application software to configure a measure setup, save as a file, and load the file on to the instrument.

Procedure

- 1 Press the MEASURE SETUP hot key.
- 2 To set the nominal channel bandwidth to be measured, complete the following steps:
 - a Press the Bandwidth soft key.
 - b Select the bandwidth option from the choices: 1.4 MHz, 3 MHz, 5 MHz, 10 MHz, 15 MHz, and 20 MHz.
- **3** To select the subframe number to be measured, complete the following steps:
 - Press the Subframe No soft key.
 - **b** Enter a value by using the numeric keys. You can also use the rotary knob.

NOTE

For MBMS testing, this subframe number must be neither 0 nor 5 as these subframes 0 and 5 are not available for MBMS and it must be set to the MBMS transmitted channel's subframe number.

c Press the Enter soft key.

4 Optional. Toggle the Cell ID soft key and select Auto or Manual as desired:

Auto: Lets the instrument detect the Cell ID for the LTE signal automatically.

Manual: Sets a specific Cell ID for the LTE signal manually in order to speed up the synchronization with a BTS.

5 Optional. Press the Miscellaneous soft key, and then do the following as needed:

To select the number of antenna ports, toggle the **MIMO** soft key and select **2x2** or **4x4**. This MIMO (Multiple Input Multiple Output) setting is activated only if the option 030 LTE-Advanced FDD is installed with a license number. If not, the instrument sets this option to 2x2 by default. A 2x1 or 4x1 RF combiner is also required to able to test on MIMO channels.

To assign a antenna port number automatically or manually, press the **Antenna Port** soft key and select the option: **Auto**, **0**, **1**, **2**, and **3**. If the option 030 LTE-Advanced FDD is not installed or if the MIMO is set to 2x2, the antenna ports 2 and 3 are disabled.

To select the cyclic prefix, toggle the **Cyclic Prefix** soft key and select **Normal** or **Extended**. See "Appendix E – Cyclic prefix table" on page 749 for OFDM parameter details by different bandwidth.

To turn the Multimedia Broadcast Multicast Service (MBMS) feature on or off, toggle the **MBMS** soft key and select **On** or **Off**. For proper MBMS testing, you need to set the **Subframe No** with the same PMCH subframe number. If this setting is on, the measurement item "MBSFN RS" appears in the result table.

To set the Multicast Broadcast Single Frequency Network (MBSFN) detection automatically or manually for MBMS testing, toggle the **MBSFN** soft key and select **Auto** or **Manual**. An automatically detected or manually entered MBSFN ID appears on the screen.

6 Optional. Go to **SAVE/LOAD** > **Save**, and then select the save option from the choices available for your measurement mode. See "Using save" on page 34 for more information.

Setting limit for OTA control channel

Procedure

- 1 Press the *LIMIT* hot key.
- 2 Select the test item(s) and set the limit(s) as needed:

To set the limit for	Select	Set
P-SS error vector magnitude	P-SS EVM	High Limit
S-SS error vector magnitude	S-SS EVM	High Limit
RS error vector magnitude	RS EVM > RS0 EVM RS EVM > RS1 EVM RS EVM > RS2 EVM RS EVM > RS3 EVM	High Limit
Frequency error	Frequency Error	High Limit, Low Limit
Time error	Time Error	High Limit, Low Limit
Time alignment error	Time Alignment Error	High Limit

3 Optional. Go to SAVE/LOAD > Save, and then select Limit to save the limit settings. See "Using save" on page 34 for more information.

Setting display

You can use the TRACE/DISPLAY hard key to select the display option.

Procedure

- 1 Press the TRACE/DISPLAY hard key.
- 2 Toggle the Display soft key and select Power or EVM. The screen changes according to the selected option.

Measurement example

Figure 124 Control channel measurement with LTE-FDD OTA signal analyzer

Datagram

The OTA Datagram is a time-varying spectral representation that shows how the power of a signal varies with time. The power allocated to the specific resource block will be represented with an amplitude axis (in dBm) and the waterfall diagram will show the trend of past resource block power over certain period. Using a marker function facilitates analysis of accumulated resource block power for data utilization.

Setting measure setup

After configuring test parameters as described in the "Configuring test parameters" on page 197, you can continue your measurement. The measurement settings can be saved and recalled as a file. You can also use JDViewer, PC application software to configure a measure setup, save as a file, and load the file on to the instrument.

- 1 Press the **MEASURE SETUP** hot key.
- 2 To set the nominal channel bandwidth to be measured, complete the following steps:
 - Press the Bandwidth soft key.
 - Select the bandwidth option from the choices: 1.4 MHz, 3 MHz, 5 MHz, 10 MHz, 15 MHz, and 20 MHz.
- 3 To select the subframe number to be measured, complete the following steps:

- a Press the Subframe No soft key.
- **b** Enter a value by using the numeric keys. You can also use the rotary knob.
- Press the Enter soft key.
- 4 Optional. Toggle the Cell ID soft key and select Auto or Manual as desired:

Auto: Lets the instrument detect the Cell ID for the LTE signal automatically.

Manual: Sets a specific Cell ID for the LTE signal manually in order to speed up the synchronization with a BTS.

- **5** Optional. To set the threshold for PDSCH, complete the following steps:
 - Press the PDSCH Threshold soft key.
 - b Enter a value by using the numeric keys.
 - c Press the dB soft key.
- **6** To set the time cursor at a specific position, complete the following steps:
 - a Toggle the Time Cursor soft key and select On.
 - **b** Turn the rotary knob to move the time cursor. You can also enter a value and then press the **Enter** soft key.

NOTE

Enabling the time cursor puts the measurement on hold and you can make postprocessing analysis for each measurement over time using the time cursor.

- 7 To start a new measurement, press the **Reset/Restart** soft key.
- 8 Optional. Press the Miscellaneous soft key, and then do the following as needed:

To select the number of antenna ports, toggle the **MIMO** soft key and select **2x2** or **4x4**. This MIMO (Multiple Input Multiple Output) setting is activated only if the option 030 LTE-Advanced FDD is installed with a license number. If not, the instrument sets this option to 2x2 by default. A 2x1 or 4x1 RF combiner is also required to able to test on MIMO channels.

To select the cyclic prefix, toggle the **Cyclic Prefix** soft key and select **Normal** or **Extended**. See "Appendix E – Cyclic prefix table" on page 749 for OFDM parameter details by different bandwidth.

9 Optional. Go to **SAVE/LOAD** > **Save**, and then select the save option from the choices available for your measurement mode. See "Using save" on page 34 for more information.

Figure 125 Datagram measurement with LTE-FDD signal analyzer

Route map

The JD700B Series provides the Route Map function that allows you to collect data of points in an indoor or outdoor environment and track the received signals and coverage of RF transmitters by plotting data real time directly on top of a loaded floor plan or a map.

The JD700B Series also supports the RAN-IL (Interference Location) feature that enables you to overlay user experience data obtained through Viavi's ariesoGEO on your base map to help you troubleshoot problems easily and quickly using your instrument. You can generate raster data files on the ariesoGEO application and load them on your instrument.

Setting measure setup

Procedure

- 1 If required, connect a GPS receiver to your JD700B series for outdoor mapping. Indoor mapping does not necessarily need a GPS antenna.
- 2 Configure test parameters as described in the "Configuring test parameters" on page 197.
- **3** To load your map file, complete the following steps:
 - Plug in your USB drive that has a floor map or .mcf file type created in JDMapCreator. If the JDMapCreator application on your computer is connected to the instrument via USB or LAN, you can send a map file with a single layer to the instrument directly by using the **Send to EQP** menu in JDMapCreator.

NOTE

The JDMapCreator converts and resizes any scanned floor plan or layout to fit onto your instrument's display. JDMapCreator 1.2.0 or later can save a multiple-layered map, providing **x1**, **x2**, and **x4** views, as a sizable map file so that you can zoom in and out after loading it.

- b Press SAVE/LOAD hot key, and then select Load > Load Map. See "Using load" on page 36 for more information.
- 4 Press the **MEASURE SETUP** hot key.
- Press the **Plot Point** soft key, and then select the plot point option from the following choices:

 To collect data/plot points automatically as you move around in a vehicle or outside, press the **GPS** soft key and then toggle the **Screen Mode** soft key between **Map** and **Full**.

NOTE

With the **Map** setting, you can view only the collected points that can be seen within the boundary of the loaded map. If a point is off the map, the instrument displays an arrow to indicate the direction of the current location on the map and the distance from the center to the location at the top of the screen.

With the **Full** setting, you can view all the collected points of the route without the loaded map.

To collect data/plot points manually without a GPS antenna in an indoor environment, press the **Position** soft key.

6 Press the Plot Item soft key, and then select the measurement option: RSRP, RSRQ, RS-SINR, S-SS RSSI, P-SS Power, S-SS Power, or S-SS Ec/lo.

NOTE

The instrument collects the strongest Cell ID's data to plot points.

- 7 Press the Bandwidth soft key to set the nominal channel bandwidth to be measured, and then select the bandwidth option from the choices: 1.4 MHz, 3 MHz, 5 MHz, 10 MHz, 15 MHz, and 20 MHz.
- 8 Toggle the **Plot** soft key and select **Start** to start plotting.
- 9 Touch directly on the screen or press the ENTER hard key to collect data and plot points on the loaded map for the Position setting.

NOTE

For the **Position** setting, you can change the direction of the route with the arrow keys and the distance with the rotary knob.

- 10 Toggle the Plot soft key and select Stop to stop plotting.
- **11** Press the **SAVE/LOAD** hot key to save the result. See "Using save" on page 34 for more information.

NOTE

The instrument does not automatically save the collected data. It is recommended that you save the result. Otherwise, you will lose all the collected data.

Setting limit for route map

You can set the thresholds for each test item.

Procedure

- 1 Press the *LIMIT* hot key.
- 2 Select the plot items and set the limits as needed:

To set the limit for	Select	Set
RSRP	RSRP	Excellent, Very Good, Good, Fair, Poor (dBm)
RSRQ	RSRQ	Good, Fair, Poor (dB)
RS-SINR	RS-SINR	Good, Fair, Poor (dB)
S-SS RSSI	S-SS RSSI	Excellent, Very Good, Good, Fair, Poor (dBm)
P-SS Power	P-SS Power	Excellent, Very Good, Good, Fair, Poor (dBm)
S-SS Power	S-SS Power	Excellent, Very Good, Good, Fair, Poor (dBm)
S-SS Ec/lo	S-SS Ec/lo	Good, Fair, Poor (dB)

3 Optional. Go to **SAVE/LOAD > Save**, and then select **Limit** to save the limit settings. See "Using save" on page 34 for more information.

Figure 126 Route map measurement (RSRP) with LTE-FDD OTA signal analyzer

Model: CE - FOD Frequency - 879, 800 D00 MHz Pleaning Off Freq Relevance GPS Stream 2500 MMz Pleaning Off Freq Relevance GPS S

Figure 127 Route map measurement (RSRQ) with LTE-FDD OTA signal analyzer

Figure 128 Route map measurement (RS-SINR) with LTE-FDD OTA signal analyzer

Figure 129 Route map measurement (S-SS RSSI) with LTE-FDD OTA signal analyzer

Figure 130 Route map measurement (P-SS Power) with LTE-FDD OTA signal analyzer

Model CFT - FOD

Model

Figure 131 Route map measurement (S-SS Power) with LTE-FDD OTA signal analyzer

Figure 132 Route map measurement (S-SS Ec/lo) with LTE-FDD OTA signal analyzer

Controlling a map

If you have loaded a sizable map that was created in JDMapCreator 1.2.0 or later, you can use the Map Control feature that enables you to zoom into the map and view a specific area of interest in detail.

Procedure

- 1 Press the TRACE/DISPLAY hard key.
- 2 Press the **Map Control** soft key. This key is active only when you have loaded a sizable map.
- 3 Do one of the following:

To zoom into an area of interest directly, complete the following steps:

- a Toggle the **Zoom to** soft key and select **Area**. The black rectangle appears on the map.
- **b** Press the **Zoom In** and **Zoom Out** soft keys, as you need, to decrease and increase the selected area.

- Move the rectangle by using the four arrow keys, as you need, to place it in a specific area of interest.
- d Press the center of the rotary knob to zoom into the selected area. You can also press the **Zoom to** soft key again to zoom into the selected area.

To zoom into the center or zoom out from the center, complete the following steps:

- a Toggle the **Zoom to** soft key and select **Center**.
- b Press the **Zoom In** and **Zoom Out** soft keys, as you need, to zoom in and zoom out.
- Move the zoomed-in area by using the four arrow keys, as you need.
- 4 To set the location mode, toggle the **Location Mode** soft key between **Auto** and **Manual** and select the one you desire.

Auto: The instrument compares the coordinates of the displayed map with recevied GPS information. If your current location goes out of the displayed area and enters into the next zoomed-in section within the base map, the map display changes automatically to the next section in which your current position is.

Manual: The map display of the zoomed-in area remains unchanged even if your current location goes out of the displayed area. You can change the displayed area manually by using the arrow keys.

Loading and displaying raster data

If you have a set of raster data files generated through the ariesoGEO application, you can load and overlay the data on your base map to help you check the signal quality and the strength of interferences while driving toward the area of interest.

Procedure

1 Copy a set of raster data files into your USB memory drive, including the following:

ASCII: .tab, .asc, and .clr files
BIL: .tab, .hdr, .bil, and .clr files

NOTE

The .tab file type is a geospatial vector data format used in many geographic information systems. The color file (.clr) is an optional file, but the image will be displayed as a grayscale image without it. The size of the raster map must be 1024 x 1024 or smaller.

- 2 Plug in the USB memory drive to your instrument.
- 3 Press the TRACE/DISPLAY hard key.
- 4 Press the **Load Raster Map** soft key. The file explorer window appears.
- 5 Navigate to the raster file (.tab) you want to open, and then press the **Load** soft key. The raster image appears on top of your base map as shown in Figure 133.

NOTE

If the area of the loaded raster data is not within the boundary of the base map, you will not see the raster image on the screen.

- **6** To select the display option, complete the following steps:
 - a Press the Display Options soft key.
 - b Select the option you desire from the choices: On, Off, and Blink.
- 7 To adjust the transparency level of the image, complete the following steps:
 - Press the Transparency soft key.
 - **b** Enter a value between **0** for opaque and **100** for clear.
 - c Press the Enter soft key.

Mode: LTE-FDD Route Map

Center Frequency 2,000,000 GHz Abetraction: 0-68 A)
Charmet Standard: Band Global External Offset: 0.00 dB (or)
Charmet Standard: Band Global External Offset: 0.00 dB (or)
Charmet Standard: Band Global External Offset: 0.00 dB (or)
Charmet Standard: Band Global External Offset: 0.00 dB (or)
Charmet Standard: Band Global External Offset: 0.00 dB (or)
Charmet Standard: Band Global External Offset: 0.00 dB (or)
Charmet Standard: Band Global External Offset: 0.00 dB (or)
Charmet Standard: Band Global External Offset: 0.00 dB (or)
Charmet Standard: Band Global External Offset: 0.00 dB (or)
Charmet Standard: Band Global External Offset: 0.00 dB (or)
Charmet Standard: Band Global External Offset: 0.00 dB (or)
Charmet Standard: Band Global External Offset: 0.00 dB (or)
Charmet Standard: Band Global External Offset: 0.00 dB (or)
Charmet Standard: Band Global External Offset: 0.00 dB (or)
Charmet Standard: Band Global External Offset: 0.00 dB (or)
Charmet Standard: Band Global External Offset: 0.00 dB (or)
Charmet Standard: Band Global External Offset: 0.00 dB (or)
Charmet Standard: Band Global External Offset: 0.00 dB (or)
Charmet Standard: Band Global External Offset: 0.00 dB (or)
Charmet Standard: Band Global External Offset: 0.00 dB (or)
Charmet Standard: Band Global External Offset: 0.00 dB (or)
Charmet Standard: Band Global External Offset: 0.00 dB (or)
Charmet Standard: Band Global External Offset: 0.00 dB (or)
Charmet Standard: Band Global External Offset: 0.00 dB (or)
Charmet Standard: Band Global External Offset: 0.00 dB (or)
Charmet Standard: Band Global External Offset: 0.00 dB (or)
Charmet Standard: Band Global External Offset: 0.00 dB (or)
Charmet Standard: Band Global External Offset: 0.00 dB (or)
Charmet Standard: Band Global External Offset: 0.00 dB (or)
Charmet Standard: Band Global External Offset: 0.00 dB (or)
Charmet Standard: Band Global External Offset: 0.00 dB (or)
Charmet Standard: Band Global External Offset: 0.00 dB (or)
Charmet Standard: Band Global External Offset: 0.

Figure 133 Raster image overlaid on the base map with LTE-FDD OTA signal analyzer

Performing RAN performance testing

The JD700B series provides the optional feature that lets you conduct correlated uplink and downlink testing with your instrument connected to your mobile device via Bluetooth. The RANAdvisor TrueSite application installed on your smartphone collects data and transfers uplink data based on your parameter settings and then your instrument consolidates the data into the measurement results and displays them as performance indicators. It helps you troubleshoot a problem and identify the cause of the problem fast.

To perform this testing, you need both of these installed: the license for the option 014 LTE-FDD RAN Performance Indicator on your instrument and the RANAdvisor TrueSite app with the license on your smartphone.

Preparing your smartphone for remote control via Bluetooth

To set up a Bluetooth connection and enable data collection with remote control properly, you need to pair your instrument with your smartphone and set the app's local Bluetooth control option to Slave once at the beginning.

- 1 Connect a Bluetooth adapter to the USB Host port and an Omni antenna to the RF In port of your CellAdvisor instrument.
 - The instrument detects the adapter and turns on its Bluetooth automatically.
- 2 Make your smartphone visible to your instrument by doing the following steps:
 - On your smartphone, turn on Bluetooth.
 - b Check the checkbox for Visible to all nearby Bluetooth devices to enable this option.
- 3 Pair with your smartphone by doing the following steps:
 - a On your instrument, press the **MEASURE SETUP** hot key.
 - **b** Press the **Bluetooth Connect** soft key.
 - Press the Scan soft key.
 The instrument lists detected Bluetooth devices with their MAC address and status.
 - d Highlight your mobile device from the list by touching on the screen.
 - Press the Pair soft key.

The pairing dialog box appears on your smartphone.

- On your smartphone, enter **0000** and then tap the **OK** button. If pairing is successful, the status of your device on the list changes to "**Paired**".
- **4** Make sure to set your smartphone as a slave by completing the following steps:
 - On your smartphone, open the RANAdvisor TrueSite icon.
 - **b** Go to **Settings > General**.
 - Tap the **Automation Control Mode** menu under Automation Control Options.
 - d Select the Local Bluetooth Control option.
 - e Tap Slave.

The application restart dialog box appears.

f Tap **Continue**. The application closes itself.

NOTE

It is very important for you to set the local Bluetooth control option to **Slave** on the RANAdvisor TrueSite app in order to give your instrument a control to collect necessary data from the app over Bluetooth successfully.

Setting parameters on RANAdvisor TrueSite™

To specify uplink measurement data that will be transferred to your instrument, you need to set map display parameters of your choice on the RANAdvisor TrueSite application.

Procedure

- 1 After you have paired and set your smartphone as a slave, open the **RANAdvisor TrueSite** icon on your device again.
- 2 Tap the (+) button at the bottom of the Home screen. The Main Screen appears.
- 3 Tap the **Customization** menu. The Choose Operation menu box appears.
- 4 Select Map Display Parameters > LTE Serving and Neighbor Parameters.
- **5** Make sure to check the checkbox for the following two mandatory parameters:

Serving E-ARFCN

Serving Physical Cell-ID

NOTE

It is very important for you to select these two parameters to identify the Uplink Channel Number, Cell ID, Group ID, and Sector ID.

6 Select other parameters up to six from the list of parameters supported by the CellAdvisor instrument. See "Appendix L – Supported map display parameters" on page 776 for more information.

NOTE

As the RANAdvisor TrueSite app can transfer data of up to eight parameters at a time, it limits you to select eight parameters in total: two compulsories and six electives. After you have selected all eight parameters, the app blocks any further selection. In this case, you need to uncheck any selected optional parameters in order to enable other optional parameters.

7 Tap the **OK** button and then the **Back** key to return to the Home Screen.

Performing RAN performance testing

After you have set the local Bluetooth control option and selected desired parameters on the app, you need to connect your instrument to your smartphone via Bluetooth to enable data collection from RANAdvisor TrueSite so that you can view consolidated measurement results on your instrument and save results as a file

Procedure

- 1 Make sure to have the RANAdvisor TrueSite app opened on your device.
- 2 Press the **MEASURE SETUP** hot key on your instrument.
- 3 Press the Bluetooth Connect soft key.
- 4 Highlight your paired smartphone to connect from the list.
- 5 Press the Connect soft key. The connected device information appears above the RAN Performance Indicator chart to indicate a successful connection.
- 6 The instrument automatically sets the correlated downlink channel number for the received uplink channel number and displays measurement results as like Figure 134. Observe the consolidated measurement results on the screen for your troubleshooting.

NOTE

If the Cell ID of the uplink channel is not identical to the one of the downlink channel, the instrument displays "---" for the parameters to indicate invalid measurement results.

- **7** If you want to see measurement results for other parameters, select new parameters on the RANAdvisor TrueSite app. See "Setting parameters on RANAdvisor TrueSiteTM" on page 256.
- 8 Optional. To save your settings and results, go to SAVE/LOAD > Save and then perform functions as you desire. See "Using save" on page 34 for more information.

Measurement example

Figure 134 RAN performance indicator with LTE-FDD signal analyzer

Setting performance score level

To analyze your measurement data easily with color codes, you can use the limit feature and set a performance score level for each measurement parameter.

Procedure

- 1 Press the LIMIT hot key.
- 2 To analyze the quality of user experience, do the following as needed:

To set the level for	Select	Set
Data throughput	Data Throughput	Good, Bad (kbps)
Channel quality indicator	CQI	Good, Bad
Modulation type	Modulation Type	(On/Off only)

3 To check the performance of eNode-B, do the following as needed:

To set the level for	Select	Set
Reference signal received power	RSRP	Good, Bad (dBm)
Reference signal received quality	RSRQ	Good, Bad (dB)
Signal to interference and noise ratio	SINR	Good, Bad (dB)
Error vector magnitude	More (1/2) > EVM	Good, Bad (%)
Time alignment error	More (1/2) > Time Alignment Error	Good, Bad (ns)
Frequency error	More (1/2) > Frequency Error	Good, Bad (ppm)

Performing NB-IoT modulation analysis

NB-IoT modulation enables a 4.5G solution to be deployed on the LTE network as an in-band mode. By implementing demodulation capability, the JD700B series provides the power and EVM of NB-IoT channel measurements and diplay the results on the screen within LTE-FDD Signal Analyzer. This functionality is activated if the license for the 034 NB-IoT Analyzer with an option 028 LTE- FDD Signal Analyzer is installed. It is available on firmware version 3.066 and above but not on firmware version 3.070.

Setting measure setup

After configuring test parameters as described in the "Configuring test parameters" on page 197, you can continue your measurement. The measurement settings can be saved and recalled as a file.

- 1 Press the **MEASURE SETUP** hot key.
- 2 To set the nominal channel bandwidth to be measured, complete the following steps:
 - Press the Bandwidth soft key.
 - b Select the bandwidth option from the choices: 1.4 MHz, 3 MHz, 5 MHz, 10 MHz, 15 MHz, or 20 MHz.
- 3 To select the subframe number to be measured, complete the following steps:
 - a Press the Subframe No soft key.

b Enter a value by using the numeric keys. You can also use the rotary knob.

NOTE

You can use **Subframe No** soft key only if you toggle the **Measure Type** soft key and select **Subframe**.

- c Press the Enter soft key.
- 4 Press the **NB-IoT PRB Index** soft key, and then turn the rotary knob clockwise or counter clockwise.

Measurement example

Figure 135 NB-IoT modulation measurement with LTE-FDD signal analyzer (Frame)

Figure 136 NB-IoT modulation measurement with LTE-FDD signal analyzer (Subframe 2)

Using marker

You can use the **MARKER** hard key to place a marker on a control channel and display the IQ diagram for the selected channel.

- 1 Press the MARKER hard key.
- **2** Press the **Channel** soft key to select the channel to be displayed in the IQ diagram. The channel P-SS is selected by default.
- 3 Turn the rotary knob to move the highlight from one to another in the channel summary table.
- 4 Toggle the **Marker View** soft key between **On** and **Off** to display or hide the result of the selected channel.

Chapter 9 Using LTE-TDD Signal Analyzer

This chapter provides instructions for using the LTE-TDD Signal Analyzer (option 029) and LTE-Advanced TDD Analyzer (option 031) with the LTE-TDD OTA Analyzer (option 049), LTE-TDD 256 QAM Demodulator (option 033), and the LTE-TDD RAN Performance Indicator (option 015). Topics discussed in this chapter are as follows:

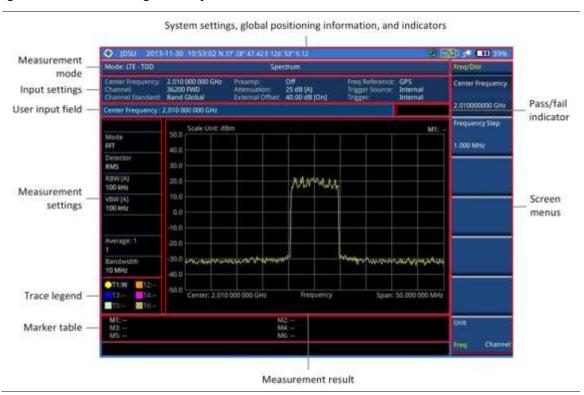
	Introduction	.262
-	Display overview	. 263
	Connecting a cable	. 263
	Selecting measurement mode	. 265
	Configuring test parameters	.265
	Conducting spectrum measurements	.270
	Conducting RF measurements	. 272
	Conducting power vs. time measurements	.280
	Conducting modulation measurements	.283
	Performing auto measurements	.300
	Performing power statistics CCDF measurements	.306
	Performing carrier aggregation measurements	.307
	Conducting LTE-TDD OTA measurements	.310
	Performing RAN performance testing	.324

Introduction

The LTE (Long-Term Evolution) Signal Analyzer of the JD700B series performs power and spectrum measurements as well as modulation analysis to test the proper transmitter performance of TDD LTE systems. It performs conformance testing according to the following standards providing a simple Pass/Fail indication on each test.

- 3GPP TS 36.104. Evolved Universal Terrestrial Radio Access (E-UTRA); Base Station (BS) Radio Transmission and Reception
- 3GPP TS 36.141. Evolved Universal Terrestrial Radio Access (E-UTRA); Base Station (BS)
 Conformance Testing
- 3GPP TS 36.211. Evolved Universal Terrestrial Radio Access (E-UTRA); Physical Channels and Modulation
- 3GPP TS 36.212. Evolved Universal Terrestrial Radio Access (E-UTRA); Multiplexing and Channel Coding
- 3GPP TS 36.213 V8.2.0. Evolved Universal Terrestrial Radio Access (E-UTRA); Physical Layer Procedures

This instrument provides the following measurement tools for TDD LTE system:


- Spectrum Analysis
- RF Analysis
 - Channel Power
 - Occupied Bandwidth
 - Spectrum Emission Mask
 - Adjacent Channel Leakage power Ratio (ACLR)
 - Multi-ACLR
 - Spurious Emissions
- Power vs. Time: Slot and Frame
- Modulation Analysis
 - Constellation
 - Data Channel
 - Control Channel
 - Subframe
 - Time Alignment Error
 - Data Allocation Map
- Auto Measure
 - Conformance Test
 - Maintenance Test
 - Signal Performance Test
 - DAS Test
- Power Statistics CCDF
- Carrier Aggregation
- Over The Air (OTA)

- Channel Scanner
- ID Scanner
- Multipath Profile
- Control Channel
- Datagram
- Route Map
- RAN Performance Indicator

Display overview

Figure 137 provides descriptions for each segment of the measurement screen.

Figure 137 LTE-TDD signal analyzer measurement screen

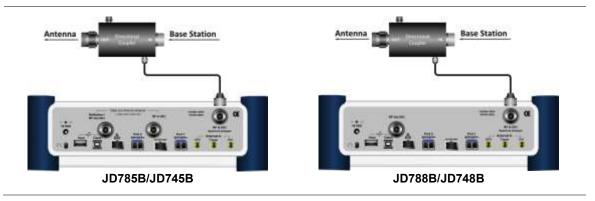
Connecting a cable

Direct connection

Procedure

1 Connect the Spectrum Analyzer RF In port of the JD700B series and the Power amplifier output port of BTS.

Figure 138 Direct connection

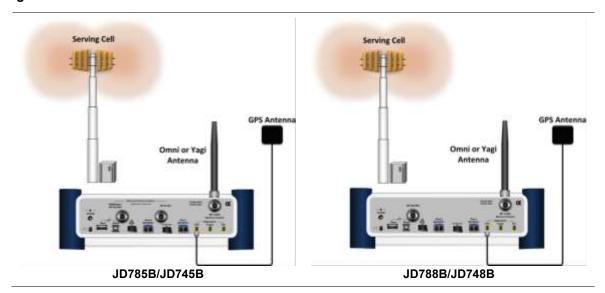


Indirect connection

Procedure

1 Connect the Spectrum Analyzer RF In port of the JD700B series and the monitor (test) port of BTS.

Figure 139 Indirect connection


CAUTION

The maximum power for the **Spectrum Analyzer RF In** port is +25 dBm (0.316 W) for JD780B series and +20 dBm (0.1 W) for JD740B series. If the level of the input signal to be measured is greater than this, use a *High Power Attenuator* to prevent damage when you directly connect the signal to the instrument or connect the signal from the coupling port of a directional coupler.

Over the air (OTA)

- 1 Connect an Omni/directional RF antenna to the Spectrum Analyzer RF In port of the JD700B series.
- **2** Connect a GPS antenna to the **GPS** port of the JD700B series.

Figure 140 OTA connection

CAUTION

If the input signal level to be measured is less than 0 dBm, set 0 dB attenuation or turn on the preamp to have better dynamic range for the OTA testing.

Selecting measurement mode

Procedure

- 1 Press the MODE hard key.
- 2 Press the Signal Analyzer soft key.
- 3 Press the LTE TDD soft key. The Spectrum mode is set by default.
- 4 Press the **MEASURE** hot key, and then select the measurement mode option from the following choices:

Spectrum

RF Analysis > Channel Power, Occupied BW, Spectrum Emission Mask, ACLR, Multi-ACLR, or Spurious Emissions

Power vs Time > Power vs Time (Slot) or Power vs Time (Frame)

Modulation Analysis > Constellation, Data Channel, Control Channel, Subframe, Time Alignement Error, or Data Allocation Map

Auto Measure > Conformance Test, Maintenance Test, Signal Perfomance, or **DAS Test**

Power Statistics CCDF

More (1/2) > Carrier Aggregation

More (1/2) > OTA > Channel Scanner, ID Scanner, Multipath Profile, Control Channel, Datagram, or Route Map

More (1/2) > RAN Performance Indicator

NOTE

The **Carrier Aggregation** soft key is activated if the license for the option 031 LTE-Advanced TDD is installed and so does the **RAN Performance Indicator** for the option 015 LTE-TDD RAN Performance Indicator.

Configuring test parameters

Setting frequency

You can set the frequency with either frequency or channel number. If a frequency to be set matches to the frequency corresponding to the selected channel standard, the instrument calculates its channel number and updates the screen with it automatically.

Procedure

To set the center frequency:

- 1 Press the FREQ/DIST hard key.
- 2 Toggle the Unit soft key and select Freq.
- 3 Press the Center Frequency soft key.
- 4 Enter a value by using the numeric keys. You can also use the rotary knob.
- 5 Select the unit: GHz, MHz, kHz, or Hz.
- 5 To define the amount of frequency increment for the rotary knob, complete the following steps:
 - a Press the Frequency Step soft key.
 - Enter a value by using the numeric keys. You can also use the rotary knob.
 - Press the unit: GHz, MHz, kHz, or Hz.

To set the channel number:

- 1 Press the FREQ/DIST hard key.
- 2 Toggle the Unit soft key and select Channel.

NOTE

Selecting **Channel** sets the standard channel to **Band Global** automatically so that you can set the **Channel Number** without choosing a standard channel band from the list.

- 3 Press the Channel Number soft key.
- 4 Enter a value by using the numeric keys. You can also use the rotary knob.
- 5 Press the Enter soft key. The instrument automatically displays the corresponding center frequency value for the selected channel number.
- 6 To define the amount of channel increment for the rotary knob, complete the following steps:
 - a Press the Channel Step soft key.
 - **b** Enter a value by using the numeric keys. You can also use the rotary knob.
 - c Press the Enter soft key.

NOTE

This frequency setting is not used in the Multi-ACLR and Spurious Emissions modes.

Setting amplitude

Reference level and attenuation

You can set the reference and attenuation levels automatically or manually to optimize the display of the traces measured, as you desire.

Procedure

To automatically set the reference and attenuation level:

- 1 Press the AMP/SCALE hard key.
- 2 Press the Auto Scale soft key. Each time you press this key, both of the Y-axis scale and input attenuation level change to be

optimized with some margin.

To set the reference or attenuation level manually:

- 1 Press the AMP/SCALE hard key.
- 2 To set the maximum reference value on the Y-axis manually, complete the following steps:
 - Press the Reference Level soft key.
 - **b** Enter a value by using the numeric keys or the rotary knob with 10 dB increments.
 - Press the unit soft key or the ENTER hard key.
 This unit key name changes according to the setting in the Units menu.

NOTE

In the measurements such as **Control Channel** and **Subframe**, you can select the reference option between **Relative** and **Absolute** instead.

3 To set the attenuation option, select one from the following choices:

To set the input attenuator's level automatically, select **Attenuation > Auto**.

NOTE

It is recommended that you set the **Attenuation** to **Auto** in most situations so that the level of the input attenuator can be set automatically according to your input signal level.

To set the input attenuation manually up to 55 dB for JD780B series or 50 dB for JD740B series to optimize S/N, complete the following steps:

- a Select Attenuation > Manual.
- **b** Press the **Attenuation Value** soft key to set the level.
- c Enter a value in fives by using the numeric keys.
- d Press the dB soft key or the ENTER hard key.

To couple the input attenuator's level with your reference level setting, select **Attenuation > Couple**.

As you increase the reference setting, the attenuation level also increases accordingly.

Optional. To change the scale unit:

- 1 Select More (1/2) > Units.
- 2 Select the unit of the display scale: dBm, dBV, dBmV, dBμV, V, or W. The scale unit on the screen changes accordingly.

NOTE

This Units menu is available in the Spectrum and RF Analysis modes.

Scale per division

You can use the **Scale/Div** feature available for the spectrum and RF analysis. It represents the value of one division on the horizontal scale. The default setting is 10 dB per division and the maximum value can be set up to 20 dB.

Procedure

- 1 Press the AMP/SCALE hard key.
- 2 Select More (1/2) > Scale/Div.
- 3 Enter a value between 1 and 20 by using the numeric keys.
- 4 Press the **dB** soft key to complete the entry.

Pre-amplifier

You can turn the internal pre-amplifier on to correct and compensate for the gain of the preamp so that amplitude readings show the value at the input connector.

Procedure

- 1 Press the AMP/SCALE hard key.
- 2 Toggle the **Preamp** soft key and select **On** or **Off** as needed.

NOTE

You can turn the Preamp on when the input attenuation range is from 0 dB to 10 dB. If the attenuation value is manually set to greater than 10 dB, the instrument will automatically turn off the pre-amplifier to display low-level signal properly on the chart.

External offset

You can turn the **External Offset** on and manually set the external offset value. An offset consists of a cable loss and a user offset and the measurement result shows the value reflecting both offset values. When the external offset value is set at 40 dB in the Spectrum mode, the measurement result compensates 40 dB at both the Spectrum Analyzer and Signal Analyzer modes.

Procedure

To set the external offset:

- 1 Press the AMP/SCALE hard key.
- 2 Toggle the External Offset soft key and select On.
- **3** Enter a value by using the numeric keys.
- 4 Press the dB soft key to complete the entry.

To turn the external offset off:

- 1 Press the AMP/SCALE hard key.
- 2 Toggle the External Offset soft key and select Off.

Setting average

You can set the number of measurements to be averaged for the trace presentation. A maximum of 100 times of averaging can be set. When the averaging reaches to your setting, a new measurement value replaces the measurement value in sequence from the earliest.

Procedure

- 1 Press the BW/AVG hard key.
- 2 Press the Average soft key.
- 3 Enter a value between 1 and 100 as needed by using the numeric keys.
- 4 Press the Enter soft key.

Setting sweep mode

The default setting is **Continue** to sweep continuously for most on-going measurements. If you want to hold the measurement or get a single sweep, you can change the sweep mode.

Procedure

To select the single sweep mode:

- 1 Press the **SWEEP** hot key.
- 2 Toggle the Sweep Mode soft key and select Single. You can also use the HOLD hot key. The letter HOLD in red appears and the sweeping is paused.

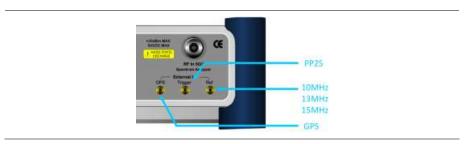
3 Optional. Press the **Sweep Once** soft key to get a new measurement.

To return to the continuous sweep mode:

1 Toggle the Sweep Mode soft key and select Continue. You can also use the HOLD hot key. The letter HOLD in red disappears and the sweeping resumes.

Setting trigger source

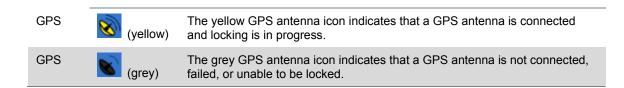
You can set the trigger source option for your measurements.


Procedure

- 1 Press the TRIGGER hot key.
- 2 Select the trigger source option from the choices: Internal, External, and GPS.

Setting external clock

To enhance the reliability of modulation analysis measurements the JD700B series must be synchronized with a base station. When an external clock is not supplied, the instrument works with its built-in internal high-accuracy time base and some measurement results may exhibit inaccurate values. Therefore, it is highly recommended that you use the same reference clock as the signal source. You can use the *TRIGGER* hot key to set the external clock.


Figure 141 Connection ports for external reference clock

- 1 Connect an external reference or a GPS antenna to the JD700B series.
- 2 Press the SYSTEM hot key.
- 3 Press the Freq Reference soft key, and then select the reference option: Internal, External 10 MHz, External 13 MHz, External 15 MHz, or GPS.

Table 13 External reference indicators

Туре	Indicator	Description
Internal	(green)	The green INT icon indicates that the instrument uses the built-in internal time base.
External	(green)	The green EXT icon indicates that an external reference is connected and locked and that the instrument uses the same reference clock as the signal source.
External	(red)	The red EXT icon indicates that an external reference is connect but not locked.
GPS	(green)	The green GPS antenna icon indicates that a GPS antenna is connected and locked.

Conducting spectrum measurements

Setting measure setup

After configuring test parameters as described in the "Configuring test parameters" on page 265, you can continue your measurement.

Procedure

- 1 Press the **MEASURE SETUP** hot key.
- 2 To set the nominal channel bandwidth to be measured, complete the following steps:
 - a Press the Bandwidth soft key.
 - b Select the bandwidth option from the choices: 1.4 MHz, 3 MHz, 5 MHz, 10 MHz, 15 MHz, and 20 MHz.
- 3 To select the subframe number to be measured, complete the following steps:
 - Press the Subframe No soft key.
 - **b** Enter a value by using the numeric keys. You can also use the rotary knob.
 - c Press the Enter soft key.
- 4 If you enable the gated sweep for the guard period, you can easily identify the existence of the interference in uplink call activities.
 - To turn it on, toggle the Guard Period soft key and select Enable. The Subframe No menu deactivates.
 - To turn it off, toggle the **Guard Period** soft key and select **Disable**.

NOTE

In LTE-TDD, the guard period is a special subframe, normally Subframe #1 and optionally Subframe #6, where there happens the switching from DL to UL. You should not see any data transmission in the guard period spectrum.

5 Toggle the Cell ID soft key and select Auto or Manual as desired:

Auto: Lets the instrument detect the Cell ID for the LTE signal automatically.

Manual: Sets a specific Cell ID for the LTE signal manually in order to speed up the synchronization with a BTS.

Your measurement result is displayed on the screen as like the following example, Figure 142.

Figure 142 Spectrum measurement screen with LTE-TDD signal analyzer

Setting trace

You can display up to six traces on the measurement chart simultaneously.

Procedure

- Press the TRACE/DISPLAY hard key.
- Press the Select Trace soft key, and then select the trace number: T1, T2, T3, T4, T5, or T6. The legend shape of the selected trace changes from square to round to indicate that the trace is the active one now.
- **3** Do one of the following:

То	Select	Trace Legend
Clear current data and display with new measurements	Clear Write	W
Display the input signal's maximum response only (unlimited or for a certain amount of time)	Max Hold	M
Display the input signal's minimum response only (unlimited or for a certain amount of time)	Min Hold	m
Capture the selected trace and compare traces	Capture	С
Load a saved trace	More (1/2) > Load	L
Hide the displayed trace	Trace View > Off	F
Remove all the traces and initialize the trace settings	More (1/2) > Trace Clear All	

NOTE

For the **Max Hold** and **Min Hold**, your instrument compares newly acquired data with the active trace and displays larger maximum values or smaller minimum values on the screen. You can set it to **Unlimited** to hold and view maximum or minimum data or specify a certain amount of time up to 60 seconds by using numeric keys or rotary knob.

- 4 Optional. Select More (1/2) > Trace Info, and then select the trace number to view the trace's parameter setting information stored at the time of the measurement or None to hide the information display.
- 5 Optional. If you have the two traces T1 and T2, you can perform trace math. To view the power

difference between the traces, press the T1 – T2 -> T5 or T2 – T1 -> T6 soft key. The result is overlaid on the screen along with the second Y-axis.

Conducting RF measurements

Channel power

The Channel Power measurement is a common test used in the wireless industry to measure the total transmitted power of a radio within a defined frequency channel. It acquires a number of points representing the input signal in the time domain, transforms this information into the frequency domain using Fast Fourier Transform (FFT), and then calculates the channel power. The effective resolution bandwidth of the frequency domain trace is proportional to the number of points acquired for the FFT.

The channel power measurement identifies the total RF power and power spectral density (PSD) of the signal in the LTE channel bandwidth.

Setting measure setup

After configuring test parameters as described in the "Configuring test parameters" on page 265, you can continue your measurement.

Procedure

- 1 Press the **MEASURE SETUP** hot key.
- 2 To set the nominal channel bandwidth to be measured, complete the following steps:
 - a Press the Bandwidth soft key.
 - b Select the bandwidth option from the choices: 1.4 MHz, 3 MHz, 5 MHz, 10 MHz, 15 MHz, and 20 MHz.
- 3 To select the subframe number to be measured, complete the following steps:
 - a Press the Subframe No soft key.
 - **b** Enter a value by using the numeric keys. You can also use the rotary knob.
 - c Press the Enter soft key.
- Toggle the Cell ID soft key and select Auto or Manual as desired:

Auto: Lets the instrument detect the Cell ID for the LTE signal automatically.

Manual: Sets a specific Cell ID for the LTE signal manually in order to speed up the synchronization with a BTS.

Measurement example

Figure 143 Channel power measurement with LTE-TDD signal analyzer

NOTE

You can use the *LIMIT* hot key to analyze your measurements with the user-definable limit and Pass/Fail indication. See "Setting limit for RF tests" on page 279 for more information.

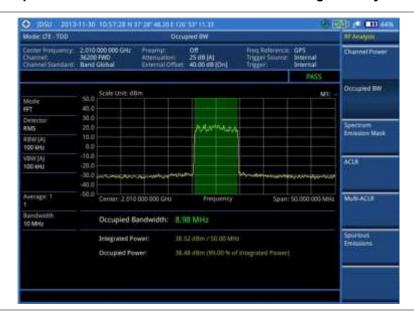
Occupied bandwidth

The Occupied Bandwidth measures the spectrum shape of the carrier. It is defined as the bandwidth, which includes 99% of the transmitted power among total transmitted power.

Setting measure setup

After configuring test parameters as described in the "Configuring test parameters" on page 265, you can continue your measurement.

Procedure


- 1 Press the **MEASURE SETUP** hot key.
- 2 To set the nominal channel bandwidth to be measured, complete the following steps:
 - a Press the Bandwidth soft key.
 - Select the bandwidth option from the choices: 1.4 MHz, 3 MHz, 5 MHz, 10 MHz, 15 MHz, and 20 MHz.
- **3** To select the subframe number to be measured, complete the following steps:
 - a Press the Subframe No soft key.
 - **b** Enter a value by using the numeric keys. You can also use the rotary knob.
 - c Press the Enter soft key.
- 4 Toggle the Cell ID soft key and select Auto or Manual as desired:

Auto: Lets the instrument detect the Cell ID for the LTE signal automatically.

Manual: Sets a specific Cell ID for the LTE signal manually in order to speed up the synchronization with a BTS.

Measurement example

Figure 144 Occupied bandwidth measurement with LTE-TDD signal analyzer

NOTE

You can use the *LIMIT* hot key to analyze your measurements with the user-definable limit and Pass/Fail indication. See "Setting limit for RF tests" on page 279 for more information.

Spectrum emission mask (SEM)

The Spectrum Emission Mask (SEM) measurement required by 3GPP specifications encompasses different power limits and different measurement bandwidths (resolution bandwidths) at various frequency offsets. It may be expressed as a ratio of power spectral densities between the carrier and the specified offset frequency band. It provides useful figures-of-merit for the spectral re-growth and emissions produced by components and circuit blocks, without the rigor of performing a full SEM measurement.

The SEM measures spurious signal levels in up to five pairs of offset or region frequencies and relates them to the carrier power.

Setting measure setup

After configuring test parameters as described in the "Configuring test parameters" on page 265, you can continue your measurement.

Procedure

- 1 Press the **MEASURE SETUP** hot key.
- 2 To set the nominal channel bandwidth to be measured, complete the following steps:
 - a Press the Bandwidth soft key.
 - Select the bandwidth option from the choices: 1.4 MHz, 3 MHz, 5 MHz, 10 MHz, 15 MHz, and 20 MHz.
- **3** To select the mask type, complete the following steps:
 - Press the Mask Type soft key.
 - **b** Select the mask type option, from the following choices:

Wide Area BS Category A
Wide Area BS Category B

Local Area BS

Home BS

- **4** To select the subframe number to be measured, complete the following steps:
 - Press the Subframe No soft key.
 - **b** Enter a value by using the numeric keys. You can also use the rotary knob.
 - c Press the Enter soft key.
- 5 Toggle the Cell ID soft key and select Auto or Manual as desired:

Auto: Lets the instrument detect the Cell ID for the LTE signal automatically.

Manual: Sets a specific Cell ID for the LTE signal manually in order to speed up the synchronization with a BTS.

Measurement example

Figure 145 SEM measurement with LTE-TDD signal analyzer

NOTE

You can use the *LIMIT* hot key to analyze your measurements with the user-definable limit and Pass/Fail indication. See "Setting limit for RF tests" on page 279 for more information.

ACLR

The Adjacent Channel Leakage power Ratio (ACLR) measures the amount of interference or power in an adjacent frequency channel according to the standards.

Setting measure setup

After configuring test parameters as described in the "Configuring test parameters" on page 265, you can continue your measurement.

- 1 Press the **MEASURE SETUP** hot key.
- 2 To set the nominal channel bandwidth to be measured, complete the following steps:

- a Press the Bandwidth soft key.
- Select the bandwidth option from the choices: 1.4 MHz, 3 MHz, 5 MHz, 10 MHz, 15 MHz, and 20 MHz.
- **3** To select the subframe number to be measured, complete the following steps:
 - Press the Subframe No soft key.
 - **b** Enter a value by using the numeric keys. You can also use the rotary knob.
 - c Press the Enter soft key.
- 4 Toggle the Cell ID soft key and select Auto or Manual as desired:

Auto: Lets the instrument detect the Cell ID for the LTE signal automatically.

Manual: Sets a specific Cell ID for the LTE signal manually in order to speed up the synchronization with a BTS.

Measurement example

Figure 146 ACLR measurement with LTE-TDD signal analyzer

NOTE

You can use the *LIMIT* hot key to analyze your measurements with the user-definable limit and Pass/Fail indication. See "Setting limit for RF tests" on page 279 for more information.

Multi-ACLR

The Multi-ACLR measurement is used to perform multi-channel ACLR measurements with as many channels as possible. It helps you to measure ACLR in multi-channel transmitting Base Station environment.

Setting measure setup

After configuring test parameters as described in the "Configuring test parameters" on page 265, you can continue your measurement.

- 1 Press the MEASURE SETUP hot key.
- 2 To set the nominal channel bandwidth to be measured, complete the following steps:

- a Press the Bandwidth soft key.
- b Select the bandwidth option from the choices: 1.4 MHz, 3 MHz, 5 MHz, 10 MHz, 15 MHz, and 20 MHz.
- 3 To set the frequency, do one of the following:

To set the center frequency, complete the following steps:

- a Toggle the Unit soft key and select Freq.
- **b** Press the **Lowest Frequency** soft key to set the starting center frequency.
- **c** Enter a value by using the numeric keys. You can also use the rotary knob.
- d Select the unit: GHz, MHz, kHz, or Hz.
- Press the Highest Frequency soft key to set the stopping center frequency.
- f Enter a value by using the numeric keys. You can also use the rotary knob.
- g Select the unit: GHz, MHz, kHz, or Hz.

To set the channel number, complete the following steps:

a Toggle the **Unit** soft key and select **Channel**.

NOTE

Selecting **Channel** sets the standard channel to **Band Global** automatically so that you can set the **Channel Number** without choosing a standard channel band from the list.

- **b** Press the **Lowest Channel** soft key to set the starting channel.
- **c** Enter a value by using the numeric keys. You can also use the rotary knob.
- d Press the Enter soft key.
- Press the Highest Channel soft key to set the stopping channel.
- f Enter a value by using the numeric keys. You can also use the rotary knob.
- Press the Enter soft key.

Measurement example

Figure 147 Multi-ACLR measurement with LTE-TDD signal analyzer

NOTE

You can use the *LIMIT* hot key to analyze your measurements with the user-definable limit and Pass/Fail indication. See "Setting limit for RF tests" on page 279 for more information.

Spurious emissions

Out-of-band emissions are unwanted emissions immediately outside the channel bandwidth resulting from the modulation process and non-linearity in the transmitter but excluding spurious emissions. The Spurious Emissions measurement is to identify and determine the power level of out-of-band spurious emission within the necessary channel bandwidth and modulated signal measured at the RF port of the Base Station.

Setting measure setup

After configuring test parameters as described in the "Configuring test parameters" on page 265, you can continue your measurement.

Procedure

- 1 Press the MEASURE SETUP hot key.
- 2 To set up the range table and parameters, press the **Range Table** soft key and then complete the following steps:
 - Press the Range soft key, and then select the range number between 1 and 20 to add as a new or change the existing settings.
 - b Do the following as desired:
 - Select **Start Frequency**, and then specify the start frequency for the selected range.
 - Select **Stop Frequency**, and then specify the stop frequency for the selected range.
 - Select **Start Limit**, and then specify the lower limit for Pass/Fail indication.
 - Select Stop Limit, and then specify the upper limit for Pass/Fail indication.
 - Select More (1/2) > Attenuation, and then specify an value in the multiple of five.
 - Select More (1/2) > RBW, and then specify a RBW value.
 - Select More (1/2) > VBW, and then specify a VBW value.
 - c Press the PREV hard key.
 - d Toggle the Range soft key and select On to display the selected range in the result table or Off to hide it from the table.
- 3 Toggle the **Measure Type** soft key between **Examine** and **Full** to select the measurement type.

NOTE

The **Examine** mode displays only the selected range while the **Full** mode lets the instrument automatically changes the selected range from one another.

- **4** To set the number of measurements to be averaged, complete the following steps:
 - a Press the Average soft key.
 - **b** Enter a value between **1** and **100**.
 - c Press the Enter soft key.
- 5 To move the highlighted bar in the result table to other range, complete the following steps:
 - Press the Range soft key in the Measure Setup menu bar.
 - b Enter a value between 1 and 20.
 - c Press the Enter soft key.

Measurement example

Figure 148 Spurious emissions measurement with LTE-TDD signal analyzer

NOTE

You can use the *LIMIT* hot key to analyze your measurements with the user-definable limit and Pass/Fail indication. See "Setting limit for RF tests" on page 279 for more information.

Setting limit for RF tests

By default, test limits specified in the standard are set for you. You can change thresholds if you desire.

- 1 Press the *LIMIT* hot key.
- 2 Press the RF Test Limits soft key.
- 3 Select the test item(s) and set the limit(s) depending on your selected measurement mode:

To set the limit for	Select	Set
Channel power	Channel Power	High Limit, Low Limit
Occupied bandwidth	Occupied BW	High Limit
Spectrum emission mask	Spectrum Emission Mask	(On/Off only)
ACLR	ACLR	(On/Off only)
Multi-ACLR	Multi-ACLR	(On/Off only)
Spurious emissions	Spurious Emissions	(On/Off only)

- 4 Optional. You can enable alarm sound that goes off if the measurement falls outside of the limit. Toggle the **Beep** soft key between **On** and **Off** to enable or disable the beep sound.
- **5** Optional. Go to **SAVE/LOAD > Save**, and then select **Limit** to save the limit settings. See "Using save" on page 34 for more information.

Conducting power vs. time measurements

The Power vs. Time measurement measures the modulation envelope in the time domain, showing the signal rise and fall shape of LTE signal and the power of each time slot in an LTE signal.

Power vs. time (slot)

The Power vs. Time (Slot) in LTE-TDD Signal Analyzer measures the modulation envelope in the time domain, showing the signal rise and fall shapes of LTE signal.

NOTE

In this measurement, desirable level of the input power is lower than -10 dBm. If the input power to be measured is -10 dBm or higher, it is highly recommended that you use an external attenuator.

Setting measure setup

After configuring test parameters as described in the "Configuring test parameters" on page 265, you can continue your measurement. The measurement settings can be saved and recalled as a file.

Procedure

- 1 Press the **MEASURE SETUP** hot key.
- 2 To set the nominal channel bandwidth to be measured, complete the following steps:
 - a Press the Bandwidth soft key.
 - b Select the bandwidth option from the choices: 1.4 MHz, 3 MHz, 5 MHz, 10 MHz, 15 MHz, and 20 MHz.
- **3** To select the slot number to be measured, complete the following steps:
 - a Press the Slot No soft key.
 - **b** Enter a value by using the numeric keys. You can also use the rotary knob.
 - c Press the Enter soft key.
- 4 Toggle the Cell ID soft key and select Auto or Manual as desired:

Auto: Lets the instrument detect the Cell ID for the LTE signal automatically.

Manual: Sets a specific Cell ID for the LTE signal manually in order to speed up the synchronization with a BTS.

5 Optional. Press the **Miscellaneous** soft key, and then do the following as needed:

To select the number of antenna ports, toggle the **MIMO** soft key and select **2x2** or **4x4**. This MIMO (Multiple Input Multiple Output) setting is activated only if the option 031 LTE-Advanced TDD is installed with a license number. If not, the instrument sets this option to 2x2 by default. A 2x1 or 4x1 RF combiner is also required to able to test on MIMO channels.

To assign a antenna port number automatically or manually, press the **Antenna Port** soft key and select the option: **Auto**, **0**, **1**, **2**, and **3**. If the option 031 LTE-Advanced TDD is not installed or if the MIMO is set to 2x2, the antenna ports 2 and 3 are disabled.

To select the cyclic prefix, toggle the **Cyclic Prefix** soft key and select **Normal** or **Extended**. See "Appendix E – Cyclic prefix table" on page 749 for OFDM parameter details by different bandwidth.

To set the delay, complete the following steps:

- a Press the **Delay** soft key to set the amount of delay in μs.
- **b** Enter a value by using the numeric keys. You can also use the rotary knob.
- c Press the µs soft key.

NOTE

The Delay setting is used only when there is a time offset in the signals to be measured.

Setting limit for power vs. time tests

Procedure

- 1 Press the *LIMIT* hot key.
- 2 Press the PvsT Test Limits soft key.
- **3** Select the test item(s) and set the limit(s):

To set the limit for	Select	Set
Slot average power	Slot Avg Power	High Limit, Low Limit
Off power	Off Power	High Limit
Transition period	Transition Period	High Limit

- 4 Optional. You can enable alarm sound that goes off if the measurement falls outside of the limit. Toggle the Beep soft key between On and Off to enable or disable the beep sound.
- **5** Optional. Go to **SAVE/LOAD > Save**, and then select **Limit** to save the limit settings. See "Using save" on page 34 for more information.

Measurement example

Figure 149 Power vs. time (slot) measurement with LTE - TDD signal analyzer

1) Off to on

2) On to off

Power vs. time (frame)

The Power vs. Time (Frame) measures the modulation envelope in the time domain, showing the power of each time slot in an LTE signal.

Setting measure setup

After configuring test parameters as described in the "Configuring test parameters" on page 265, you can continue your measurement. The measurement settings can be saved and recalled as a file.

Procedure

- 1 Press the MEASURE SETUP hot key.
- 2 To set the nominal channel bandwidth to be measured, complete the following steps:
 - a Press the Bandwidth soft key.
 - b Select the bandwidth option from the choices: 1.4 MHz, 3 MHz, 5 MHz, 10 MHz, 15 MHz, and 20 MHz.
- 3 To select the subframe number to be measured, complete the following steps:
 - Press the Subframe No soft key.
 - **b** Enter a value by using the numeric keys. You can also use the rotary knob.
 - c Press the Enter soft key.
- 4 Toggle the Cell ID soft key and select Auto or Manual as desired:

Auto: Lets the instrument detect the Cell ID for the LTE signal automatically.

Manual: Sets a specific Cell ID for the LTE signal manually in order to speed up the synchronization with a BTS.

5 Optional. Press the Miscellaneous soft key, and then do the following as needed:

To select the number of antenna ports, toggle the **MIMO** soft key and select **2x2** or **4x4**. This MIMO (Multiple Input Multiple Output) setting is activated only if the option 031 LTE-Advanced TDD is installed with a license number. If not, the instrument sets this option to 2x2 by default. A 2x1 or 4x1 RF combiner is also required to able to test on MIMO channels.

To assign a antenna port number automatically or manually, press the **Antenna Port** soft key and select the option: **Auto**, **0**, **1**, **2**, and **3**. If the option 031 LTE-Advanced TDD is not installed or if the MIMO is set to 2x2, the antenna ports 2 and 3 are disabled.

To select the cyclic prefix, toggle the Cyclic Prefix soft key and select Normal or

Extended. See "Appendix E – Cyclic prefix table" on page 749 for OFDM parameter details by different bandwidth.

To set the delay, complete the following steps:

- a Press the **Delay** soft key to set the amount of delay in μs.
- **b** Enter a value by using the numeric keys. You can also use the rotary knob.
- c Press the µs soft key.

NOTE

The Delay setting is used only when there is a time offset in the signals to be measured.

Measurement example

Figure 150 Power vs. time (frame) measurement with LTE - TDD signal analyzer

Conducting modulation measurements

Constellation

The Constellation is used to observe some aspects of modulation accuracy and can reveal certain fault mechanisms such as I/Q amplitude imbalance or quadrature imbalance. It displays constellation diagram by modulation types.

Setting measure setup

After configuring test parameters as described in the "Configuring test parameters" on page 265, you can continue your measurement. The measurement settings can be saved and recalled as a file. You can also use JDViewer, PC application software to configure a measure setup, save as a file, and load the file on to the instrument.

- 1 Press the MEASURE SETUP hot key.
- 2 To set the nominal channel bandwidth to be measured, complete the following steps:
 - Press the Bandwidth soft key.

- b Select the bandwidth option from the choices: 1.4 MHz, 3 MHz, 5 MHz, 10 MHz, 15 MHz, and 20 MHz.
- 3 To select the subframe number to be measured, complete the following steps:
 - Press the Subframe No soft key.
 - Enter a value by using the numeric keys. You can also use the rotary knob.

NOTE

For MBMS testing, this subframe number must be neither 0 nor 5 as these subframes 0 and 5 are not available for MBMS and it must be set to the MBMS transmitted channel's subframe number.

- c Press the Enter soft key.
- 4 Optional. Toggle the Cell ID soft key and select Auto or Manual as desired:

Auto: Lets the instrument detect the Cell ID for the LTE signal automatically.

Manual: Sets a specific Cell ID for the LTE signal manually in order to speed up the synchronization with a BTS.

5 Optional. Toggle the CFI soft key and select Auto or Manual as desired:

Auto: Lets the instrument set the number of OFDM symbols used for transmitting PDCCHs in a subframe.

Manual: Sets the number of OFDM symbols manually. The set of OFDM symbols that can be used for PDCCH in a subframe is given by **0**, **2**, **3** or **4** in 1.4 MHz bandwidth and **1**, **2**, or **3** in other bandwidths.

- 6 Optional. Press the PHICH Ng soft key, and then select the option for the number of PHICH groups (Ng): 1/6, 1/2, 1, 2, E-1/6, E-1/2, E-1, or E-2.
- 7 Press the Uplink-Downlink Configuration soft key, and then select the number of uplink/downlink between one and six.
- 8 Optional. Press the **Miscellaneous** soft key, and then do the following as needed:

To select the number of antenna ports, toggle the **MIMO** soft key and select **2x2** or **4x4**. This MIMO (Multiple Input Multiple Output) setting is activated only if the option 031 LTE-Advanced TDD is installed with a license number. If not, the instrument sets this option to 2x2 by default. A 2x1 or 4x1 RF combiner is also required to able to test on MIMO channels.

To assign a antenna port number automatically or manually, press the **Antenna Port** soft key and select the option: **Auto**, **0**, **1**, **2**, and **3**. If the option 031 LTE-Advanced TDD is not installed or if the MIMO is set to 2x2, the antenna ports 2 and 3 are disabled.

To turn the Multimedia Broadcast Multicast Service (MBMS) feature on or off, toggle the **MBMS** soft key and select **On** or **Off**. For proper MBMS testing, you need to set the **Subframe No** with the same PMCH subframe number. If this setting is on, either PMCH or PDSCH appears on the screen depending on the detected channel.

To set the Multicast Broadcast Single Frequency Network (MBSFN) detection automatically or manually for MBMS testing, toggle the **MBSFN** soft key and select **Auto** or **Manual**. An automatically detected or manually entered MBSFN ID appears on the screen.

To set the delay, complete the following steps:

- a Press the **Delay** soft key to set the amount of delay in µs.
- **b** Enter a value by using the numeric keys. You can also use the rotary knob.
- c Press the µs soft key.

NOTE

The Delay setting is used only when there is a time offset in the signals to be measured.

To select the cyclic prefix, toggle the **Cyclic Prefix** soft key and select **Normal** or **Extended**. See "Appendix E – Cyclic prefix table" on page 749 for OFDM parameter details by different bandwidth.

Press the **PDSCH Modulation Type** soft key, and then select the modulation type option: **Auto**, **QPSK**, **16 QAM**, **64 QAM**, **E-TM3.3**, **E-TM3.2**, **E-TM3.1**, **E-TM2**, **E-TM1.2**, and **E-TM1.1**. If two or more modulation types are used in a frame, select **Auto**. If the PDSCH uses the same modulation type in a frame or in a subframe, select a specific modulation type to get more accurate EVM.

NOTE

If you have installed a license for the option **033 LTE-TDD 256 QAM Demodulator** on your CellAdvisor, you will have additional PDSCH modulation types of **256 QAM**, **E-TM3.1a**, and **E-TM2a**.

To set the threshold for PDSCH, complete the following steps:

- Press the PDSCH Threshold soft key.
- **b** Enter a value by using the numeric keys.
- Press the dB soft key.

Toggle the **PDSCH Precoding** soft key between **On** and **Off** to enable or disable the PDSCH precoding.

Measurement example

Figure 151 Constellation measurement with LTE-TDD signal analyzer

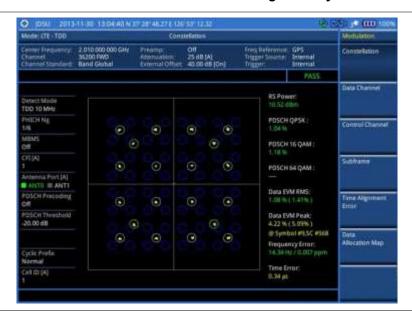


Figure 152 Constellation measurement with LTE-TDD signal analyzer (MBMS On)

NOTE

You can use the *LIMIT* hot key to analyze your measurements with the user-definable limit and Pass/Fail indication. See "Setting limit for modulation tests" on page 299 for more information

Data channel

The Data Channel measures the constellation for the specified resource block as well as the modulation accuracy of each PDSCH at the specified subframe.

Setting measure setup

After configuring test parameters as described in the "Configuring test parameters" on page 265, you can continue your measurement. The measurement settings can be saved and recalled as a file. You can also use JDViewer, PC application software to configure a measure setup, save as a file, and load the file on to the instrument.

Procedure

- 1 Press the **MEASURE SETUP** hot key.
- 2 To set the nominal channel bandwidth to be measured, complete the following steps:
 - Press the Bandwidth soft key.
 - Select the bandwidth option from the choices: 1.4 MHz, 3 MHz, 5 MHz, 10 MHz, 15 MHz, and 20 MHz.
- 3 To select the subframe number to be measured, complete the following steps:
 - a Press the Subframe No soft key.
 - **b** Enter a value by using the numeric keys. You can also use the rotary knob.

NOTE

For MBMS testing, this subframe number must be neither 0 nor 5 as these subframes 0 and 5 are not available for MBMS and it must be set to the MBMS transmitted channel's subframe number.

- c Press the Enter soft key.
- 4 Optional. Toggle the Cell ID soft key and select Auto or Manual as desired:

Auto: Lets the instrument detect the Cell ID for the LTE signal automatically.

Manual: Sets a specific Cell ID for the LTE signal manually in order to speed up the synchronization with a BTS.

5 Optional. Toggle the CFI soft key and select Auto or Manual as desired:

Auto: Lets the instrument set the number of OFDM symbols used for transmitting PDCCHs in a subframe.

Manual: Sets the number of OFDM symbols manually. The set of OFDM symbols that can be used for PDCCH in a subframe is given by **0**, **2**, **3** or **4** in 1.4 MHz bandwidth and **1**, **2**, or **3** in other bandwidths.

- 6 Optional. Press the PHICH Ng soft key, and then select the option for the number of PHICH groups (Ng): 1/6, 1/2, 1, 2, E-1/6, E-1/2, E-1, or E-2.
- 7 Toggle the Event Hold soft key between On and Off to enable or disable the event hold feature. When enabled, the display line for the PDSCH threshold appears. When an event occurs, the measurement is put on hold until you press the HOLD hot key.

NOTE

You can view detailed current resource block on the I-Q diagram, particularly in a dynamic field environment.

- 8 Select More (1/2) > Uplink-Downlink Configuration, and then select the number of uplink/downlink between one and six.
- 9 Optional. Select More (1/2) > Miscellaneous, and then do the following as needed:

To select the number of antenna ports, toggle the **MIMO** soft key and select **2x2** or **4x4**. This MIMO (Multiple Input Multiple Output) setting is activated only if the option 031 LTE-

Advanced TDD is installed with a license number. If not, the instrument sets this option to 2x2 by default. A 2x1 or 4x1 RF combiner is also required to able to test on MIMO channels.

To assign a antenna port number automatically or manually, press the **Antenna Port** soft key and select the option: **Auto**, **0**, **1**, **2**, and **3**. If the option 031 LTE-Advanced TDD is not installed or if the MIMO is set to 2x2, the antenna ports 2 and 3 are disabled.

To turn the Multimedia Broadcast Multicast Service (MBMS) feature on or off, toggle the **MBMS** soft key and select **On** or **Off**. For proper MBMS testing, you need to set the **Subframe No** with the same PMCH subframe number. If this setting is on, either PMCH or PDSCH appears on the screen depending on the detected channel.

To set the Multicast Broadcast Single Frequency Network (MBSFN) detection automatically or manually for MBMS testing, toggle the **MBSFN** soft key and select **Auto** or **Manual**. An automatically detected or manually entered MBSFN ID appears on the screen.

To set the delay, complete the following steps:

- a Press the **Delay** soft key to set the amount of delay in μs.
- **b** Enter a value by using the numeric keys. You can also use the rotary knob.
- c Press the µs soft key.

NOTE

The Delay setting is used only when there is a time offset in the signals to be measured.

To select the cyclic prefix, toggle the **Cyclic Prefix** soft key and select **Normal** or **Extended**. See "Appendix E – Cyclic prefix table" on page 749 for OFDM parameter details by different bandwidth.

Press the **PDSCH Modulation Type** soft key, and then select the modulation type option: **Auto**, **QPSK**, **16 QAM**, **64 QAM**, **E-TM3.3**, **E-TM3.2**, **E-TM3.1**, **E-TM2**, **E-TM1.2**, and **E-TM1.1**. If two or more modulation types are used in a frame, select **Auto**. If the PDSCH uses the same modulation type in a frame or in a subframe, select a specific modulation type to get more accurate EVM.

NOTE

If you have installed a license for the option **033 LTE-TDD 256 QAM Demodulator** on your CellAdvisor, you will have additional PDSCH modulation types of **256 QAM**, **E-TM3.1a**, and **E-TM2a**.

To set the threshold for PDSCH, complete the following steps:

- a Press the PDSCH Threshold soft key.
- **b** Enter a value by using the numeric keys.
- c Press the dB soft key.

Toggle the **PDSCH Precoding** soft key between **On** and **Off** to enable or disable the PDSCH precoding.

Measurement example

Figure 153 Data channel measurement with LTE-TDD signal analyzer

Figure 154 Data channel measurement with LTE-TDD signal analyzer (MBMS On)

NOTE

You can use the *LIMIT* hot key to analyze your measurements with the user-definable limit and Pass/Fail indication. See "Setting limit for modulation tests" on page 299 for more information.

Using marker

You can use the **MARKER** hard key to place a marker on a resource block and display the IQ diagram for the selected resource block.

- 1 Press the MARKER hard key.
- 2 Press the RB Number soft key to select the resource block to be marked.

- **3** Enter the resource block number by using the numeric keys.
- 4 Press the Enter soft key. The marker appears on the selected resource block.
- 5 Toggle the Marker View soft key between On and Off to display or dismiss the result of the selected resource block.

Control channel

The Control Channel measures the constellation for the specified control channel as well as modulation accuracy of the control channel at the specified subframe.

Setting measure setup

After configuring test parameters as described in the "Configuring test parameters" on page 265, you can continue your measurement. The measurement settings can be saved and recalled as a file. You can also use JDViewer, PC application software to configure a measure setup, save as a file, and load the file on to the instrument.

Procedure

- 1 Press the MEASURE SETUP hot key.
- 2 To set the nominal channel bandwidth to be measured, complete the following steps:
 - a Press the Bandwidth soft key.
 - b Select the bandwidth option from the choices: 1.4 MHz, 3 MHz, 5 MHz, 10 MHz, 15 MHz, and 20 MHz.
- 3 To select the subframe number to be measured, complete the following steps:
 - Press the Subframe No soft key.
 - **b** Enter a value by using the numeric keys. You can also use the rotary knob.

NOTE

For MBMS testing, this subframe number must be neither 0 nor 5 as these subframes 0 and 5 are not available for MBMS and it must be set to the MBMS transmitted channel's subframe number.

- c Press the Enter soft key.
- Optional. Toggle the Cell ID soft key and select Auto or Manual as desired:

Auto: Lets the instrument detect the Cell ID for the LTE signal automatically.

Manual: Sets a specific Cell ID for the LTE signal manually in order to speed up the synchronization with a BTS.

5 Optional. Toggle the CFI soft key and select Auto or Manual as desired:

Auto: Lets the instrument set the number of OFDM symbols used for transmitting PDCCHs in a subframe

Manual: Sets the number of OFDM symbols manually. The set of OFDM symbols that can be used for PDCCH in a subframe is given by **0**, **2**, **3** or **4** in 1.4 MHz bandwidth and **1**, **2**, or **3** in other bandwidths.

- 6 Optional. Press the **PHICH Ng** soft key, and then select the option for the number of PHICH groups (Ng): **1/6**, **1/2**, **1**, **2**, **E-1/6**, **E-1/2**, **E-1**, or **E-2**.
- 7 Toggle the EVM Detection Mode soft key and select Single or Combine as desired:

Single: Testing on one single antenna connected to your JD700B series with a cable.

Combine: Testing on multiple antennas connected to your JD700B series with a 2x1 or 4x1 combiner or an antenna.

- 8 Press the Uplink-Downlink Configuration soft key, and then select the number of uplink/downlink between one and six.
- **9** Optional. Press the **Miscellaneous** soft key, and then do the following as needed:

To select the number of antenna ports, toggle the MIMO soft key and select 2x2 or 4x4.

This MIMO (Multiple Input Multiple Output) setting is activated only if the option 031 LTE-Advanced TDD is installed with a license number. If not, the instrument sets this option to 2x2 by default. A 2x1 or 4x1 RF combiner is also required to able to test on MIMO channels.

To assign a antenna port number automatically or manually, press the **Antenna Port** soft key and select the option: **Auto**, **0**, **1**, **2**, and **3**. If the option 031 LTE-Advanced TDD is not installed or if the MIMO is set to 2x2, the antenna ports 2 and 3 are disabled.

To turn the Multimedia Broadcast Multicast Service (MBMS) feature on or off, toggle the **MBMS** soft key and select **On** or **Off**. For proper MBMS testing, you need to set the **Subframe No** with the same PMCH subframe number. If this setting is on, the measurement item "MBSFN RS" appears in the result table.

To set the Multicast Broadcast Single Frequency Network (MBSFN) detection automatically or manually for MBMS testing, toggle the **MBSFN** soft key and select **Auto** or **Manual**. An automatically detected or manually entered MBSFN ID appears on the screen.

To set the delay, complete the following steps:

- Press the Delay soft key to set the amount of delay in μs.
- **b** Enter a value by using the numeric keys. You can also use the rotary knob.
- c Press the µs soft key.

NOTE

The Delay setting is used only when there is a time offset in the signals to be measured.

To select the cyclic prefix, toggle the **Cyclic Prefix** soft key and select **Normal** or **Extended**. See "Appendix E – Cyclic prefix table" on page 749 for OFDM parameter details by different bandwidth.

To set the threshold for PDCCH, complete the following steps:

- Press the PDCCH Threshold soft key.
- **b** Enter a value by using the numeric keys.
- c Press the dB soft key.

Toggle the **PDCCH Mode** soft key and select **REG** to calculate EVM based on Resource Element Group or **Avg** to calculate EVM after adding up all the PDCCH signals from one subframe.

Measurement example

Figure 155 Control channel measurement with LTE-TDD signal analyzer

Figure 156 Control channel measurement with LTE-TDD signal analyzer (MBMS On)

NOTE

You can use the *LIMIT* hot key to analyze your measurements with the user-definable limit and Pass/Fail indication. See "Setting limit for modulation tests" on page 299 for more information.

Using marker

You can use the **MARKER** hard key to place a marker on a resource block and display the IQ diagram for the selected resource block.

Procedure

- 1 Press the MARKER hard key.
- 2 Press the Channel soft key to select the channel to be displayed in the IQ diagram. The channel P-SS is selected by default.
- **3** Turn the rotary knob to move the highlight from one to another in the channel summary table.
- 4 Toggle the Marker View soft key between On and Off to display or dismiss the result of the selected channel.

Subframe

The Subframe measures the modulation accuracy of all the data and control channels at the specified subframe (1 ms).

Setting measure setup

After configuring test parameters as described in the "Configuring test parameters" on page 265, you can continue your measurement. The measurement settings can be saved and recalled as a file. You can also use JDViewer, PC application software to configure a measure setup, save as a file, and load the file on to the instrument.

Procedure

1 Press the **MEASURE SETUP** hot key.

- 2 To set the nominal channel bandwidth to be measured, complete the following steps:
 - a Press the Bandwidth soft key.
 - b Select the bandwidth option from the choices: 1.4 MHz, 3 MHz, 5 MHz, 10 MHz, 15 MHz, and 20 MHz.
- 3 To select the subframe number to be measured, complete the following steps:
 - Press the Subframe No soft key.
 - **b** Enter a value by using the numeric keys. You can also use the rotary knob.

NOTE

For MBMS testing, this subframe number must be neither 0 nor 5 as these subframes 0 and 5 are not available for MBMS and it must be set to the MBMS transmitted channel's subframe number.

- c Press the Enter soft key.
- 4 Optional. Toggle the Cell ID soft key and select Auto or Manual as desired:

Auto: Lets the instrument detect the Cell ID for the LTE signal automatically.

Manual: Sets a specific Cell ID for the LTE signal manually in order to speed up the synchronization with a BTS.

5 Optional. Toggle the CFI soft key and select Auto or Manual as desired:

Auto: Lets the instrument set the number of OFDM symbols used for transmitting PDCCHs in a subframe

Manual: Sets the number of OFDM symbols manually. The set of OFDM symbols that can be used for PDCCH in a subframe is given by **0**, **2**, **3** or **4** in 1.4 MHz bandwidth and **1**, **2**, or **3** in other bandwidths.

- 6 Optional. Press the PHICH Ng soft key, and then select the option for the number of PHICH groups (Ng): 1/6, 1/2, 1, 2, E-1/6, E-1/2, E-1, or E-2.
- 7 Toggle the EVM Detection Mode soft key and select Single or Combine as desired:

Single: Testing on one single antenna connected to your JD700B series with a cable.

Combine: Testing on multiple antennas connected to your JD700B series with a 2x1 or 4x1 combiner or an antenna.

- 8 Press the **Uplink-Downlink Configuration** soft key, and then select the number of uplink/downlink between one and six.
- 9 Optional. Press the Miscellaneous soft key, and then do the following as needed:

To select the number of antenna ports, toggle the **MIMO** soft key and select **2x2** or **4x4**. This MIMO (Multiple Input Multiple Output) setting is activated only if the option 031 LTE-Advanced TDD is installed with a license number. If not, the instrument sets this option to 2x2 by default. A 2x1 or 4x1 RF combiner is also required to able to test on MIMO channels.

To assign a antenna port number automatically or manually, press the **Antenna Port** soft key and select the option: **Auto**, **0**, **1**, **2**, and **3**. If the option 031 LTE-Advanced TDD is not installed or if the MIMO is set to 2x2, the antenna ports 2 and 3 are disabled.

To turn the Multimedia Broadcast Multicast Service (MBMS) feature on or off, toggle the **MBMS** soft key and select **On** or **Off**. For proper MBMS testing, you need to set the **Subframe No** with the same PMCH subframe number. If this setting is on, the measurement item "MBSFN RS" appears in the result table and either PMCH or PDSCH appears as well depending on the detected channel.

To set the Multicast Broadcast Single Frequency Network (MBSFN) detection automatically or manually for MBMS testing, toggle the **MBSFN** soft key and select **Auto** or **Manual**. An automatically detected or manually entered MBSFN ID appears on the screen.

To set the delay, complete the following steps:

- a Press the **Delay** soft key to set the amount of delay in µs.
- **b** Enter a value by using the numeric keys. You can also use the rotary knob.
- c Press the µs soft key.

NOTE

The Delay setting is used only when there is a time offset in the signals to be measured.

To select the cyclic prefix, toggle the Cyclic Prefix soft key and select Normal or

Extended. See "Appendix E – Cyclic prefix table" on page 749 for OFDM parameter details by different bandwidth.

Press the **PDSCH Modulation Type** soft key, and then select the modulation type option: **Auto**, **QPSK**, **16 QAM**, **64 QAM**, **E-TM3.3**, **E-TM3.2**, **E-TM3.1**, **E-TM2**, **E-TM1.2**, and **E-TM1.1**. If two or more modulation types are used in a frame, select **Auto**. If the PDSCH uses the same modulation type in a frame or in a subframe, select a specific modulation type to get more accurate EVM.

NOTE

If you have installed a license for the option **033 LTE-TDD 256 QAM Demodulator** on your CellAdvisor, you will have additional PDSCH modulation types of **256 QAM**, **E-TM3.1a**, and **E-TM2a**.

To set the threshold for PDSCH, complete the following steps:

- a Press the PDSCH Threshold soft key.
- **b** Enter a value by using the numeric keys.
- Press the dB soft key.

To set the threshold for PDCCH, complete the following steps:

- a Press the PDCCH Threshold soft key.
- **b** Enter a value by using the numeric keys.
- c Press the dB soft key.

Toggle the **PDCCH Mode** soft key and select **REG** to calculate EVM based on Resource Element Group or **Avg** to calculate EVM after adding up all the PDCCH signals from one subframe.

Toggle the **PDSCH Precoding** soft key between **On** and **Off** to enable or disable the PDSCH precoding.

Measurement example

Figure 157 Subframe measurement with LTE-TDD signal analyzer

Figure 158 Subframe measurement with LTE-TDD signal analyzer (Chart On)

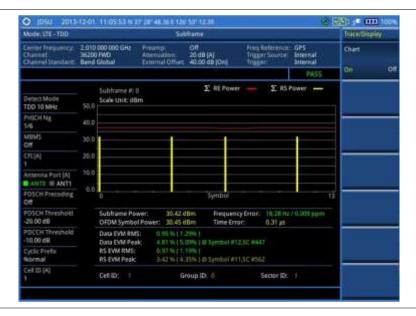


Figure 159 Subframe measurement with LTE-TDD signal analyzer (MBMS On)

NOTE

You can use the *LIMIT* hot key to analyze your measurements with the user-definable limit and Pass/Fail indication. See "Setting limit for modulation tests" on page 299 for more information.

Setting display

You can use the TRACE/DISPLAY hard key to view your measurement result with the chart.

- 1 Press the TRACE/DISPLAY hard key.
- 2 Toggle the Chart soft key between On and Off to display or dismiss the chart. If this setting is on, the MARKER hard key is activated.

Using marker

If you turn the Chart view on, you can use the MARKER hard key to place the marker at a specific symbol.

Procedure

- 1 Press the MARKER hard key.
- 2 Toggle the Marker View soft key between On and Off to display or dismiss the marker on the chart
- 3 Press the Symbol soft key to select the symbol number, to which the marker is placed.
- **4** Enter a value by using the numeric keys.
- 5 Press the Enter soft key.

Time alignment error

In eNode B supporting Tx Diversity transmission, signals are transmitted from two or more antennas. These signals shall be aligned. The time alignment error in Tx diversity is specified as the delay between the signals from two antennas at the antenna ports.

Setting measure setup

After configuring test parameters as described in the "Configuring test parameters" on page 265, you can continue your measurement. The measurement settings can be saved and recalled as a file. You can also use JDViewer, PC application software to configure a measure setup, save as a file, and load the file on to the instrument.

Procedure

- 1 Press the **MEASURE SETUP** hot key.
- 2 To set the nominal channel bandwidth to be measured, complete the following steps:
 - a Press the Bandwidth soft key.
 - b Select the bandwidth option from the choices: 1.4 MHz, 3 MHz, 5 MHz, 10 MHz, 15 MHz, and 20 MHz.
- 3 Optional. Toggle the Cell ID soft key and select Auto or Manual as desired:

Auto: Lets the instrument detect the Cell ID for the LTE signal automatically.

Manual: Sets a specific Cell ID for the LTE signal manually in order to speed up the synchronization with a BTS.

4 Optional. Press the Miscellaneous soft key, and then do the following as needed:

To select the number of antenna ports, toggle the **MIMO** soft key and select **2x2** or **4x4**. This MIMO (Multiple Input Multiple Output) setting is activated only if the option 031 LTE-Advanced TDD is installed with a license number. If not, the instrument sets this option to 2x2 by default. A 2x1 or 4x1 RF combiner is also required to able to test on MIMO channels.

To assign a antenna port number automatically or manually, press the **Antenna Port** soft key and select the option: **Auto**, **0**, **1**, **2**, and **3**. If the option 031 LTE-Advanced TDD is not installed or if the MIMO is set to 2x2, the antenna ports 2 and 3 are disabled.

To set the delay, complete the following steps:

- a Press the **Delay** soft key to set the amount of delay in µs.
- **b** Enter a value by using the numeric keys. You can also use the rotary knob.
- c Press the µs soft key.

NOTE

The Delay setting is used only when there is a time offset in the signals to be measured.

To select the cyclic prefix, toggle the Cyclic Prefix soft key and select Normal or

Extended. See "Appendix E – Cyclic prefix table" on page 749 for OFDM parameter details by different bandwidth.

Measurement example

Figure 160 Time alignment error measurement with LTE-TDD signal analyzer

NOTE

You can use the *LIMIT* hot key to analyze your measurements with the user-definable limit and Pass/Fail indication. See "Setting limit for modulation tests" on page 299 for more information.

Data allocation map

The Data Allocation Map function represents data allocation as a mapping.

Setting measure setup

After configuring test parameters as described in the "Configuring test parameters" on page 265, you can continue your measurement. The measurement settings can be saved and recalled as a file. You can also use JDViewer, PC application software to configure a measure setup, save as a file, and load the file on to the instrument.

Procedure

- 1 Press the **MEASURE SETUP** hot key.
- 2 To set the nominal channel bandwidth to be measured, complete the following steps:
 - Press the Bandwidth soft key.
 - b Select the bandwidth option from the choices: 1.4 MHz, 3 MHz, 5 MHz, 10 MHz, 15 MHz, and 20 MHz.
- 3 To select the subframe number to be measured, complete the following steps:
 - a Press the Subframe No soft key.
 - **b** Enter a value by using the numeric keys. You can also use the rotary knob.

NOTE

For MBMS testing, this subframe number must be neither 0 nor 5 as these subframes 0 and 5 are not available for MBMS and it must be set to the MBMS transmitted channel's

subframe number.

- c Press the Enter soft key.
- 4 To set the threshold for PDSCH, complete the following steps:
 - Press the PDSCH Threshold soft key.
 - **b** Enter a value by using the numeric keys.
 - c Press the dB soft key.
- 5 Optional. Toggle the Cell ID soft key and select Auto or Manual as desired:

Auto: Lets the instrument detect the Cell ID for the LTE signal automatically.

Manual: Sets a specific Cell ID for the LTE signal manually in order to speed up the synchronization with a BTS.

6 Optional. Press the Miscellaneous soft key, and then do the following as needed:

To select the number of antenna ports, toggle the **MIMO** soft key and select **2x2** or **4x4**. This MIMO (Multiple Input Multiple Output) setting is activated only if the option 031 LTE-Advanced TDD is installed with a license number. If not, the instrument sets this option to 2x2 by default. A 2x1 or 4x1 RF combiner is also required to able to test on MIMO channels.

To assign a antenna port number automatically or manually, press the **Antenna Port** soft key and select the option: **Auto**, **0**, **1**, **2**, and **3**. If the option 031 LTE-Advanced TDD is not installed or if the MIMO is set to 2x2, the antenna ports 2 and 3 are disabled.

To turn the Multimedia Broadcast Multicast Service (MBMS) feature on or off, toggle the **MBMS** soft key and select **On** or **Off**. For proper MBMS testing, you need to set the **Subframe No** with the same PMCH subframe number. If this setting is on, either PMCH or PDSCH appears on the screen depending on the detected channel.

To set the Multicast Broadcast Single Frequency Network (MBSFN) detection automatically or manually for MBMS testing, toggle the **MBSFN** soft key and select **Auto** or **Manual**. An automatically detected or manually entered MBSFN ID appears on the screen.

To select the cyclic prefix, toggle the **Cyclic Prefix** soft key and select **Normal** or **Extended**. See "Appendix E – Cyclic prefix table" on page 749 for OFDM parameter details by different bandwidth.

Measurement example

Figure 161 Data allocation map measurement with LTE-TDD signal analyzer

Figure 162 Data allocation map measurement with LTE-TDD signal analyzer (MBMS On)

Setting display

You can use the TRACE/DISPLAY hard key to change the display mode to PDSCH, PMCH, or both.

Procedure

- 1 Press the TRACE/DISPLAY hard key.
- 2 Press the Display Channel soft key.
- 3 Select the display mode from the choice: PDSCH, PMCH, and Both.

Using marker

You can use the MARKER hard key to place the marker at a specific resource block and subframe.

- 1 Press the MARKER hard key.
- 2 Toggle the Marker View soft key between On and Off to display or dismiss the marker on the chart.
- 3 To select the resource block number, complete the following steps:
 - a Press the RB Number soft key.
 - **b** Enter the resource block number to select by using the numeric keys. You can also use the rotary knob to move the marker side by side.
 - c Press the Enter soft key.
- 4 To select the subframe block number, complete the following steps:
 - a Press the Subframe No soft key.
 - **b** Enter the subframe number to select by using the numeric keys. You can also use the rotary knob to move the marker up and down.
 - c Press the Enter soft key.

Setting limit for modulation tests

- 1 Press the *LIMIT* hot key.
- 2 Press the Modulation Test Limits soft key to set the limits.
- 3 Select the test item(s) and set the limit(s) depending on your selected measurement mode:

To set the limit for	Select	Set
Frequency error	Frequency Error	High Limit, Low Limit
PDSCH error vector magnitude if MBMS is off	EVM > PDSCH EVM	High Limit (QPSK) High Limit (16 QAM) High Limit (64 QAM) High Limit (256 QAM)*
PMCH error vector magnitude if MBMS is on and a PMCH is detected	EVM > PMCH EVM	High Limit (QPSK) High Limit (16 QAM) High Limit (64 QAM) High Limit (256 QAM)*
RMS for data error vector magnitude	EVM > Data EVM RMS	High Limit
Peak for data error vector magnitude	EVM> Data EVM Peak	High Limit
RS error vector magnitude	EVM > RS EVM	High Limit
P-SS error vector magnitude	EVM > P-SS EVM	High Limit
S-SS error vector magnitude	EVM > S-SS EVM	High Limit
Downlink RS power	Power > DL RS Power	High Limit, Low Limit
P-SS power	Power > P-SS Power	High Limit, Low Limit
S-SS power	Power > S-SS Power	High Limit, Low Limit
PBCH power	Power > PBCH Power	High Limit, Low Limit
Subframe power	Power > Subframe Power	High Limit, Low Limit
OFDM symbol power	Power > OFDM Symbol Power	High Limit, Low Limit
Time alignment error for MIMO	Time Alignment Error > MIMO	High Limit
Time alignment error for aggregation of component carriers (intra-band contiguous, intra-band non-contiguous, and inter-band)	Time Alignment Error > Carrier Aggregation	Intra Cont Intra Non-cont Inter Band
Time error	Time Error	High Limit, Low Limit
I-Q origin offset	IQ Origin Offset	High Limit

- 4 Optional. You can enable alarm sound that goes off if the measurement falls outside of the limit. Toggle the **Beep** soft key between **On** and **Off** to enable or disable the beep sound.
- **5** Optional. Go to **SAVE/LOAD** > **Save**, and then select **Limit** to save the limit settings. See "Using save" on page 34 for more information.

Performing auto measurements

Conformance test

The Conformance Test is to test if eNode-B meets some specified standards that have been developed for verification. Its test procedure and test setups have been developed by 3GPP. Test results can be saved as a .csv file type.

Setting limit for conformance test

You can set test limits for test item(s) in the auto measurement. Turning the test limit on for a test item makes the test item included in the conformance test.

Procedure

- 1 Press the LIMIT hot key.
- 2 To set the limit for BTS output power, complete the following steps:
 - a Press the BTS Output Power soft key.
 - **b** Toggle the **Test Limits** soft key between **On** and **Off** to enable or disable the limit.
 - c Press the High Limit soft key.
 - d Enter a value for the upper limit, and then press the dBm unit soft key.
 - e Press the Low Limit soft key.
 - f Enter a value for the lower limit, and then press the **dBm** unit soft key.
- **3** To set the limit for total power dynamic, complete the following steps:
 - a Press the Total Power Dynamic soft key.
 - **b** Toggle the **Test Limits** soft key between **On** and **Off** to enable or disable the limit.
 - c Press the Low Limit soft key.
 - **d** Enter a value for the lower limit, and then press the **dBm** unit soft key.
- **4** To set the limit for on/off power, press the **On/Off Power** soft key, and then do the following as needed:

To set the limit for	Select	Set
Off power	Off Power	High Limit
Transition period	Transition Period	High Limit

5 To verify signal quality, press the Signal Quality soft key, and then do the following as needed:

To set the limit for	Select	Set
Frequency error	Frequency Error	High Limit, Low Limit
Error vector magnitude	EVM	High Limit (QPSK) High Limit (16 QAM) High Limit (64 QAM)
Time alignment error	Time Alignment Error	High Limit
RS power	RS Power	High Limit, Low Limit

6 To verify unwanted emissions, press the Unwanted Emissions soft key, and then do the following as needed:

To set the limit for	Select	Set
Occupied bandwidth	Occupied BW	High Limit
Adjacent channel power ratio	ACLR	
Spectrum emission mask	SEM	Mask Type

Spurious emissions Spurious Emission	s Range Table
--------------------------------------	---------------

- 7 Optional. You can enable alarm sound that goes off if the measurement falls outside of the limit. Toggle the **Beep** soft key between **On** and **Off** to enable or disable the beep sound.
- 8 Optional. Go to **SAVE/LOAD** > **Save**, and then select **Limit** to save the limit settings. See "Using save" on page 34 for more information.

Setting measure setup

After setting frequency as described in the "Configuring test parameters" on page 265, you can continue your measurement.

Procedure

- 1 Press the MEASURE SETUP hot key.
- 2 Press the Bandwidth soft key.
- 3 Select the nominal channel bandwidth to be measured, from the choices: 1.4 MHz, 3 MHz, 5 MHz, 10 MHz, 15 MHz, and 20 MHz.
- 4 Press the Sector soft key, and then select the sector option: Alpha, Beta, or Gamma.
- 5 To set external offset, complete the following steps:
 - Toggle the External Offset soft key and select On.
 - **b** Enter a value by using the numeric keys.
 - c Press the dB soft key.
- 6 To save your settings and results, go to SAVE/LOAD > Save and then perform functions as you desire. See "Using save" on page 34 for more information.
- 7 Press the Run Test soft key to start to run a test. The Auto Measure Results window appears at the end of the test.
- When prompted on the screen, connect the cable from the Spectrum Analyzer RF In port of the instrument to either Antenna Port 0 or Antenna Port 1 of the eNode-B, and then change the TM mode on the eNode-B side.
- 9 Press the Continue soft key to continue testing.
- **10** Repeat the steps **8-9** until completion of the test. A conformance test report appears at the end of the test.
- 11 Optional. To stop running the test, press the **Abort** soft key.

Maintenance test

The Auto Measure function of the JD700B series allows a complete signal profiling covering RF characterization and modulation quality parameters of up to 20 different carriers, particularly useful on an overlay architecture where base stations are transmitting in different frequencies.

Following settings are required only when you run the Auto Measure Maintenance Test on the instrument using "Current" configuration setting. Additional settings are not required when you run Auto Measure using a scenario generated in the PC application software, JDViewer.

Setting limit for maintenance test

You can set test limits for test item(s) in the auto measurement.

- 1 Press the *LIMIT* hot key.
- 2 Press the RF Test Limits soft key, and then enable test limits as desired.

- 3 Press the PvsT Test Limits soft key, and then enable test limits as desired.
- 4 Press the Modulation Test Limits soft key, and then enable test limits as desired.
- 5 Optional. You can enable alarm sound that goes off if the measurement falls outside of the limit. Toggle the Beep soft key between On and Off to enable or disable the beep sound.
- 6 Optional. Go to SAVE/LOAD > Save, and then select Limit to save the limit settings. See "Using save" on page 34 for more information.

NOTE

You can use the **Allowed % Change** soft key for each test item to compare two measurement values displayed in the result table. This requires setting the **Display** mode to **Compare** in advance.

Setting measure setup

After configuring test parameters as described in the "Configuring test parameters" on page 265, you can continue your measurement. The measurement settings can be saved and recalled as a file. You can also use JDViewer, PC application software to configure a measure setup, save as a file, and load the file on to the instrument.

Procedure

- 1 Press the **MEASURE SETUP** hot key.
- 2 Toggle the Configuration soft key and select the configuration option:

Current: Lets the instrument use current frequency (single carrier) and determine pass or fail based on the instrument's limit settings in Auto Measure.

Scenario: Runs a test with a programmed scenario in JDViewer.

The Scenario menu becomes activated.

- 3 To load a scenario, press the Scenario soft key, and then select a scenario file to load.
- **4** Toggle the **Test Time** soft key and select the test time option:

Now: Lets the instrument run a test only once.

Schedule: Lets the instrument repeat tests as defined in the Set Timing.

The Set Timing menu becomes activated.

- **5** To define a schedule for an auto measurement, complete the following steps:
 - a Press the Set Timing soft key.
 - b Press the Start Time (HH:MM) soft key.
 - **c** Enter the time in the HH:MM format, and then press the **Enter** soft key.
 - d Press the Stop Time (HH:MM) soft key.
 - e Enter the time in the HH:MM format, and then press the Enter soft key.
 - f Press the **Time Interval** soft key.
 - g Enter the amount of time in minutes, and then press the Enter soft key.
- 6 Press the **Settings** soft key, and then set the following:
 - Press the Bandwidth soft key, and then select the nominal channel bandwidth to be measured, from the choices: 1.4 MHz, 3 MHz, 5 MHz, 10 MHz, 15 MHz, and 20 MHz.
 - Toggle the Cell ID soft key and select Auto or Manual as desired:

Auto: Lets the instrument detect the Cell ID for the LTE signal automatically.

Manual: Sets a specific Cell ID for the LTE signal manually in order to speed up the synchronization with a BTS.

- Press the **MIMO** soft key, and then select the antenna number option: **2x2** or **4x4**. This MIMO (Multiple Input Multiple Output) setting is activated only if the option 031 LTE-Advanced TDD is installed with a license number. If not, the instrument sets this option to 2x2 by default. A 2x1 or 4x1 RF combiner is also required to able to test on MIMO channels.
- d Press the **Antenna Port** soft key, and then select the option: **Auto**, **0**, **1**, **2**, or **3**. If the option 031 LTE-Advanced TDD is not installed or if the MIMO is set to 2x2, the

antenna ports 2 and 3 are disabled.

- e Toggle the External Offset soft key and select On.
- f Enter a value by using the numeric keys, and then press the **dB** soft key.
- To turn the Multimedia Broadcast Multicast Service (MBMS) feature on or off, toggle the **MBMS** soft key and select **On** or **Off**. For proper MBMS testing, you need to set the Subframe No with the same PMCH subframe number.
- h To set the Multicast Broadcast Single Frequency Network (MBSFN) detection automatically or manually for MBMS testing, toggle the **MBSFN** soft key and select **Auto** or **Manual**. An automatically detected or manually entered MBSFN ID appears on the screen.
- 7 To save your settings and results, go to **SAVE/LOAD** > **Save** and then perform functions as you desire. See "Using save" on page 34 for more information.
- 8 Press the Run Test soft key to start to run a test. The Auto Measure Results window appears at the end of the test.
- 9 To stop running the test, press the Abort soft key.
- 10 To change the view on the screen during the test, press the Display and then select the view option from the following choices:

Screen: You can view each measurement screen as the test progresses.

Results: You can view a measurement result table as the test progresses.

Settings: You can view a measurement setting table as the test progresses.

Setting display

After completion of the auto measurement, the screen menu changes to Trace/Display so that you can view the results in different forms.

Procedure

1 Toggle the **Display** soft key and select the display option:

Result: You can view the result table. The Display Result menu becomes activated.

Settings: You can view the measurement settings for the auto measurement.

2 Toggle the Display Result soft key and select the display result option:

Full: You can view detailed measurement readings with the pass/fail indication.

Quick: You can view only the Pass/Fail results.

Compare: You can compare two measurement values for each test time with the Allowed % Change setting on. You can view results vs. factory-defined or user-defined references.

- 3 To view the measurement results for a different carrier, press the View Carrier soft key and then select the carrier number to view.
- 4 Press the **Replace Reference** soft key to replace existing reference values for comparison with new measurement data.
- 5 Press the Load From soft key to select the location from which references file to be loaded.

Signal performance test

Unlike the other auto measurement tests, the Signal Performance Test runs measurements continuously.

Setting limit for signal performance test

You can set test limits for test item(s) in the auto measurement.

Procedure

1 Press the *LIMIT* hot key.

- 2 Press the RF Test Limits > Channel Power soft key, and then set the limits for the channel power. Other RF test items are not used in the signal performance test.
- 3 Press the Modulation Test Limits soft key, and then enable test limits as desired.
- **4** Optional. You can enable alarm sound that goes off if the measurement falls outside of the limit. Toggle the **Beep** soft key between **On** and **Off** to enable or disable the beep sound.
- 5 Optional. Go to SAVE/LOAD > Save, and then select Limit to save the limit settings. See "Using save" on page 34 for more information.

Setting measure setup

After configuring test parameters as described in the "Configuring test parameters" on page 265, you can continue your measurement. The measurement settings can be saved and recalled as a file. You can also use JDViewer, PC application software to configure a measure setup, save as a file, and load the file on to the instrument.

Procedure

- 1 Press the **MEASURE SETUP** hot key.
- 2 Toggle the Cell ID soft key and select Auto or Manual as desired:

Auto: Lets the instrument detect the Cell ID for the LTE signal automatically.

Manual: Sets a specific Cell ID for the LTE signal manually in order to speed up the synchronization with a BTS.

- 3 Press the **MIMO** soft key, and then select the antenna number option: **2x2** or **4x4**. This MIMO (Multiple Input Multiple Output) setting is activated only if the option 031 LTE-Advanced TDD is installed with a license number. If not, the instrument sets this option to 2x2 by default. A 2x1 or 4x1 RF combiner is also required to able to test on MIMO channels.
- 4 Press the **Antenna Port** soft key, and then select the option: **Auto**, **0**, **1**, **2**, or **3**. If the option 031 LTE-Advanced TDD is not installed or if the MIMO is set to 2x2, the antenna ports 2 and 3 are disabled.
- 5 Press the Bandwidth soft key, and then select the nominal channel bandwidth to be measured, from the choices: 1.4 MHz, 3 MHz, 5 MHz, 10 MHz, 15 MHz, and 20 MHz.
- Toggle the **RF Profile** soft key between **On** and **Off** to turn on or off the RF profiling such as channel power and subframe frequency error.
- 7 Toggle the **Modulation Profile** soft key between **On** and **Off** to turn on or off the modulation profiling such as P-SS, S-SS, Data QPSK, Data 16 QAM, and Data 64 QAM.
- **8** Toggle the **MIMO Profile** soft key between **On** and **Off** to turn on or off the MIMO profiling such as TX1 RS0, TX2 RS1, and time alignment error.
- 9 Toggle the External Offset soft key and select On to set the external offset value.
- 10 To save your settings and results, go to SAVE/LOAD > Save and then perform functions as you desire. See "Using save" on page 34 for more information.

DAS test

The Distributed Antenna System (DAS) testing enables you to check the degradation of performance in the signal transmission from a radio band to antennas distributed from it. You can save measurement values at both the radio band and antennas and then compare results with percentage of changes. You can also save test results in the .csv file format for ease of analysis.

Setting measure setup

Procedure

1 Press the MEASURE SETUP hot key.

- **2** Press the **Settings** soft key and then set the following;
 - Press the Bandwidth soft key and then select the nominal channel bandwidth to be measured from the choices: 1.4 MHz, 3 MHz, 5 MHz, 10 MHz, 15 MHz, and 20 MHz.
 - b Press the MIMO soft key, and then select the antenna number option: 2x2 or 4x4. This MIMO (Multiple Input Multiple Output) setting is activated only if the option 031 LTE-Advanced TDD is installed with a license number. If not, the instrument sets this option to 2x2 by default. A 2x1 or 4x1 RF combiner is also required to able to test on MIMO channels.
 - c Toggle the Cell ID soft key and select Auto or Manual as desired:
 - Auto: Lets the instrument detect the Cell ID for the LTE signal automatically.
 - **Manual:** Sets a specific Cell ID for the LTE signal manually in order to speed up the synchronization with a BTS.
 - d Press the **Antenna Port** soft key, and then select the option: **Auto**, **0**, **1**, **2**, or **3**. If the option 031 LTE-Advanced TDD is not installed or if the MIMO is set to 2x2, the antenna ports 2 and 3 are disabled.
 - Toggle the External Offset soft key and select On to set the external offset value.
 - f To turn the Multimedia Broadcast Multicast Service (MBMS) feature on or off, toggle the **MBMS** soft key and select **On** or **Off**.
 - To set the Multicast Broadcast Single Frequency Network (MBSFN) detection automatically or manually for MBMS testing, toggle the **MBSFN** soft key and select **Auto** or **Manual**. An automatically detected or manually entered MBSFN ID appears on the screen.
- 3 To save your settings, go to SAVE/LOAD > Save > Save Setup and then perform functions as you desire. See "Using save" on page 34 for more information.
- 4 Press the Continue soft key to do the reference test first or press the Skip Reference Test soft key if you already saved test results from the radio band under test.
- 5 Press the **FREQ/DIST** hard key and then set the frequency to be measured. See "Setting frequency" on page 266 for more information.
- 6 Press the PREV hard key.
- 7 Press the **Limit** soft key and then set the limits and allowed percentage change for each test item. See "Maintenance test" on page 301 for more information on setting limits.
- 8 Keep pressing the PREV hard key until you see the Run Test soft key.
- **9** Press the **Run Test** soft key. The instrument runs specified tests to gather reference measurement values. The measurement table appears when the reference test is done.
- **10** Press the **Continue** soft key to run the testing on an antenna (Ant 1).
- 11 Optional. To change the settings such as External Offset, press the Settings and then change the settings as needed.
- 12 Press the **Continue** soft key.

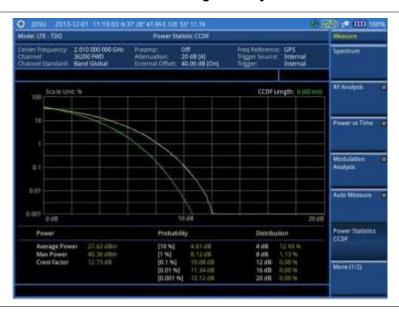
 The instrument runs the testing on Ant 1. The Ant 1 tab appears with the updated result table when the test is done.
- 13 To run the testing on the next antenna (Ant 2), press the **Run Test** soft key and then repeat the steps 11-12. You can do the testing on up to 10 distributed antennas for one radio band.
- **14** To view test results for each antenna, press the **Select Antenna** soft key and then select the antenna tab number to display on the screen.
- **15** Optional. Press the **Delete** Test soft key to delete the selected antenna tab.
- 16 Optional. Press the Retest Reference soft key to obtain reference measurement values again.
- 17 Optional. To save your measurement results, go to **SAVE/LOAD** > **Save** and then perform functions as you desire. See "Using save" on page 34 for more information.

Measurement example

Figure 163 DAS measurement with LTE-TDD signal analyzer

Performing power statistics CCDF measurements

The Power Statistics Complementary Cumulative Distribution Function (CCDF) measurement characterizes the power statistics of the input signal. It provides PAR (Peak to Average power Ratio) versus different probabilities.


Setting measure setup

After configuring test parameters as described in the "Configuring test parameters" on page 265, you can continue your measurement. The measurement settings can be saved and recalled as a file. You can also use JDViewer, PC application software to configure a measure setup, save as a file, and load the file on to the instrument.

- 1 Press the **MEASURE SETUP** hot key.
- 2 Press the CCDF Length soft key to set the length of the CCDF.
- **3** Enter a value between 1 and 100 by using the numeric keys. You can also use the rotary knob.
- 4 Press the Enter soft key.

Measurement example

Figure 164 CCDF measurement with LTE-TDD signal analyzer

Performing carrier aggregation measurements

Carrier aggregation enables a maximum of five multiple LTE carriers to be used together in order to provide high data rate required for LTE-Advanced. Component carriers to be aggregated can be intra-band contiguous, intra-band non-contiguous, or inter-band. The JD700B series provides carrier aggregation measurements supporting for all the different modes with carrier aggregation bands added to the channel standard. This functionality is activated if the license for the option 031 LTE-Advanced TDD is installed.

Setting measure setup

After configuring test parameters as described in the "Configuring test parameters" on page 265, you can continue your measurement. The measurement settings can be saved and recalled as a file. You can also use JDViewer, PC application software to configure a measure setup, save as a file, and load the file on to the instrument.

- 1 Press the **MEASURE SETUP** hot key.
- 2 To configure parameters for up to 5 component carriers, complete the following steps:
 - a Press the CA Configuration soft key.
 The component carrier configuration window appears.
 - b Press the CA Range soft key.
 - c Enter the number of the component carrier to be set between one and five.
 - d Press the Enter soft key.
 - e Toggle the **Turn On** soft key, and then select **On** to set parameters and view the results for the selected component carrier on the screen or **Off** to turn it off.
 - f Set the following parameters as needed:
 - Center Frequency, Channel, Bandwidth, Cell ID, CFI, PHICH Ng, Antenna Port, MBMS On/Off, Cyclic Prefix, and PDSCH Modulation Type
 - g To set more component carriers, repeat the steps c-f.
- 3 Press the MEASURE SETUP hot key again.

4 Toggle the **EVM Detection Mode** soft key and select **Single** or **Combine** as desired:

Single: Testing on one single antenna connected to your JD700B series with a cable.

Combine: Testing on multiple antennas connected to your JD700B series with a 2x1 or 4x1 combiner or an antenna.

5 To select the subframe number to be measured, do one of the following:

If the **EVM Detection Mode** is set to **Single**, press the **Subframe No** soft key and then set the subframe number.

NOTE

For MBMS testing, this subframe number must be neither 0 nor 5 as these subframes 0 and 5 are not available for MBMS and it must be set to the MBMS transmitted channel's subframe number.

If the **EVM Detection Mode** is set to **Combine**, toggle the **Subframe No** soft key and then select **0** or **5**.

- **6** To set the threshold for PDSCH, complete the following steps:
 - Press the PDSCH Threshold soft key.
 - Enter a value by using the numeric keys.
 - c Press the dB soft key.
- 7 Toggle the PDSCH Precoding soft key between On and Off to enable or disable the PDSCH precoding.
- 8 To select the number of antenna ports, toggle the **MIMO** soft key and select **2x2** or **4x4**. This MIMO (Multiple Input Multiple Output) setting is activated only if the option 031 LTE-Advanced TDD is installed with a license number. If not, the instrument sets this option to 2x2 by default. A 2x1 or 4x1 RF combiner is also required to able to test on MIMO channels.

Setting display

You can use the TRACE/DISPLAY hard key to select modulation analysis or spectrum analysis.

- 1 Press the TRACE/DISPLAY hard key.
- 2 Toggle the Display soft key and select MA for modulation analysis or SA for spectrum analysis. The screen changes according to the selected option.

Measurement example

Figure 165 Carrier aggregation measurement with LTE-TDD signal analyzer (MA)

Figure 166 Carrier aggregation measurement with LTE-TDD signal analyzer (SA)

NOTE

You can use the *LIMIT* hot key to analyze your measurements with the user-definable limit and Pass/Fail indication. See "Setting limit for modulation tests" on page 299 for more information.

Using marker

You can use the MARKER hard key to place the marker at a specific channel.

- 1 Press the MARKER hard key.
- 2 Toggle the Marker View soft key between On and Off to display or dismiss the marker.

- 3 Press the **Channel** soft key to select the channel to be displayed on the IQ diagram.
- 4 Use the rotary knob to move and select an item under EVM.

Conducting LTE-TDD OTA measurements

The TDD LTE Over The Air (OTA) measurement has Channel Scanner, ID Scanner, Multipath Profile, Datagram, and Control Channel screens. The ID Scanner displays key parameters such as RSRP, RSRQ, RS-SINR, and S-SS RSSI. The Multipath Profile enables you to determine RF environmental conditions of testing area. The OTA Control Channel provides summary of all control channels including RS power variation over time.

Channel scanner

The Channel Scanner is a radio receiver that can automatically tune or scan two or more discrete frequencies and multi-channels, indicating when it finds a signal on one of them and then continuing scanning when that frequency goes silent.

Setting channel/frequency

Procedure

To set the channels to be scanned:

- 1 Press the FREQ/DIST hard key.
- 2 Toggle the Unit soft key and select Channel.
- 3 Press the **Index** soft key, and then enter an index number between one and six by turning the rotary knob or using the numeric keys.
- 4 To select the standard channel, complete the following steps:
 - Press the Channel Std soft key. The standard channel window appears.
 See "Appendix C Band, frequency & channel standard" on page 745 for more information.
 - Highlight the band to be measured by using the rotary knob, the arrow keys, or the Page Up/Page Down soft keys.
 - Press the Select soft key or the rotary knob to confirm the selection.
- 5 To set the channel number for the selected index, complete the following steps:
 - a Press the Channel Number soft key.
 - **b** Enter a value by using the numeric keys. You can also use the rotary knob.
 - c Press the Enter soft key.
- **6** The instrument displays a corresponding center frequency for the channel number.
- 7 To set the integration bandwidth for the selected index, complete the following steps:
 - a Press the Integration Bandwidth soft key.
 - **b** Enter a value by using the numeric keys. You can also use the rotary knob.
 - c Select the unit: GHz, MHz, kHz, or Hz.
- 8 To add more channels to be scanned, repeat steps 3-6.
- 9 Press the ESC hard key to dismiss the channel list window and view the scanning result.

To set the frequencies to be scanned:

- Press the FREQ/DIST hard key.
- 2 Toggle the Unit soft key and select Freq.
- 3 Press the Index soft key, and then enter an index number between one and six by turning the rotary knob or using the numeric keys.
- **4** To set the center frequency for the selected index, complete the following steps:
 - a Press the Center Frequency soft key.

- **b** Enter a value by using the numeric keys. You can also use the rotary knob.
- c Select the unit: GHz, MHz, kHz, or Hz.
- 5 To set the integration bandwidth for the selected index, complete the following steps:
 - a Press the Integration Bandwidth soft key.
 - **b** Enter a value by using the numeric keys. You can also use the rotary knob.
 - Select the unit: GHz, MHz, kHz, or Hz.
- 6 To add more channels to be scanned, repeat steps 3-5.
- 7 Press the ESC hard key to dismiss the channel list window and view the scanning result.

Setting number of antenna ports

Procedure

- 1 Press the MEASURE SETUP hot key.
 - Toggle the **MIMO** soft key and select **2x2** or **4x4**. This MIMO (Multiple Input Multiple Output) setting is activated only if the option 031 LTE-Advanced TDD is installed with a license number. If not, the instrument sets this option to 2x2 by default. A 2x1 or 4x1 RF combiner is also required to able to test on MIMO channels.

Measurement example

Figure 167 Channel scanner measurement with LTE-TDD OTA signal analyzer

ID scanner

The LTE mobile receives signals from multiple base stations that all of these signals share the same spectrum and are present at the same time. Each base station has unique scrambling code assigned to the particular base station and it differentiates its signal from other base stations in the area.

The ID Scanner shows key parameters such as RSRP (Reference Signal Received Power) and RSRQ (Reference Signal Received Quality) that predict the downlink coverage quickly.

- RSRPs from entire cells help to rank between the different cells as input for handover and cell reselection decisions.
- RSRQ provides additional information when RSRP is not sufficient to make a reliable handover or

cell reselection decision.

All of the parameters for OTA ID scanner can be plotted on map data such as Google Maps and Google Earth by using JDViewer.

Setting measure setup

After configuring test parameters as described in the "Configuring test parameters" on page 265, you can continue your measurement.

Procedure

- 1 Press the MEASURE SETUP hot key.
- 2 To set the nominal channel bandwidth to be measured, complete the following steps:
 - Press the Bandwidth soft key.
 - b Select the bandwidth option from the choices: 1.4 MHz, 3 MHz, 5 MHz, 10 MHz, 15 MHz, and 20 MHz.
- **3** Optional. Press the **Miscellaneous** soft key, and then do the following as needed:

To select the number of antenna ports, toggle the **MIMO** soft key and select **2x2** or **4x4**. This MIMO (Multiple Input Multiple Output) setting is activated only if the option 031 LTE-Advanced TDD is installed with a license number. If not, the instrument sets this option to 2x2 by default. A 2x1 or 4x1 RF combiner is also required to able to test on MIMO channels.

To select the cyclic prefix, toggle the **Cyclic Prefix** soft key and select **Normal** or **Extended**. See "Appendix E – Cyclic prefix table" on page 749 for OFDM parameter details by different bandwidth.

4 Optional. Go to **SAVE/LOAD** > **Save**, and then select the save option from the choices available for your measurement mode. See "Using save" on page 34 for more information.

Measurement example

Figure 168 ID scanner measurement with LTE-TDD OTA signal analyzer

Multipath profile

The Multipath Profile enables you to determine RF environmental conditions of testing area. It indicates the amount of power of the dominant pilot signal that is dispersed outside the main correlation peak due to multipath echoes that are expressed in dB. This value should be very small ideally.

The multipath profile is the result of portions of the original broadcast signal arriving at the receiving antenna out of phase. This can be caused by the signal being reflected off objects such as buildings, or being refracted through the atmosphere differently from the main signal.

Setting measure setup

After configuring test parameters as described in the "Configuring test parameters" on page 265, you can continue your measurement.

Procedure

- 1 Press the MEASURE SETUP hot key.
- 2 To set the nominal channel bandwidth to be measured, complete the following steps:
 - Press the Bandwidth soft key.
 - b Select the bandwidth option from the choices: 1.4 MHz, 3 MHz, 5 MHz, 10 MHz, 15 MHz, and 20 MHz.
- 3 Toggle the Display soft key and select RS or Sync. The RS Window soft key becomes activated if RS is selected.
- 4 Press the **RS Window** soft key, if RS is selected, and then select the RS window option: **2 μs**, **4 μs**, or **8 μs**.
- 5 Optional. Press the **Miscellaneous** soft key, and then do the following as needed:

To select the number of antenna ports, toggle the **MIMO** soft key and select **2x2** or **4x4**. This MIMO (Multiple Input Multiple Output) setting is activated only if the option 031 LTE-Advanced TDD is installed with a license number. If not, the instrument sets this option to 2x2 by default. A 2x1 or 4x1 RF combiner is also required to able to test on MIMO channels.

To select the cyclic prefix, toggle the **Cyclic Prefix** soft key and select **Normal** or **Extended**. See "Appendix E – Cyclic prefix table" on page 749 for OFDM parameter details by different bandwidth.

6 Optional. Go to **SAVE/LOAD** > **Save**, and then select the save option from the choices available for your measurement mode. See "Using save" on page 34 for more information.

Measurement example

Figure 169 Multipath profile measurement with LTE-TDD OTA signal analyzer

Control channel

DL RS power is the resource element power of Downlink Reference Symbol. The absolute DL RS power is indicated on the BCH. The absolute accuracy is defined as the maximum deviation between the DL RS power indicated on the BCH and the DL RS power at the BS antenna connector.

The OTA Control Channel provides summary of all control channels including RS power trend over time. GPS coordinates (latitude and longitude) will be displayed on the screen if a GPS antenna is connected and locked to the GPS satellites.

Setting measure setup

After configuring test parameters as described in the "Configuring test parameters" on page 265, you can continue your measurement. The measurement settings can be saved and recalled as a file. You can also use JDViewer, PC application software to configure a measure setup, save as a file, and load the file on to the instrument.

Procedure

- 1 Press the **MEASURE SETUP** hot key.
- 2 To set the nominal channel bandwidth to be measured, complete the following steps:
 - a Press the Bandwidth soft key.
 - b Select the bandwidth option from the choices: 1.4 MHz, 3 MHz, 5 MHz, 10 MHz, 15 MHz, and 20 MHz.
- **3** To select the subframe number to be measured, complete the following steps:
 - a Press the Subframe No soft key.
 - **b** Enter a value by using the numeric keys. You can also use the rotary knob.

NOTE

For MBMS testing, this subframe number must be neither 0 nor 5 as these subframes 0 and 5 are not available for MBMS and it must be set to the MBMS transmitted channel's subframe number.

c Press the Enter soft key.

4 Toggle the **Cell ID** soft key and select **Auto** or **Manual** as desired:

Auto: Lets the instrument detect the Cell ID for the LTE signal automatically.

Manual: Sets a specific Cell ID for the LTE signal manually in order to speed up the synchronization with a BTS.

5 Optional. Press the Miscellaneous soft key, and then do the following as needed:

To select the number of antenna ports, toggle the **MIMO** soft key and select **2x2** or **4x4**. This MIMO (Multiple Input Multiple Output) setting is activated only if the option 031 LTE-Advanced TDD is installed with a license number. If not, the instrument sets this option to 2x2 by default. A 2x1 or 4x1 RF combiner is also required to test on MIMO channels.

To assign a antenna port number automatically or manually, press the **Antenna Port** soft key and select the option: **Auto**, **0**, **1**, **2**, and **3**. If the option 031 LTE-Advanced TDD is not installed or if the MIMO is set to 2x2, the antenna ports 2 and 3 are disabled.

To select the cyclic prefix, toggle the **Cyclic Prefix** soft key and select **Normal** or **Extended**. See "Appendix E – Cyclic prefix table" on page 749 for OFDM parameter details by different bandwidth.

To turn the Multimedia Broadcast Multicast Service (MBMS) feature on or off, toggle the **MBMS** soft key and select **On** or **Off**. For proper MBMS testing, you need to set the **Subframe No** with the same PMCH subframe number. If this setting is on, the measurement item "MBSFN RS" appears in the result table.

To set the Multicast Broadcast Single Frequency Network (MBSFN) detection automatically or manually for MBMS testing, toggle the **MBSFN** soft key and select **Auto** or **Manual**. An automatically detected or manually entered MBSFN ID appears on the screen.

6 Go to SAVE/LOAD > Save, and then select the save option from the choices available for your measurement mode. See "Using save" on page 34 for more information.

Setting limit for OTA control channel

Procedure

- 1 Press the *LIMIT* hot key.
- 2 Select the test item(s) and set the limit(s) as needed:

To set the limit for	Select	Set
P-SS error vector magnitude	P-SS EVM	High Limit
S-SS error vector magnitude	S-SS EVM	High Limit
RS error vector magnitude	RS EVM > RS0 EVM RS EVM > RS1 EVM RS EVM > RS2 EVM RS EVM > RS3 EVM	High Limit
Frequency error	Frequency Error	High Limit, Low Limit
Time error	Time Error	High Limit, Low Limit
Time alignment error	Time Alignment Error	High Limit

3 Optional. Go to SAVE/LOAD > Save, and then select Limit to save the limit settings. See "Using save" on page 34 for more information.

Setting display


You can use the TRACE/DISPLAY hard key to select the display option.

Procedure

- 1 Press the TRACE/DISPLAY hard key.
- 2 Toggle the Display soft key and select Power or EVM. The screen changes according to the selected option.

Measurement example

Figure 170 Control channel measurement with LTE-TDD OTA signal analyzer

Datagram

The OTA Datagram is a time-varying spectral representation that shows how the power of a signal varies with time. The power allocated to the specific resource block will be represented with an amplitude axis (in dBm) and the waterfall diagram will show the trend of past resource block power over certain period. Using a marker function facilitates analysis of accumulated resource block power for data utilization.

Setting measure setup

After configuring test parameters as described in the "Configuring test parameters" on page 265, you can continue your measurement. The measurement settings can be saved and recalled as a file. You can also use JDViewer, PC application software to configure a measure setup, save as a file, and load the file on to the instrument.

- 1 Press the **MEASURE SETUP** hot key.
- 2 To set the nominal channel bandwidth to be measured, complete the following steps:
 - Press the Bandwidth soft key.
 - b Select the bandwidth option from the choices: 1.4 MHz, 3 MHz, 5 MHz, 10 MHz, 15 MHz, and 20 MHz.
- 3 To select the subframe number to be measured, complete the following steps:

- Press the Subframe No soft key.
- **b** Enter a value by using the numeric keys. You can also use the rotary knob.
- c Press the Enter soft key.
- 4 Optional. Toggle the Cell ID soft key and select Auto or Manual as desired:

Auto: Lets the instrument detect the Cell ID for the LTE signal automatically.

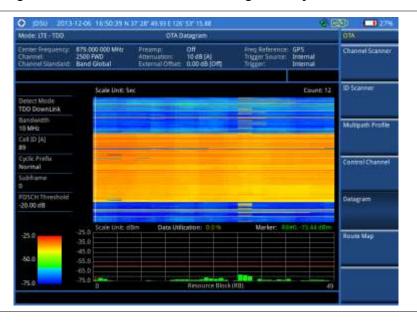
Manual: Sets a specific Cell ID for the LTE signal manually in order to speed up the synchronization with a BTS.

- **5** Optional. To set the threshold for PDSCH, complete the following steps:
 - Press the PDSCH Threshold soft key.
 - **b** Enter a value by using the numeric keys.
 - c Press the dB soft key.
- **6** To set the time cursor at a specific position, complete the following steps:
 - a Toggle the Time Cursor soft key and select On.
 - b Turn the rotary knob to move the time cursor. You can also enter a value and then press the Enter soft key.

NOTE

Enabling the time cursor puts the measurement on hold and you can make postprocessing analysis for each measurement over time using the time cursor.

- 7 To start a new measurement, press the **Reset/Restart** soft key.
- 8 Optional. Press the Miscellaneous soft key, and then do the following as needed:


To select the number of antenna ports, toggle the **MIMO** soft key and select **2x2** or **4x4**. This MIMO (Multiple Input Multiple Output) setting is activated only if the option 031 LTE-Advanced TDD is installed with a license number. If not, the instrument sets this option to 2x2 by default. A 2x1 or 4x1 RF combiner is also required to able to test on MIMO channels.

To select the cyclic prefix, toggle the **Cyclic Prefix** soft key and select **Normal** or **Extended**. See "Appendix E – Cyclic prefix table" on page 749 for OFDM parameter details by different bandwidth.

9 Optional. Go to **SAVE/LOAD** > **Save**, and then select the save option from the choices available for your measurement mode. See "Using save" on page 34 for more information.

Measurement example

Figure 171 Datagram measurement with LTE-TDD signal analyzer

Route map

The JD700B Series provides the Route Map function that allows you to collect data of points in an indoor or outdoor environment and track the received signals and coverage of RF transmitters by plotting data real time directly on top of a loaded floor plan or a map.

The JD700B Series also supports the RAN-IL (Interference Location) feature that enables you to overlay user experience data obtained through Viavi's ariesoGEO on your base map to help you troubleshoot problems easily and quickly using your instrument. You can generate raster data files on the ariesoGEO application and load them on your instrument.

Setting measure setup

Procedure

- 1 If required, connect a GPS receiver to your JD700B series for outdoor mapping. Indoor mapping does not necessarily need a GPS antenna.
- 2 Configure test parameters as described in the "Configuring test parameters" on page 265.
- **3** To load your map file, complete the following steps:
 - Plug in your USB drive that has a floor map or .mcf file type created in JDMapCreator. If the JDMapCreator application on your computer is connected to the instrument via USB or LAN, you can send a map file with a single layer to the instrument directly by using the **Send to EQP** menu in JDMapCreator.

NOTE

The JDMapCreator converts and resizes any scanned floor plan or layout to fit onto your instrument's display. JDMapCreator 1.2.0 or later can save a multiple-layered map, providing **x1**, **x2**, and **x4** views, as a sizable map file so that you can zoom in and out after loading it.

- b Press SAVE/LOAD hot key, and then select Load > Load Map. See "Using load" on page 36 for more information.
- 4 Press the **MEASURE SETUP** hot key.
- Press the **Plot Point** soft key, and then select the plot point option from the following choices:

 To collect data/plot points automatically as you move around in a vehicle or outside, press the **GPS** soft key and then toggle the **Screen Mode** soft key between **Map** and **Full**.

NOTE

With the **Map** setting, you can view only the collected points that can be seen within the boundary of the loaded map. If a point is off the map, the instrument displays an arrow to indicate the direction of the current location on the map and the distance from the center to the location at the top of the screen.

With the **Full** setting, you can view all the collected points of the route without the loaded map.

To collect data/plot points manually without a GPS antenna in an indoor environment, press the **Position** soft key.

6 Press the Plot Item soft key, and then select the measurement option: RSRP, RSRQ, RS-SINR, S-SS RSSI, P-SS Power, S-SS Power, or S-SS Ec/lo.

NOTE

The instrument collects the strongest Cell ID's data to plot points.

- Press the Bandwidth soft key to set the nominal channel bandwidth to be measured, and then select the bandwidth option from the choices: 1.4 MHz, 3 MHz, 5 MHz, 10 MHz, 15 MHz, and 20 MHz.
- 8 Toggle the **Plot** soft key and select **Start** to start plotting.
- 9 Touch directly on the screen or press the ENTER hard key to collect data and plot points on the loaded map for the Position setting.

NOTE

For the **Position** setting, you can change the direction of the route with the arrow keys and the distance with the rotary knob.

- 10 Toggle the Plot soft key and select Stop to stop plotting.
- 11 Press the **SAVE/LOAD** hot key to save the result. See "Using save" on page 34 for more information.

NOTE

The instrument does not automatically save the collected data. It is recommended that you save the result. Otherwise, you will lose all the collected data.

Setting limit for route map

You can set the thresholds for each test item.

Procedure

- 1 Press the *LIMIT* hot key.
- 2 Select the plot items and set the limits as needed:

To set the limit for	Select	Set
RSRP	RSRP	Excellent, Very Good, Good, Fair, Poor (dBm)
RSRQ	RSRQ	Good, Fair, Poor (dB)
RS-SINR	RS-SINR	Good, Fair, Poor (dB)
S-SS RSSI	S-SS RSSI	Excellent, Very Good, Good, Fair, Poor (dBm)
P-SS Power	P-SS Power	Excellent, Very Good, Good, Fair, Poor (dBm)
S-SS Power	S-SS Power	Excellent, Very Good, Good, Fair, Poor (dBm)
S-SS Ec/lo	S-SS Ec/lo	Good, Fair, Poor (dB)

3 Optional. Go to SAVE/LOAD > Save, and then select Limit to save the limit settings. See "Using save" on page 34 for more information.

Measurement example

Figure 172 Route map measurement (RSRP) with LTE-TDD OTA signal analyzer

Figure 173 Route map measurement (RSRQ) with LTE-TDD OTA signal analyzer

Figure 174 Route map measurement (RS-SINR) with LTE-TDD OTA signal analyzer

Figure 175 Route map measurement (S-SS RSSI) with LTE-TDD OTA signal analyzer

Figure 176 Route map measurement (P-SS Power) with LTE-TDD OTA signal analyzer

Mode: LTE - TDQ Route Map

Mode: LTE - TDQ Route Map

Measure Setup

Measure Setu

Figure 177 Route map measurement (S-SS Power) with LTE-TDD OTA signal analyzer

Figure 178 Route map measurement (S-SS Ec/lo) with LTE-TDD OTA signal analyzer

Controlling a map

If you have loaded a sizable map that was created in JDMapCreator 1.2.0 or later, you can use the Map Control feature that enables you to zoom into the map and view a specific area of interest in detail.

Procedure

- 1 Press the TRACE/DISPLAY hard key.
- 2 Press the **Map Control** soft key. This key is active only when you have loaded a sizable map.
- 3 Do one of the following:

To zoom into an area of interest directly, complete the following steps:

- Toggle the **Zoom to** soft key and select **Area**. The black rectangle appears on the map.
- **b** Press the **Zoom In** and **Zoom Out** soft keys, as you need, to decrease and increase the selected area.

- Move the rectangle by using the four arrow keys, as you need, to place it in a specific area of interest.
- **d** Press the center of the rotary knob to zoom into the selected area. You can also press the **Zoom to** soft key again to zoom into the selected area.

To zoom into the center or zoom out from the center, complete the following steps:

- Toggle the Zoom to soft key and select Center.
- b Press the **Zoom In** and **Zoom Out** soft keys, as you need, to zoom in and zoom out.
- Move the zoomed-in area by using the four arrow keys, as you need.
- 4 To set the location mode, toggle the **Location Mode** soft key between **Auto** and **Manual** and select the one you desire.

Auto: The instrument compares the coordinates of the displayed map with recevied GPS information. If your current location goes out of the displayed area and enters into the next zoomed-in section within the base map, the map display changes automatically to the next section in which your current position is.

Manual: The map display of the zoomed-in area remains unchanged even if your current location goes out of the displayed area. You can change the displayed area manually by using the arrow keys.

Loading and displaying raster data

If you have a set of raster data files generated through the ariesoGEO application, you can load and overlay the data on your base map to help you check the signal quality and the strength of interferences while driving toward the area of interest.

Procedure

1 Copy a set of raster data files into your USB memory drive, including the following:

ASCII: .tab, .asc, and .clr files
BIL: .tab, .hdr, .bil, and .clr files

NOTE

The .tab file type is a geospatial vector data format used in many geographic information systems. The color file (.clr) is an optional file, but the image will be displayed as a grayscale image without it. The size of the raster map must be 1024 x 1024 or smaller.

- **2** Plug in the USB memory drive to your instrument.
- 3 Press the TRACE/DISPLAY hard key.
- 4 Press the **Load Raster Map** soft key. The file explorer window appears.
- 5 Navigate to the raster file (. tab) you want to open, and then press the **Load** soft key. The raster image appears on top of your base map as shown in Figure 179.

NOTE

If the area of the loaded raster data is not within the boundary of the base map, you will not see the raster image on the screen.

- **6** To select the display option, complete the following steps:
 - a Press the **Display Options** soft key.
 - Select the option you desire from the choices: On, Off, and Blink.
- 7 To adjust the transparency level of the image, complete the following steps:
 - Press the Transparency soft key.
 - **b** Enter a value between **0** for opaque and **100** for clear.
 - c Press the Enter soft key.

Model LTE-TD0

Route Map

Channel Scanner Segment Claims Scanner Seamed Channel Seam

Figure 179 Raster image overlaid on the base map with LTE-TDD OTA signal analyzer

Performing RAN performance testing

The JD700B series provides the optional feature that lets you conduct correlated uplink and downlink testing with your instrument connected to your mobile device via Bluetooth. The RANAdvisor TrueSite application installed on your smartphone collects data and transfers uplink data based on your parameter settings and then your instrument consolidates the data into the measurement results and displays them as performance indicators. It helps you troubleshoot a problem and identify the cause of the problem fast.

To perform this testing, you need both of these installed: the license for the option 015 LTE-TDD RAN Performance Indicator on your instrument and the RANAdvisor TrueSite app with the license on your smartphone.

Preparing your smartphone for remote control via Bluetooth

To set up a Bluetooth connection and enable data collection with remote control properly, you need to pair your instrument with your smartphone and set the app's local Bluetooth control option to Slave once at the beginning.

- 1 Connect a Bluetooth adapter to the USB Host port and an Omni antenna to the RF In port of your CellAdvisor instrument.
 - The instrument detects the adapter and turns on its Bluetooth automatically.
- 2 Make your smartphone visible to your instrument by doing the following steps:
 - a On your smartphone, turn on **Bluetooth**.
 - b Check the checkbox for Visible to all nearby Bluetooth devices to enable this option.
- 3 Pair with your smartphone by doing the following steps:
 - a On your instrument, press the **MEASURE SETUP** hot key.
 - b Press the Bluetooth Connect soft key.
 - c Press the Scan soft key. The instrument lists detected Bluetooth devices with their MAC address and status.
 - d Highlight your mobile device from the list by touching on the screen.
 - Press the Pair soft key.

The pairing dialog box appears on your smartphone.

- f On your smartphone, enter 0000 and then tap the OK button. If pairing is successful, the status of your device on the list changes to "Paired".
- 4 Make sure to set your smartphone as a slave by completing the following steps:
 - a On your smartphone, open the RANAdvisor TrueSite icon.
 - b Go to Settings > General.
 - Tap the **Automation Control Mode** menu under Automation Control Options.
 - d Select the Local Bluetooth Control option.
 - e Tap Slave.

The application restart dialog box appears.

f Tap **Continue**. The application closes itself.

NOTE

It is very important for you to set the local Bluetooth control option to **Slave** on the RANAdvisor TrueSite app in order to give your instrument a control to collect necessary data from the app over Bluetooth successfully.

Setting parameters on RANAdvisor TrueSite™

To specify uplink measurement data that will be transferred to your instrument, you need to set map display parameters of your choice on the RANAdvisor TrueSite application.

Procedure

- 1 After you have paired and set your smartphone as a slave, open the RANAdvisor TrueSite icon on your device again.
- 2 Tap the (+) button at the bottom of the Home screen. The Main Screen appears.
- 3 Tap the **Customization** menu. The Choose Operation menu box appears.
- 4 Select Map Display Parameters > LTE Serving and Neighbor Parameters.
- **5** Make sure to check the checkbox for the following two mandatory parameters:

Serving E-ARFCN

Serving Physical Cell-ID

NOTE

It is very important for you to select these two parameters to identify the Uplink Channel Number, Cell ID, Group ID, and Sector ID.

6 Select other parameters up to six from the list of parameters supported by the CellAdvisor instrument. See "Appendix L – Supported map display parameters" on page 776 for more information.

NOTE

As the RANAdvisor TrueSite app can transfer data of up to eight parameters at a time, it limits you to select eight parameters in total: two compulsories and six electives. After you have selected all eight parameters, the app blocks any further selection. In this case, you need to uncheck any selected optional parameters in order to enable other optional parameters.

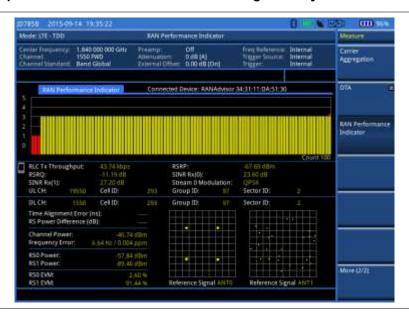
7 Tap the **OK** button and then the **Back** key to return to the Home Screen.

Performing RAN performance testing

After you have set the local Bluetooth control option and selected desired parameters on the app, you need to connect your instrument to your smartphone via Bluetooth to enable data collection from RANAdvisor TrueSite so that you can view consolidated measurement results on your instrument and save results as a file.

Procedure

- 1 Make sure to have the RANAdvisor TrueSite app opened on your device.
- 2 Press the MEASURE SETUP hot key on your instrument.
- 3 Press the Bluetooth Connect soft key.
- 4 Highlight your paired smartphone to connect from the list.
- 5 Press the Connect soft key. The connected device information appears above the RAN Performance Indicator chart to indicate a successful connection.
- 6 The instrument automatically sets the correlated downlink channel number for the received uplink channel number and displays measurement results as like Figure 180. Observe the consolidated measurement results on the screen for your troubleshooting.


NOTE

If the Cell ID of the uplink channel is not identical to the one of the downlink channel, the instrument displays "---" for the parameters to indicate invalid measurement results.

- **7** If you want to see measurement results for other parameters, select new parameters on the RANAdvisor TrueSite app. See "Setting parameters on RANAdvisor TrueSiteTM" on page 256.
- **8** Optional. To save your settings and results, go to **SAVE/LOAD** > **Save** and then perform functions as you desire. See "Using save" on page 34 for more information.

Measurement example

Figure 180 RAN performance indicator with LTE-TDD signal analyzer

Setting performance score level

To analyze your measurement data easily with color codes, you can use the limit feature and set a performance score level for each measurement parameter.

- 1 Press the *LIMIT* hot key.
- 2 To analyze the quality of user experience, do the following as needed:

To set the level for	Select	Set
Data throughput	Data Throughput	Good, Bad (kbps)

	Channel quality indicator	CQI	Good, Bad	
	Modulation type	Modulation Type	(On/Off only)	
3	To check the performance of eNode-B, do the following as needed:			
To set the level for Select		Select	Set	
	Reference signal received power	RSRP	Good, Bad (dBm)	
	Reference signal received quality	RSRQ	Good, Bad (dB)	
	Signal to interference and noise ratio	SINR	Good, Bad (dB)	
	Error vector magnitude	More (1/2) > EVM	Good, Bad (%)	
	Time alignment error	More (1/2) > Time Alignment Error	Good, Bad (ns)	
	Frequency error	More (1/2) > Frequency Error	Good, Bad (ppm)	

Chapter 10 Using CDMA Signal Analyzer

This chapter provides instructions for using the CDMA Signal Analyzer function (option 020) with the CDMA OTA Analyzer function (option 040). Topics discussed in this chapter are as follows:

	Introduction	.329
	Display overview	.330
	Connecting a cable	.330
-	Selecting measurement mode	. 332
	Configuring test parameters	.332
-	Conducting spectrum measurements	. 337
-	Conducting RF measurements	. 338
-	Conducting modulation measurements	. 344
-	Performing auto measurements	. 352
	Performing power statistics CCDF measurements	.354
	Conducting CDMA OTA measurements	.354

Introduction

This CDMA Signal Analyzer can be used to test a CDMA transmitter including cdmaOne and cdma2000 signals to check the base station's compliance with following standards documentation.

- 3GPP2 C.S0002 Physical Layer Standard for cdma2000 Spread Spectrum Systems
- 3GPP2 C.S0010 Recommended Minimum Performance Standards for cdma2000 Spread Spectrum Base Station

This instrument automatically makes standard defined measurements using the measurement methods and limits as defined in the standards. Detailed measurement results allow you to analyze cdmaOne and cdma2000 system performance.

- cdmaOne uses dual BPSK (Binary Phase-Shifting Key) for the forward link and OQPSK (Offset Quadrature Phase Shift Keying) for the reverse link.
- cdma2000 uses QPSK (Quadrature Phase Shift Keying) modulation for the forward link and QPSK modulation with HPSK spreading for the reverse link. Both forward and reverse links may have several channels, and individual characteristics for each channel. The chip rate depends on the mode selected.

You may alter the measurement parameters for specialized analysis. Pass/Fail testing with standard defined or user defined upper and lower limits and the Pass/Fail indictor help you to determine base station performance easily.

This instrument provides the following measurement tools for CDMA system:

- Spectrum Analysis
- RF Analysis
 - Channel Power
 - Occupied Bandwidth
 - Spectrum Emission Mask (SEM)
 - Adjacent Channel Power Ratio (ACPR)
 - Multi-ACPR
 - Spurious Emissions
- Modulation Analysis
 - Constellation
 - Code Domain Power
 - Codogram
 - Received Code Strength Indicator (RCSI)
 - CDP Table
- Auto Measure
- Power Statistics CCDF
- Over The Air (OTA)
 - Channel Scanner
 - PN Scanner
 - Multipath Profile
 - Code Domain Power
 - Route Map

Display overview

Figure 181 provides descriptions for each segment of the measurement screen.

System settings, global positioning information, and indicators Measurement mode Input settings Pass/fail User input field indicator 1.000 MHz Measurement settings Screen menus 10.0 Trace legend Marker table Measurement result

Figure 181 CDMA signal analyzer measurement screen

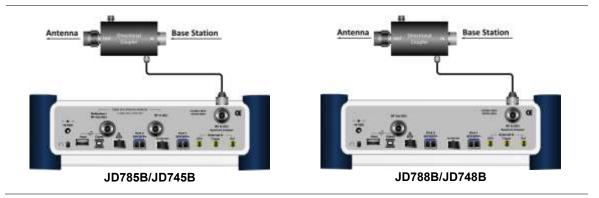

Connecting a cable

Direct connection

Procedure

1 Connect the **Spectrum Analyzer RF In** port of the JD700B series and the Power amplifier output port of BTS.

Figure 182 Direct connection



Indirect connection

Procedure

1 Connect the Spectrum Analyzer RF In port of the JD700B series and the monitor (test) port of BTS.

Figure 183 Indirect connection

CAUTION

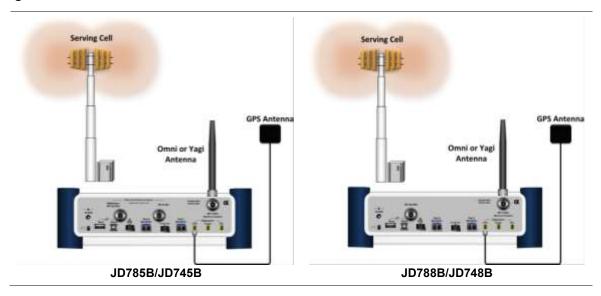
The maximum power for the **Spectrum Analyzer RF In** port is +25 dBm (0.316 W) for JD780B series and +20 dBm (0.1 W) for JD740B series. If the level of the input signal to be measured is greater than this, use a *High Power Attenuator* to prevent damage when you directly connect the signal to the instrument or connect the signal from the coupling port of a directional coupler.

NOTE

For accurate PN Offset and Time Offset measurements with the CDMA Signal Analyzer function, a PP2S should be connected to the External Trigger. Without a GPS connection, measurement results could be invalid numbers.

Over the air (OTA)

Procedure


- 1 Connect an Omni/directional RF antenna to the Spectrum Analyzer RF In port of the JD700B series.
- 2 Connect a GPS antenna to the GPS port of the JD700B series.

CAUTION

If the input signal level to be measured is less than 0 dBm, set 0 dB attenuation or turn on the preamp to have better dynamic range for the OTA testing.

Figure 184 OTA connection

Selecting measurement mode

Procedure

- 1 Press the MODE hard key.
- 2 Press the Signal Analyzer soft key.
- 3 Press the CDMA soft key. The Spectrum mode is set by default.
- 4 Press the MEASURE hot key, and then select the measurement mode option from the following choices:

Spectrum

RF Analysis > Channel Power, Occupied BW, Spectrum Emission Mask, ACPR, Multi-ACPR, or Spurious Emissions

Modulation > Constellation, Code Domain Power, Codogram, RCSI, or CDP Table

Auto Measure
Power Statistics CCDF

OTA > Channel Scanner, PN Scanner, Multipath Profile, Code Domain Power, or Route Map

Configuring test parameters

Setting frequency

You can set the frequency with either frequency or channel number. If a frequency to be set matches to the frequency corresponding to the selected channel standard, the instrument calculates its channel number and updates the screen with it automatically.

Procedure

To set the center frequency:

- 1 Press the FREQ/DIST hard key.
- 2 Toggle the Unit soft key and select Freq.
- 3 Press the Center Frequency soft key.

- 4 Enter a value by using the numeric keys. You can also use the rotary knob.
- 5 Select the unit: **GHz**, **MHz**, **kHz**, or **Hz**.
- 6 Optional. To define the amount of frequency increment for the rotary knob, complete the following steps:
 - a Press the Frequency Step soft key.
 - **b** Enter a value by using the numeric keys. You can also use the rotary knob.
 - c Press the unit: GHz, MHz, kHz, or Hz.

To set the channel number:

- 1 Press the FREQ/DIST hard key.
- 2 Toggle the Unit soft key and select Channel.
- 3 To select the standard channel, complete the following steps:
 - a Press the Channel Std soft key. The standard channel window appears. See "Appendix C – Band, frequency & channel standard" on page 745 for more information.
 - b Highlight the band to be measured by using the rotary knob, the arrow keys, or the Page Up/Page Down soft keys.
 - c Press the **Select** soft key or the rotary knob to confirm the selection.
- 4 Press the Channel Number soft key.
- 5 Enter a value by using the numeric keys. You can also use the rotary knob.
- 6 Press the Enter soft key. The instrument automatically displays the corresponding center frequency value for the selected channel number.
- 7 Optional. To define the amount of channel increment for the rotary knob, complete the following steps:
 - a Press the Channel Step soft key.
 - **b** Enter a value by using the numeric keys. You can also use the rotary knob.
 - c Press the Enter soft key.

NOTE

This frequency setting is not used in the Multi-ACLR and Spurious Emissions modes.

Setting amplitude

Reference level and attenuation

You can set the reference and attenuation levels automatically or manually to optimize the display of the traces measured, as you desire.

Procedure

To automatically set the reference and attenuation level:

- 1 Press the AMP/SCALE hard key.
- 2 Press the Auto Scale soft key. Each time you press this key, both of the Y-axis scale and input attenuation level change to be optimized with some margin.

To set the reference or attenuation level manually:

- 1 Press the AMP/SCALE hard key.
- 2 To set the maximum reference value on the Y-axis manually, complete the following steps:
 - a Press the Reference Level soft key.
 - **b** Enter a value by using the numeric keys or the rotary knob with 10 dB increments.
 - Press the unit soft key or the ENTER hard key.
 This unit key name changes according to the setting in the Units menu.

NOTE

In the measurements such as **Code Domain Power**, **Codogram**, and **RCSI**, you may need to select the reference option between **Relative** and **Absolute** before setting the reference level.

3 To set the attenuation option, select one from the following choices:

To set the input attenuator's level automatically, select **Attenuation > Auto**.

NOTE

It is recommended that you set the **Attenuation** to **Auto** in most situations so that the level of the input attenuator can be set automatically according to your input signal level.

To set the input attenuation manually up to 55 dB for JD780B series or 50 dB for JD740B series to optimize S/N, complete the following steps:

- a Select Attenuation > Manual.
- **b** Press the **Attenuation Value** soft key to set the level.
- Enter a value in fives by using the numeric keys.
- d Press the dB soft key or the ENTER hard key.

To couple the input attenuator's level with your reference level setting, select **Attenuation > Couple**.

As you increase the reference setting, the attenuation level also increases accordingly.

Optional. To change the scale unit:

- 1 Select More (1/2) > Units.
- 2 Select the unit of the display scale: dBm, dBV, dBmV, dBμV, V, or W. The scale unit on the screen changes accordingly.

NOTE

This Units menu is available in the Spectrum and RF Analysis modes.

Scale per division

You can use the **Scale/Div** feature available for the spectrum and RF analysis. It represents the value of one division on the horizontal scale. The default setting is 10 dB per division and the maximum value can be set up to 20 dB.

Procedure

- 1 Press the AMP/SCALE hard key.
- 2 Select More (1/2) > Scale/Div.
- 3 Enter a value between 1 and 20 by using the numeric keys.
- 4 Press the dB soft key to complete the entry.

Pre-amplifier

You can turn the internal pre-amplifier on to correct and compensate for the gain of the preamp so that amplitude readings show the value at the input connector.

Procedure

- 1 Press the AMP/SCALE hard key.
- 2 Toggle the **Preamp** soft key and select **On** or **Off** as needed.

NOTE

You can turn the Preamp on when the input attenuation range is from 0 dB to 10 dB. If the attenuation value is manually set to greater than 10 dB, the instrument will automatically turn off the pre-amplifier to display low-level signal properly on the chart.

External offset

You can turn the **External Offset** on and manually set the external offset value. An offset consists of a cable loss and a user offset and the measurement result shows the value reflecting both offset values. When the external offset value is set at 40 dB in the Spectrum mode, the measurement result compensates 40 dB at both the Spectrum Analyzer and Signal Analyzer modes.

Procedure

To set the external offset:

- 1 Press the AMP/SCALE hard key.
- 2 Toggle the External Offset soft key and select On.
- 3 Enter a value by using the numeric keys.
- 4 Press the dB soft key to complete the entry.

To turn the external offset off:

- 1 Press the AMP/SCALE hard key.
- 2 Toggle the External Offset soft key and select Off.

Setting average

You can set the number of measurements to be averaged for the trace presentation. A maximum of 100 times of averaging can be set. When the averaging reaches to your setting, a new measurement value replaces the measurement value in sequence from the earliest.

Procedure

- 1 Press the BW/AVG hard key.
- 2 Press the Average soft key.
- 3 Enter a value between 1 and 100 as needed by using the numeric keys.
- 4 Press the Enter soft key.

Setting sweep mode

The default setting is **Continue** to sweep continuously for most on-going measurements. If you want to hold the measurement or get a single sweep, you can change the sweep mode.

Procedure

To select the single sweep mode:

- 1 Press the **SWEEP** hot key.
- 2 Toggle the Sweep Mode soft key and select Single. You can also use the HOLD hot key. The letter HOLD in red appears and the sweeping is paused.
- 3 Optional. Press the Sweep Once soft key to get a new measurement.

To return to the continuous sweep mode:

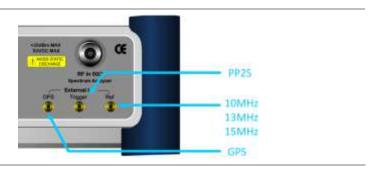
1 Toggle the Sweep Mode soft key and select Continue. You can also use the HOLD hot key. The letter HOLD in red disappears and the sweeping resumes.

Setting trigger source

You can set the trigger source option for your measurements. Connecting an external trigger is necessary for accurate modulation measurements on CDMA systems.

Procedure

- 1 Press the TRIGGER hot key.
- 2 Select the trigger source option from the choices: Internal, External, and GPS.


Setting external clock

To enhance the reliability of modulation analysis measurements the JD700B series must be synchronized with a base station. When an external clock is not supplied, the instrument works with its built-in internal high-accuracy time base and some measurement results may exhibit inaccurate values. Therefore, it is highly recommended that you use the same reference clock as the signal source. You can use the *TRIGGER* hot key to set the external clock.

Table 14 Standards of external clock operation

Clock	Туре	Reference	Port	Switching Standard
External Reference	Internal	Internal 10 MHz		Default
	External	External Ref Clock	Ext Ref (SMA)	Manual switching (Input signal level >-3 dBm)
	GPS	GPS Clock	GPS (SMA)	Automatic switching (GPS signal received)
Trigger	Internal	Internal Trigger		Default
	External	External Trigger	Trigger (SMA)	Manual switching
	GPS	GPS	GPS (SMA)	Manual switching

Figure 185 Connection ports for external reference clock

Procedure

- 1 Connect an external reference or a GPS antenna to the JD700B series.
- 2 Press the SYSTEM hot key.
- 3 Press the Freq Reference soft key, and then select the reference option: Internal, External 10 MHz, External 13 MHz, External 15 MHz, or GPS.

NOTE

When a GPS antenna is connected and locked, GPS coordinates (longitude and latitude) are displayed on the screen and frequency reference is automatically set to GPS in the **System > Freq Reference**.

Table 15 External reference indicators

Туре	Indicator	Description
Internal	(green)	The green INT icon indicates that the instrument uses the built-in internal time base.
External	(green)	The green EXT icon indicates that an external reference is connected and locked and that the instrument uses the same reference clock as the signal source.
External	(red)	The red EXT icon indicates that an external reference is connect but not locked.
GPS	(green)	The green GPS antenna icon indicates that a GPS antenna is connected and locked.
GPS	(yellow)	The yellow GPS antenna icon indicates that a GPS antenna is connected and locking is in progress.
GPS	(grey)	The grey GPS antenna icon indicates that a GPS antenna is not connected, failed, or unable to be locked.

Conducting spectrum measurements

If you have configured test parameters as described in the "Configuring test parameters" on page 332, your measurement result is displayed on the screen as like the following example, **Figure 186**.

Figure 186 Spectrum measurement screen with CDMA signal analyzer

Setting trace

You can display up to six traces on the measurement chart simultaneously.

- 1 Press the TRACE/DISPLAY hard key.
- 2 Press the Select Trace soft key, and then select the trace number: T1, T2, T3, T4, T5, or T6. The legend shape of the selected trace changes from square to round to indicate that the trace is the active one now.

3

Do one of the following:		
То	Select	Trace Legend
Clear current data and display with new measurements	Clear Write	W
Display the input signal's maximum response only (unlimited or for a certain amount of time)	Max Hold	М
Display the input signal's minimum response only (unlimited or for a certain amount of time)	Min Hold	m
Capture the selected trace and compare traces	Capture	С
Load a saved trace	More (1/2) > Load	L
Hide the displayed trace	Trace View > Off	F
Remove all the traces and initialize the trace settings	More (1/2) > Trace Clear All	

NOTE

For the **Max Hold** and **Min Hold**, your instrument compares newly acquired data with the active trace and displays larger maximum values or smaller minimum values on the screen. You can set it to **Unlimited** to hold and view maximum or minimum data or specify a certain amount of time up to 60 seconds by using numeric keys or rotary knob.

4 To select the detection option, select **More (1/2) > Detectors**, and then do one of the following:

To display	Select
Random noise better than the peak without missing signals	Normal
The highest value in each data point	Peak
The root mean squared average power across the spectrum	RMS
The lowest value in each data point	Negative Peak
The center value in each data point	Sample

- 5 Optional. Select More (1/2) > Trace Info, and then select the trace number to view the trace's parameter setting information stored at the time of the measurement or None to hide the information display.
- 6 Optional. If you have the two traces T1 and T2, you can perform trace math. To view the power difference between the traces, press the T1 T2 -> T5 or T2 T1 -> T6 soft key. The result is overlaid on the screen along with the second Y-axis.

Conducting RF measurements

Channel power

The Channel Power measurement is a common test used in the wireless industry to measure the total transmitted power of a radio within a defined frequency channel. It acquires a number of points representing the input signal in the time domain, transforms this information into the frequency domain using Fast Fourier Transform (FFT), and then calculates the channel power. The effective resolution bandwidth of the frequency domain trace is proportional to the number of points acquired for the FFT.

The channel power measurement identifies the total RF power, power spectral density (PSD) and peak to average ratio (PAR) of the signal within the channel bandwidth (1.23 MHz for cdmaOne).

After configuring test parameters as described in the "Configuring test parameters" on page 332, your measurement result is displayed on the screen as like the following example, **Figure 187**.

Figure 187 Channel power measurement with CDMA signal analyzer

D

NOTE

You can use the *LIMIT* hot key to analyze your measurements with the user-definable limit and Pass/Fail indication. See "Setting limit for RF tests" on page 343 for more information.

Occupied bandwidth

The Occupied Bandwidth measures the spectrum shape of the carrier. It is defined as the bandwidth, which includes 99% of the transmitted power among total transmitted power.

After configuring test parameters as described in the "Configuring test parameters" on page 332, your measurement result is displayed on the screen as like the following example, **Figure 188**.

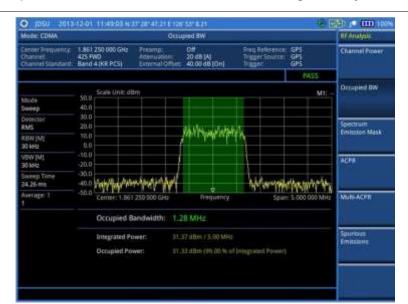


Figure 188 Occupied bandwidth measurement with CDMA signal analyzer

NOTE

You can use the *LIMIT* hot key to analyze your measurements with the user-definable limit and Pass/Fail indication. See "Setting limit for RF tests" on page 343 for more information.

Spectrum emission mask (SEM)

The Spectrum Emission Mask (SEM) measurement required by 3GPP2 specifications encompasses different power limits and different measurement bandwidths (resolution bandwidths) at various frequency offsets. It may be expressed as a ratio of power spectral densities between the carrier and the specified offset frequency band. It provides useful figures-of-merit for the spectral re-growth and emissions produced by components and circuit blocks, without the rigor of performing a full SEM measurement.

The SEM measures spurious signal levels in up to five pairs of offset or region frequencies and relates them to the carrier power.

Setting measure setup

After configuring test parameters as described in the "Configuring test parameters" on page 332, your measurement result is displayed on the screen as like the following example, **Figure 189**.

Figure 189 SEM measurement with CDMA signal analyzer

NOTE

You can use the **LIMIT** hot key to analyze your measurements with the user-definable limit and Pass/Fail indication. See "Setting limit for RF tests" on page 343 for more information.

ACPR

The Adjacent Channel Power Ratio (ACPR) is defined as the ratio of the average power in the adjacent frequency channel (or offset) to the average power in the transmitted frequency channel. It may be expressed as the ratio of the integrated signal power in the adjacent channel to the integrated signal power in the main channel.

After configuring test parameters as described in the "Configuring test parameters" on page 332, your measurement result is displayed on the screen as like the following example, **Figure 190**.

Figure 190 ACPR measurement with CDMA signal analyzer

NOTE

You can use the *LIMIT* hot key to analyze your measurements with the user-definable limit and Pass/Fail indication. See "Setting limit for RF tests" on page 343 for more information.

Multi-ACPR

The Multi-ACPR measurement is used to perform multi-channel ACPR measurements with as many channels as possible. It helps you to measure ACPR in multi-channel transmitting base station environment.

Setting frequency for Multi-ACPR

You can set the frequency with either frequency or channel number.

Procedure

- 1 Press the **MEASURE SETUP** hot key.
- 2 To set the frequency, do one of the following:

To set the center frequency, complete the following steps:

- Toggle the Unit soft key and select Freq.
- **b** Press the **Lowest Frequency** soft key to set the starting center frequency.
- c Enter a value by using the numeric keys. You can also use the rotary knob.
- d Select the unit: GHz, MHz, kHz, or Hz.
- Press the Highest Frequency soft key to set the stopping center frequency.
- f Enter a value by using the numeric keys. You can also use the rotary knob.
- Select the unit: GHz, MHz, kHz, or Hz.

To set the channel number, complete the following steps:

- a Toggle the Unit soft key and select Channel.
- b To select the standard channel, press the Channel Std soft key and then select the band to be measured.
- Press the Lowest Channel soft key to set the starting channel.
- d Enter a value by using the numeric keys. You can also use the rotary knob.
- e Press the Enter soft key.
- f Press the Highest Channel soft key to set the stopping channel.

- **g** Enter a value by using the numeric keys. You can also use the rotary knob.
- h Press the Enter soft key.

After configuring test parameters, your measurement result is displayed on the screen as like the following example, **Figure 191**.

Figure 191 Multi-ACPR measurement with CDMA signal analyzer

NOTE

You can use the *LIMIT* hot key to analyze your measurements with the user-definable limit and Pass/Fail indication. See "Setting limit for RF tests" on page 343 for more information.

Spurious emissions

Out-of-band emissions are unwanted emissions immediately outside the channel bandwidth resulting from the modulation process and non-linearity in the transmitter but excluding spurious emissions. The Spurious Emissions measurement is to identify and determine the power level of out-of-band spurious emission within the necessary channel bandwidth and modulated signal measured at the RF port of the Base Station.

Setting measure setup

Procedure

- 1 Press the MEASURE SETUP hot key.
- 2 To set up the range table and parameters, press the **Range Table** soft key and then complete the following steps:
 - Press the Range soft key, and then select the range number between 1 and 20 to add as a new or change the existing settings.
 - **b** Do the following as desired:

Select **Start Frequency**, and then specify the start frequency for the selected range.

Select Stop Frequency, and then specify the stop frequency for the selected range.

Select Start Limit, and then specify the lower limit for Pass/Fail indication.

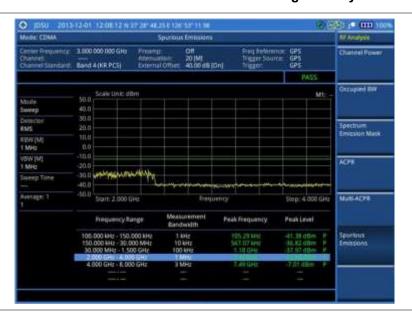
Select Stop Limit, and then specify the upper limit for Pass/Fail indication.

Select More (1/2) > Attenuation, and then specify an value in the multiple of five.

Select More (1/2) > RBW, and then specify a RBW value.

Select More (1/2) > VBW, and then specify a VBW value.

- c Press the PREV hard key.
- d Toggle the Range soft key and select On to display the selected range in the result table or Off to hide it from the table.
- 3 Toggle the Measure Type soft key between Examine and Full to select the measurement type.


NOTE

The **Examine** mode displays only the selected range while the **Full** mode lets the instrument automatically changes the selected range from one another.

- **4** To set the number of measurements to be averaged, complete the following steps:
 - Press the Average soft key.
 - b Enter a value between 1 and 100.
 - Press the Enter soft key.
- 5 To move the highlighted bar in the result table to other range, complete the following steps:
 - a Press the Range soft key in the Measure Setup menu bar.
 - b Enter a value between 1 and 20.
 - c Press the Enter soft key.

After configuring test parameters as described in the "Configuring test parameters" on page 332, your measurement result is displayed on the screen as like the following example, **Figure 192**.

Figure 192 Spurious emissions measurement with CDMA signal analyzer

NOTE

You can use the *LIMIT* hot key to analyze your measurements with the user-definable limit and Pass/Fail indication. See "Setting limit for RF tests" on page 343 for more information.

Setting limit for RF tests

By default, test limits specified in the standard are set for you. You can change thresholds if you desire.

Procedure

1 Press the *LIMIT* hot key.

- 2 Press the RF Test Limits soft key.
- 3 Select the test item(s) and set the limit(s) depending on your selected measurement mode:

To set the limit for	Select	Set
Channel power	Channel Power	High Limit, Low Limit
Occupied bandwidth	Occupied BW	High Limit
Spectrum emission mask	Spectrum Emission Mask	(On/Off only)
ACPR	ACPR	(On/Off only)
Multi-ACPR	Multi-ACPR	(On/Off only)
Spurious emissions	Spurious Emissions	(On/Off only)

- 4 Optional. You can enable alarm sound that goes off if the measurement falls outside of the limit. Toggle the Beep soft key between On and Off to enable or disable the beep sound.
- 5 Optional. Go to SAVE/LOAD > Save, and then select Limit to save the limit settings. See "Using save" on page 34 for more information.

Conducting modulation measurements

In order to make accurate measurements of time offset and PN, you must connect an external trigger before making a modulation measurement.

Constellation

The Constellation is used to observe some aspects of modulation accuracy and can reveal certain fault mechanisms such as I/Q amplitude imbalance or quadrature imbalance. It displays constellation diagram by modulation types.

Setting measure setup

After configuring test parameters as described in the "Configuring test parameters" on page 332, you can continue your measurement. The measurement settings can be saved and recalled as a file. You can also use JDViewer, PC application software to configure a measure setup, save as a file, and load the file on to the instrument.

- 1 Press the MEASURE SETUP hot key.
- **2** To set the Pseudo-Noise (PN) offset, complete the following steps:
 - Toggle the PN Offset soft key between Auto and Manual.
 - **b** Enter a value by using the numeric keys to set manually.
 - c Press the Enter soft key.
- 3 To set the incremental step for the PN offset, complete the following steps:
 - a Press the PN Increment soft key.
 - **b** Enter a value by using the numeric keys.
 - c Press the Enter soft key.
- 4 Optional. Go to **SAVE/LOAD** > **Save**, and then select the save option from the choices available for your measurement mode. See "Using save" on page 34 for more information.

Measurement example

Figure 193 Constellation measurement with CDMA signal analyzer

NOTE

You can use the *LIMIT* hot key to analyze your measurements with the user-definable limit and Pass/Fail indication. See "Setting limit for modulation tests" on page 351 for more information.

Code domain power

The Code Domain Power (CDP) measures the distribution of power across the set of code channels, normalized to the total power. It helps to verify that each code channel is operating at its proper level and to identify problems throughout the transmitter design from coding to the RF section. System imperfections such as amplifier non-linearity will present themselves as an undesired distribution of power in the code domain.

Setting measure setup

After configuring test parameters as described in the "Configuring test parameters" on page 332, you can continue your measurement. The measurement settings can be saved and recalled as a file. You can also use JDViewer, PC application software to configure a measure setup, save as a file, and load the file on to the instrument.

- 1 Press the MEASURE SETUP hot key.
- **2** To set the Pseudo-Noise (PN) offset, complete the following steps:
 - a Toggle the PN Offset soft key between Auto and Manual.
 - **b** Enter a value by using the numeric keys to set manually.
 - c Press the Enter soft key.
- **3** To set the incremental step for the PN offset, complete the following steps:
 - a Press the PN Increment soft key.
 - **b** Enter a value by using the numeric keys.
 - c Press the Enter soft key.
- 4 To set the threshold between Auto and Manual, complete the following steps:
 - Press the Threshold soft key. Its default setting is -27 dB.

- **b** Enter a value between -50 and zero by using the numeric keys to change the value in the Manual mode.
- c Press the Enter soft key.
- 5 Toggle the Q-Paging soft key between On and Off to enable or disable the quick page channel that indicates the power of Quick Page Walsh code 80.
- 6 Optional. Go to SAVE/LOAD > Save, and then select the save option from the choices available for your measurement mode. See "Using save" on page 34 for more information.

Measurement example

Figure 194 Code domain power measurement with CDMA signal analyzer

NOTE

You can use the *LIMIT* hot key to analyze your measurements with the user-definable limit and Pass/Fail indication. See "Setting limit for modulation tests" on page 351 for more information.

Setting display

You can view your measurement results in a different view option.

Procedure

- 1 Press the TRACE/DISPLAY hard key.
- 2 Press the Code Order soft key, and then select the code order option from the following choices:

Hadamard: To assign the number based on Walsh code order and display the measured code power according to the assigned number in sequence.

Bit Reverse: Code number in binary bit is reversed relative to the Hadamard method.

3 Toggle the Base Code Length soft key and select the base Walsh code number: 64 or 128.

Codogram

The Codogram displays how the code level is changing over time and makes it easier for you to view traffic channels as they initiate and terminate and to track traffic channels call levels over time. The Codogram measurements can be saved into an external USB memory so that a post-analysis can be done with the application software JDViewer.

Setting measure setup

After configuring test parameters as described in the "Configuring test parameters" on page 332, you can continue your measurement. The measurement settings can be saved and recalled as a file. You can also use JDViewer, PC application software to configure a measure setup, save as a file, and load the file on to the instrument.

Procedure

- 1 Press the **MEASURE SETUP** hot key.
- 2 To set the Pseudo-Noise (PN) offset, complete the following steps:
 - a Toggle the PN Offset soft key between Auto and Manual.
 - **b** Enter a value by using the numeric keys to set manually.
 - c Press the Enter soft key.
- 3 To set the incremental step for the PN offset, complete the following steps:
 - a Press the PN Increment soft key.
 - **b** Enter a value by using the numeric keys.
 - c Press the Enter soft key.
- 4 To set the threshold between Auto and Manual, complete the following steps:
 - Select More (1/2) > Threshold. Its default setting is -27 dB.
 - **b** Enter a value between -50 and zero by using the numeric keys to change the value in the Manual mode.
 - c Press the Enter soft key.
- 5 Toggle the Q-Paging soft key between On and Off to enable or disable the quick page channel that indicates the power of Quick Page Walsh code 80.
- **6** To set the time interval, complete the following steps:
 - a Press the Time Interval soft key.
 - **b** Enter a value by using the numeric keys.
 - c Press the Enter soft key.
- 7 To place the time cursor to analyze your measurements, complete the following steps:
 - a Toggle the **Time Cursor** soft key between **On** and **Off** to enable or disable the time cursor.
 - **b** Enter a value by using the numeric keys.
 - c Press the Enter soft key.

NOTE

When the time cursor is enabled, the measurement is put on hold and information about the time cursor is displayed.

- 8 To start a new measurement, press the Reset/Restart soft key.
- 9 Optional. Go to **SAVE/LOAD** > **Save**, and then select the save option from the choices available for your measurement mode. See "Using save" on page 34 for more information.

Measurement example

Figure 195 Codogram in full view with CDMA signal analyzer

Setting display

You can view your measurement results in a different view option.

Procedure

- 1 Press the TRACE/DISPLAY hard key.
- 2 Press the Code Order soft key, and then select the code order option from the following choices: Hadamard: To assign the number based on Walsh code order and display the measured code power according to the assigned number in sequence.
 - Bit Reverse: Code number in binary bit is reversed relative to the Hadamard method.
- 3 Toggle the Base Code Length soft key and select the base Walsh code number: 64 or 128.

RCSI

The Received Code Strength Indicator (RCSI) is used to track the power variation of cdmaOne or cdma2000 control channels such as Pilot, Paging, Sync, and Q-Paging over time. The RCSI measurements can be saved into an external USB memory so that a post-analysis can be done with the application software JDViewer.

Setting measure setup

After configuring test parameters as described in the "Configuring test parameters" on page 332, you can continue your measurement. The measurement settings can be saved and recalled as a file. You can also use JDViewer, PC application software to configure a measure setup, save as a file, and load the file on to the instrument.

- 1 Press the **MEASURE SETUP** hot key.
- 2 To set the Pseudo-Noise (PN) offset, complete the following steps:

- Toggle the PN Offset soft key between Auto and Manual.
- **b** Enter a value by using the numeric keys to set manually.
- c Press the Enter soft key.
- **3** To set the incremental step for the PN offset, complete the following steps:
 - a Press the PN Increment soft key.
 - **b** Enter a value by using the numeric keys.
 - Press the Enter soft key.
- **4** To set the threshold between Auto and Manual, complete the following steps:
 - Press the Threshold soft key. Its default setting is -27 dB.
 - **b** Enter a value between -50 and zero by using the numeric keys to change the value in the Manual mode.
 - c Press the Enter soft key.
- 5 Toggle the Q-Paging soft key between On and Off to enable or disable the quick page channel that indicates the power of Quick Page Walsh code 80.
- 6 Press the Alarm Code soft key, and then select the alarm code option: None, Pilot, Page, Sync, or Quick Page.
- 7 To set the alarm mask, complete the following steps:
 - a Press the Set Mask soft key.
 - **b** Enter a value by using the numeric keys.
 - c Press the [dB|dBm] soft key.
- **8** Optional. Go to **SAVE/LOAD** > **Save**, and then select the save option from the choices available for your measurement mode. See "Using save" on page 34 for more information.

Measurement example

Figure 196 RCSI measurement with CDMA signal analyzer

Setting display

You can view your measurement results in a different view option.

- 1 Press the TRACE/DISPLAY hard key.
- 2 Press the Code Order soft key, and then select the code order option from the following choices:
 Hadamard: To assign the number based on Walsh code order and display the measured

code power according to the assigned number in sequence.

Bit Reverse: Code number in binary bit is reversed relative to the Hadamard method.

3 Toggle the Base Code Length soft key and select the base Walsh code number: 64 or 128.

CDP Table

The CDP Table is used to look at a numeric and textual description of all the active code channels in the signal.

Setting measure setup

After configuring test parameters as described in the "Configuring test parameters" on page 332, you can continue your measurement. The measurement settings can be saved and recalled as a file. You can also use JDViewer, PC application software to configure a measure setup, save as a file, and load the file on to the instrument.

- 1 Press the **MEASURE SETUP** hot key.
- **2** To set the Pseudo-Noise (PN) offset, complete the following steps:
 - a Toggle the PN Offset soft key between Auto and Manual.
 - **b** Enter a value by using the numeric keys to set manually.
 - c Press the Enter soft key.
- 3 To set the incremental step for the PN offset, complete the following steps:
 - a Press the PN Increment soft key.
 - **b** Enter a value by using the numeric keys.
 - c Press the Enter soft key.
- **4** To set the threshold between Auto and Manual, complete the following steps:
 - Press the Threshold soft key. Its default setting is -27 dB.
 - **b** Enter a value between -50 and zero by using the numeric keys to change the value in the Manual mode.
 - c Press the Enter soft key.
- 5 Toggle the Q-Paging soft key between On and Off to enable or disable the quick page channel that indicates the power of Quick Page Walsh code 80.

Measurement example

Figure 197 CDP Table measurement with CDMA signal analyzer

Setting display

If the CDP table spans over to the next page(s), you can change pages up and down to view your measurement results.

Procedure

- 1 Press the TRACE/DISPLAY hard key.
- 2 Press the Code Order soft key, and then select the code order option from the following choices:

Hadamard: To assign the number based on Walsh code order and display the measured code power according to the assigned number in sequence.

Bit Reverse: Code number in binary bit is reversed relative to the Hadamard method.

- 3 Toggle the Base Code Length soft key and select the base Walsh code number: 64 or 128.
- 4 Select Page Up or Page Down as needed to scroll the screen up and down.

Setting limit for modulation tests

- 1 Press the *LIMIT* hot key.
- 2 Press the Modulation Test Limits soft key.
- **3** Select the test item(s) and set the limit(s) depending on your selected measurement mode:

To set the limit for	Select	Set
Frequency error	Frequency Error	High Limit, Low Limit
Time offset	Time Offset	High Limit, Low Limit
Waveform quality (Rho)	Rho	Low Limit
Carrier feed through	Carrier Feed Through	High Limit
Pilot power	Pilot Power	High Limit [Abs Rel]

Low Limit [Abs|Rel]

Highest level among inactive channels Max Inactive High Limit

- 4 Optional. You can enable alarm sound that goes off if the measurement falls outside of the limit. Toggle the Beep soft key between On and Off to enable or disable the beep sound.
- 5 Optional. Go to SAVE/LOAD > Save, and then select Limit to save the limit settings. See "Using save" on page 34 for more information.

NOTE

The Time Offset compares the PN offset timing with the overall system time and the instrument checks the start of PN offset in comparison to either the GPS signal or the even second clock signal.

NOTE

The Rho measures the modulation quality for a CDMA transmitter along with EVM and Walsh Channel Power. It includes all errors occurred along the transmitter chain such as base band filtering, abnormality of I/Q modulator and distortion in power amplifier. A perfect Rho value is 1.0 indicating that all of the power is being transmitted correctly.

NOTE

The Carrier Feed Through is a result of the RF carrier signal feeding through the I/Q modulator and riding on the output circuitry without being modulated.

Performing auto measurements

The Auto Measure function of the JD700B series allows a complete signal profiling covering RF characterization and modulation quality parameters of up to 10 different carriers, particularly useful on an overlay architecture where base stations are transmitting in different frequencies.

The Auto Measure can be easily executed either by selecting a menu in the instrument or by running a programmed scenario in the PC-based application so that the instrument automatically configure and perform tests on every aspect of all the carriers.

Setting limit for auto measure

You can set test limits for test item(s) in the auto measurement.

Procedure

- 1 Press the *LIMIT* hot key.
- 2 Press the RF Test Limits soft key, and then enable test limits as desired.
- 3 Press the **Modulation Test Limits** soft key, and then enable test limits as desired.
- 4 Optional. You can enable alarm sound that goes off if the measurement falls outside of the limit. Toggle the Beep soft key between On and Off to enable or disable the beep sound.
- **5** Optional. Go to **SAVE/LOAD > Save**, and then select **Limit** to save the limit settings. See "Using save" on page 34 for more information.

Setting measure setup

After configuring test parameters as described in the "Configuring test parameters" on page 332, you can continue your measurement. The measurement settings can be saved and recalled as a file. You can also use JDViewer, PC application software to configure a measure setup, save as a file, and load the file on to the instrument.

Procedure

- 1 Press the **MEASURE SETUP** hot key.
- 2 Toggle the **Configuration** soft key and select the configuration option:

Current: Lets the instrument use current frequency (single carrier) and determine pass or fail based on the instrument's limit settings in Auto Measure.

Scenario: Runs a test with a programmed scenario in JDViewer.

The Scenario menu becomes activated.

- 3 To load a scenario, press the Scenario soft key, and then select a scenario file to load.
- 4 Toggle the **Test Time** soft key and select the test time option:

Now: Lets the instrument run a test only once.

Schedule: Lets the instrument repeat tests as defined in the Set Timing.

The Set Timing menu becomes activated.

- **5** To define a schedule for an auto measurement, complete the following steps:
 - a Press the Set Timing soft key.
 - b Press the Start Time (HH:MM) soft key.
 - c Enter the time in the HH:MM format, and then press the **Enter** soft key.
 - d Press the Stop Time (HH:MM) soft key.
 - Enter the time in the HH:MM format, and then press the Enter soft key.
 - f Press the Time Interval soft key.
 - g Enter the amount of time in minutes, and then press the **Enter** soft key.
- **6** To set external offset, complete the following steps:
 - a Toggle the External Offset soft key and select On.
 - **b** Enter a value by using the numeric keys, and then press the **dB** soft key.
- 7 To save your settings and results, go to SAVE/LOAD > Save and then perform functions as you desire. See "Using save" on page 34 for more information.
- 8 Press the Run Test soft key to start to run a test. The Auto Measure Results window appears at the end of the test.
- **9** To stop running the test, press the **Abort** soft key.
- 10 To change the view on the screen during the test, press the Display and then select the view option from the following choices:

Screen: You can view each measurement screen as the test progresses.

Results: You can view a measurement result table as the test progresses.

Settings: You can view a measurement setting table as the test progresses.

Setting display

After completion of the auto measurement, the screen menu changes to Trace/Display so that you can view the results in different forms.

Procedure

1 Toggle the **Display** soft key and select the display option:

Result: You can view the result table.

The Display Result menu becomes activated.

Settings: You can view the measurement settings for the auto measurement.

2 Toggle the **Display Result** soft key and select the display result option:

Full: You can view detailed measurement readings with the pass/fail indication.

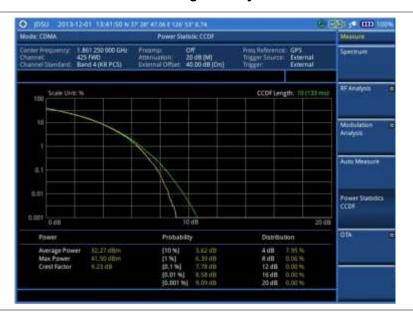
Quick: You can view only the Pass/Fail results.

3 To view the measurement results for a different carrier, press the View Carrier soft key and then select the carrier number to view.

Performing power statistics CCDF measurements

The Power Statistics Complementary Cumulative Distribution Function (CCDF) measurement characterizes the power statistics of the input signal. It provides PAR (Peak to Average power Ratio) versus different probabilities.

Setting measure setup


After configuring test parameters as described in the "Configuring test parameters" on page 332, you can continue your measurement. The measurement settings can be saved and recalled as a file. You can also use JDViewer, PC application software to configure a measure setup, save as a file, and load the file on to the instrument.

Procedure

- 1 Press the **MEASURE SETUP** hot key.
- 2 Press the CCDF Length soft key to set the length of the CCDF.
- 3 Enter a value between 1 and 100 by using the numeric keys. You can also use the rotary knob.
- 4 Press the Enter soft key.

Measurement example

Figure 198 CCDF measurement with CDMA signal analyzer

Conducting CDMA OTA measurements

This Over The Air (OTA) measurement has channel scanner, PN scanner, multipath profile, and Code Domain power screens. It is used to verify CDMA transmitter performance at any location providing reflective measurements and identifying signals providing from different sites. The Code Domain power shows not only modulation performance metric but also amplifier capacity and code utilization metric. The Amplifier capacity (code utilization) measurement is an estimate of the amount of power amplifier capacity (code utilization) that is being used expressed in percent of maximum.

Channel scanner

Setting channel/frequency

Procedure

To set the channels to be scanned:

- Press the FREQ/DIST hard key.
- 2 Toggle the Unit soft key and select Channel.
- 3 Press the Index soft key, and then enter an index number between one and six by turning the rotary knob or using the numeric keys.
- **4** To select the standard channel, complete the following steps:
 - Press the Channel Std soft key. The standard channel window appears.
 See "Appendix C Band, frequency & channel standard" on page 745 for more information.
 - b Highlight the band to be measured by using the rotary knob, the arrow keys, or the **Page Up/Page Down** soft keys.
 - c Press the **Select** soft key or the rotary knob to confirm the selection.
- **5** To set the channel number for the selected index, complete the following steps:
 - a Press the Channel Number soft key.
 - **b** Enter a value by using the numeric keys. You can also use the rotary knob.
 - c Press the Enter soft key.
- 6 The instrument displays a corresponding center frequency for the channel number.
- 7 To set the integration bandwidth for the selected index, complete the following steps:
 - Press the Integration Bandwidth soft key.
 - **b** Enter a value by using the numeric keys. You can also use the rotary knob.
 - c Select the unit: GHz, MHz, kHz, or Hz.
- 8 To add more channels to be scanned, repeat steps 3-6.
- 9 Press the ESC hard key to dismiss the channel list window and view the scanning result.

To set the frequencies to be scanned:

- 1 Press the FREQ/DIST hard key.
- 2 Toggle the Unit soft key and select Freq.
- 3 Press the **Index** soft key, and then enter an index number between one and six by turning the rotary knob or using the numeric keys.
- **4** To set the center frequency for the selected index, complete the following steps:
 - a Press the Center Frequency soft key.
 - **b** Enter a value by using the numeric keys. You can also use the rotary knob.
 - Select the unit: GHz, MHz, kHz, or Hz.
- **5** To set the integration bandwidth for the selected index, complete the following steps:
 - a Press the Integration Bandwidth soft key.
 - **b** Enter a value by using the numeric keys. You can also use the rotary knob.
 - Select the unit: GHz, MHz, kHz, or Hz.
- 6 To add more channels to be scanned, repeat steps 3-5.
- 7 Press the ESC hard key to dismiss the channel list window and view the scanning result.

Setting measure setup

After configuring other test parameters as described in the "Configuring test parameters" on page 332, you can continue your measurement. The measurement settings can be saved and recalled as a file. You can also use JDViewer, PC application software to configure a measure setup, save as a file, and load the file on to the instrument.

Procedure

- 1 Press the **MEASURE SETUP** hot key.
- 2 To set the incremental step for the PN offset, complete the following steps:
 - a Press the PN Increment soft key.
 - **b** Enter a value by using the numeric keys.
 - c Press the Enter soft key.
- 3 Optional. Go to **SAVE/LOAD** > **Save**, and then select the save option from the choices available for your measurement mode. See "Using save" on page 34 for more information.

Setting limit for OTA channel scanner

Procedure

- 1 Press the LIMIT hot key.
- 2 Press the **Limit Line** soft key to set a threshold for the limit line and Pass/Fail indication.
- 3 Enter a value, and then press the dBm unit soft key.
- 4 Toggle the Limit Line soft key between On and Off to display or dismiss the limit line.
- 5 Optional. You can enable alarm sound that goes off if the measurement falls outside of the limit. Toggle the Beep soft key between On and Off to enable or disable the beep sound.
- 6 Optional. Go to **SAVE/LOAD > Save**, and then select **Limit** to save the limit settings. See "Using save" on page 34 for more information.

Measurement example

Figure 199 Channel scanner measurement with CDMA OTA signal analyzer

PN scanner

Each access network sector has a unique PN offset. The PN Scanner is used to identify all the active PNs in an area.

Setting measure setup

After configuring test parameters as described in the "Configuring test parameters" on page 332, you can

continue your measurement. The measurement settings can be saved and recalled as a file. You can also use JDViewer, PC application software to configure a measure setup, save as a file, and load the file on to the instrument.

Procedure

- 1 Press the MEASURE SETUP hot key.
- 2 To set the incremental step for the PN offset, complete the following steps:
 - a Press the PN Increment soft key.
 - **b** Enter a value by using the numeric keys.
 - c Press the Enter soft key.
- 3 Optional. Go to SAVE/LOAD > Save, and then select the save option from the choices available for your measurement mode. See "Using save" on page 34 for more information.

Measurement example

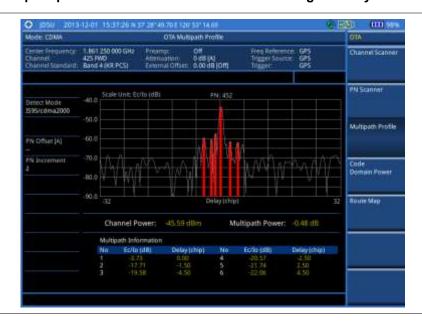
Figure 200 PN scanner measurement with CDMA OTA signal analyzer

Multipath profile

The Multipath Profile enables you to determine RF environmental conditions of testing area. It indicates the amount of power of the dominant pilot signal that is dispersed outside the main correlation peak due to multipath echoes that are expressed in dB. This value should be very small ideally.

The multipath profile is the result of portions of the original broadcast signal arriving at the receiving antenna out of phase. This can be caused by the signal being reflected off objects such as buildings, or being refracted through the atmosphere differently from the main signal.

Setting measure setup


After configuring test parameters as described in the "Configuring test parameters" on page 332, you can continue your measurement. The measurement settings can be saved and recalled as a file. You can also use JDViewer, PC application software to configure a measure setup, save as a file, and load the file on to the instrument.

Procedure

- 1 Press the **MEASURE SETUP** hot key.
- **2** To set the incremental step for the PN offset, complete the following steps:
 - Press the PN Increment soft key.
 - **b** Enter a value by using the numeric keys.
 - c Press the Enter soft key.
- 3 Optional. Go to SAVE/LOAD > Save, and then select the save option from the choices available for your measurement mode. See "Using save" on page 34 for more information.

Measurement example

Figure 201 Multipath profile measurement with CDMA OTA signal analyzer

Code domain power

Channels with high correlation factors are determined to be active channels and are indicated as such on the display. Once the channels are decoded, the analyzer determines the power of each channel relative to the total signal power.

This measurement helps to verify that each code channel is operating at its proper level and helps to identify problems throughout the transmitter design from the coding to the RF section. System imperfections, such as the non-linearity of amplifiers, will present themselves as an undesired distribution of power in the code domain.

Setting measure setup

After configuring test parameters as described in "Configuring test parameters" on page 332, you can continue your measurement. The measurement settings can be saved and recalled as a file. You can also use JDViewer, PC application software to configure a measure setup, save as a file, and load the file on to the instrument.

Procedure

1 Press the **MEASURE SETUP** hot key.

- **2** To set the Pseudo-Noise (PN) offset, complete the following steps:
 - Toggle the PN Offset soft key between Auto and Manual.
 - **b** Enter a value by using the numeric keys to set manually.
 - c Press the Enter soft key.
- 3 To set the incremental step for the PN offset, complete the following steps:
 - a Press the PN Increment soft key.
 - b Enter a value by using the numeric keys.
 - c Press the Enter soft key.
- **4** To set the threshold between Auto and Manual, complete the following steps:
 - Press the Threshold soft key. Its default setting is -27 dB.
 - **b** Enter a value between -50 and zero by using the numeric keys to change the value in the Manual mode.
 - c Press the Enter soft key.
- 5 Toggle the Q-Paging soft key between On and Off to enable or disable the quick page channel that indicates the power of Quick Page Walsh code 80.
- **6** To set the maximum amplifier power, complete the following steps:
 - Press the Max Amplifier Power soft key.
 - b Enter a value by using the numeric keys.
 - c Press the dBm soft key.
- 7 To set the pilot power, complete the following steps:
 - Press the Pilot Power soft key.
 - **b** Enter a value by using the numeric keys.
 - c Press the dBm soft key.
- 8 To set the threshold for pilot dominance, complete the following steps:
 - a Select More (1/2) > Pilot Dominance >.
 - **b** Enter a value by using the numeric keys.
 - c Press the Enter soft key.

NOTE

Recommended value is 10. Color of the Pilot Dominance indicator on the screen bases on this setting.

- **9** To set the threshold for multipath power, complete the following steps:
 - a Select More (1/2) > Multipath Power <.
 - **b** Enter a value by using the numeric keys.
 - c Press the Enter soft key.

NOTE

Recommended value is one. Color of the multipath power indicator on the screen bases on this setting.

10 Optional. Go to **SAVE/LOAD** > **Save**, and then select the save option from the choices available for your measurement mode. See "Using save" on page 34 for more information.

Measurement example

Figure 202 Code domain power measurement with CDMA OTA signal analyzer

NOTE

You can use the *LIMIT* hot key to analyze your measurements with the user-definable limit and Pass/Fail indication.

Setting display

You can view your measurement results in a different view option.

Procedure

- 1 Press the TRACE/DISPLAY hard key.
- 2 Press the Code Order soft key, and then select the code order option from the following choices:

Hadamard: To assign the number based on Walsh code order and display the measured code power according to the assigned number in sequence.

Bit Reverse: Code number in binary bit is reversed relative to the Hadamard method.

3 Toggle the Base Code Length soft key and select the base Walsh code number: 64 or 128.

Route map

The JD700B Series provides the Route Map function that allows you to collect data of points in an indoor or outdoor environment and track the received signals and coverage of RF transmitters by plotting data real time directly on top of a loaded floor plan or a map.

Setting measure setup

- 1 If required, connect a GPS receiver to your JD700B series for outdoor mapping. Indoor mapping does not necessarily need a GPS antenna.
- 2 Configure test parameters as described in the "Configuring test parameters" on page 332.
- **3** To load your map file, complete the following steps:
 - a Plug in your USB drive that has a floor map or .mcf file type created in JDMapCreator. If

the JDMapCreator application on your computer is connected to the instrument via USB or LAN, you can send a map file with a single layer to the instrument directly by using the **Send to EQP** menu in JDMapCreator.

NOTE

The JDMapCreator converts and resizes any scanned floor plan or layout to fit onto your instrument's display. JDMapCreator 1.2.0 or later can save a multiple-layered map, providing **x1**, **x2**, and **x4** views, as a sizable map file so that you can zoom in and out after loading it.

- b Press SAVE/LOAD hot key, and then select Load > Load Map. See "Using load" on page 36 for more information.
- 4 Press the **MEASURE SETUP** hot key.
- 5 Press the **Plot Point** soft key, and then select the plot point option from the following choices:

To collect data/plot points automatically as you move around in a vehicle or outside, press the **GPS** soft key and then toggle the **Screen Mode** soft key between **Map** and **Full**.

NOTE

With the **Map** setting, you can view only the collected points that can be seen within the boundary of the loaded map. If a point is off the map, the instrument displays an arrow to indicate the direction of the current location on the map and the distance from the center to the location at the top of the screen. With the **Full** setting, you can view all the collected points of the route without the loaded map.

To collect data/plot points manually without a GPS antenna in an indoor environment, press the **Position** soft key.

- 6 Press the Plot Item soft key, and then select the measurement option: Pilot Power or Ec/lo.
- 7 To set the incremental step for the PN offset, complete the following steps:
 - Press the PN Increment soft key.
 - b Enter a value by using the numeric keys.
 - c Press the Enter soft key.
- 8 Toggle the **Plot** soft key and select **Start**.
- 9 Touch directly on the screen or press the ENTER hard key to collect data and plot points on the loaded map for the Position setting.

NOTE

For the **Position** setting, you can change the direction of the route with the arrow keys and the distance with the rotary knob.

- 10 Toggle the Plot soft key and select Stop to stop plotting.
- 11 Press the SAVE/LOAD hot key to save the result. See "Using save" on page 34 for more information.

NOTE

The instrument does not automatically save the collected data. It is recommended that you save the result. Otherwise, you will lose all the collected data.

Setting limit

You can set the thresholds for the four different color indicators for Pilot power or Ec/lo.

- 1 Press the LIMIT hot key.
- 2 To set the limits for pilot power if you have selected Pilot for the plot item, complete the following steps:
 - a Press the Pilot Power soft key.
 - **b** Press the **Excellent** soft key to set its threshold.
 - **c** Enter a value, and then press the **dBm** soft key. You can also use the rotary knob.
 - d Press the Very Good soft key to set its threshold.
 - Enter a value, and then press the **dBm** soft key. You can also use the rotary knob.
 - f Press the Good soft key to set its threshold.

- **g** Enter a value, and then press the **dBm** soft key. You can also use the rotary knob.
- h Press the Fair soft key to set its threshold.
- Enter a value, and then press the **dBm** soft key. You can also use the rotary knob.
- j Press the Poor soft key to set its threshold.
- k Enter a value, and then press the **dBm** soft key. You can also use the rotary knob.
- 3 To set the limits for Ec/lo if you have selected as for the plot item, complete the following steps:
 - Press the Ec/lo soft key.
 - **b** Press the **Good** soft key to set its threshold.
 - c Enter a value, and then press the **Enter** soft key. You can also use the rotary knob.
 - d Press the Fair soft key to set its threshold.
 - **e** Enter a value, and then press the **Enter** soft key. You can also use the rotary knob.
 - **f** Press the **Poor** soft key to set its threshold.
 - **g** Enter a value, and then press the **Enter** soft key. You can also use the rotary knob.
- **4** Optional. Go to **SAVE/LOAD > Save**, and then select **Limit** to save the limit settings. See "Using save" on page 34 for more information.

Measurement example

Figure 203 Route map measurement with CDMA OTA signal analyzer

1) Pilot Power

2) Pilot Ec/lo

Controlling a map

If you have loaded a sizable map that was created in JDMapCreator 1.2.0 or later, you can use the Map Control feature that enables you to zoom into the map and view a specific area of interest in detail.

- 1 Press the TRACE/DISPLAY hard key.
- 2 Press the **Map Control** soft key. This key is active only when you have loaded a sizable map.
- 3 Do one of the following:
 - To zoom into an area of interest directly, complete the following steps:
 - a Toggle the **Zoom to** soft key and select **Area**.

The black rectangle appears on the map.

- **b** Press the **Zoom In** and **Zoom Out** soft keys, as you need, to decrease and increase the selected area.
- Move the rectangle by using the four arrow keys, as you need, to place it in a specific area of interest.
- d Press the center of the rotary knob to zoom into the selected area. You can also press the **Zoom to** soft key again to zoom into the selected area.

To zoom into the center or zoom out from the center, complete the following steps:

- a Toggle the Zoom to soft key and select Center.
- b Press the Zoom In and Zoom Out soft keys, as you need, to zoom in and zoom out.
- Move the zoomed-in area by using the four arrow keys, as you need.
- 4 To set the location mode, toggle the **Location Mode** soft key between **Auto** and **Manual** and select the one you desire.

Auto: The instrument compares the coordinates of the displayed map with recevied GPS information. If your current location goes out of the displayed area and enters into the next zoomed-in section within the base map, the map display changes automatically to the next section in which your current position is.

Manual: The map display of the zoomed-in area remains unchanged even if your current location goes out of the displayed area. You can change the displayed area manually by using the arrow keys.

Chapter 11 Using EV-DO Signal Analyzer

This chapter provides instructions for using the EV-DO Signal Analyzer function (option 021) with the EV-DO OTA Analyzer function (option 041). Topics discussed in this chapter are as follows:

	Introduction	.366
-	Display overview	.366
-	Connecting a cable	.367
-	Selecting measurement mode	.369
-	Configuring test parameters	.369
-	Conducting spectrum measurements	.374
-	Conducting RF measurements	.375
-	Conducting power vs. time measurements	.381
-	Conducting modulation measurements	.383
-	Performing auto measurements	. 393
-	Performing power statistics CCDF measurements	.395
	Conducting EV-DO OTA measurements	.395

Introduction

The EV-DO Signal Analyzer of the JD700B series performs power and spectrum measurements as well as modulation analysis to test the proper transmitter performance of EV-DO systems. It performs conformance testing according to the following standards providing a simple Pass/Fail indication on each test.

- 3GPP2 C.S0024-B. cdma2000 High Rate Packet Data Air Interface Specification
- 3GPP2 C.S0032-B. Recommended Minimum Performance Standards for cdma2000 High Rate Packet Data Access Network

You may alter the measurement parameters for specialized analysis. Pass/Fail testing with standard defined or user defined upper and lower limits and the Pass/Fail indictor help you to determine base station performance easily.

This instrument provides the following measurement tools for EV-DO system:

- Spectrum Analysis
- RF Analysis
 - Channel Power
 - Occupied Bandwidth
 - Spectrum Emission Mask (SEM)
 - Adjacent Channel Power Ratio (ACLR)
 - Multi-ACPR
 - Spurious Emissions
- Power vs. Time: Idle Slot and Active Slot
- Modulation Analysis
 - Constellation
 - Code Domain Power
 - MAC Codogram
 - Received Code Strength Indicator (RCSI)
 - MAC CDP Table
- Auto Measure
- Power Statistics CCDF
- Over The Air (OTA)
 - Channel Scanner
 - PN Scanner
 - Multipath Profile
 - Code Domain Power
 - Route Map

Display overview

Figure 204 provides descriptions for each segment of the measurement screen.

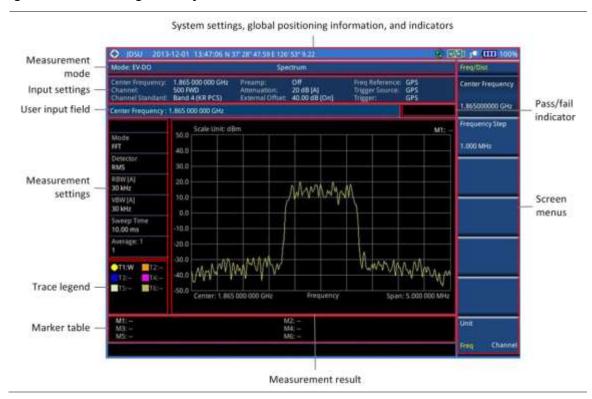


Figure 204 EV-DO signal analyzer measurement screen

Connecting a cable

Direct connection

Procedure

1 Connect the Spectrum Analyzer RF In port of the JD700B series and the Power amplifier output port of BTS.

Figure 205 Direct connection

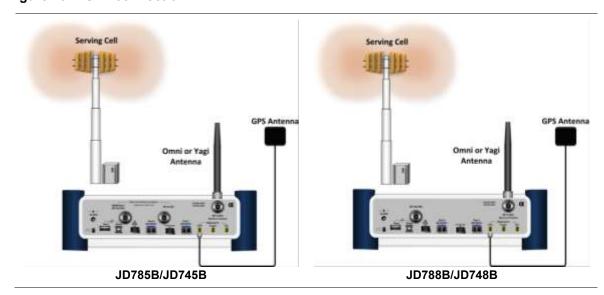
Indirect connection

Procedure

1 Connect the Spectrum Analyzer RF In port of the JD700B series and the monitor (test) port of BTS.

Figure 206 Indirect connection

CAUTION


The maximum power for the **Spectrum Analyzer RF In** port is +25 dBm (0.316 W) for JD780B series and +20 dBm (0.1 W) for JD740B series. If the level of the input signal to be measured is greater than this, use a *High Power Attenuator* to prevent damage when you directly connect the signal to the instrument or connect the signal from the coupling port of a directional coupler.

Over the air (OTA)

Procedure

- 1 Connect an Omni/directional RF antenna to the Spectrum Analyzer RF In port of the JD700B series.
- 2 Connect a GPS antenna to the GPS port of the JD700B series.

Figure 207 OTA connection

CAUTION

If the input signal level to be measured is less than 0 dBm, set 0 dB attenuation or turn on the preamp to have better dynamic range for the OTA testing.

Selecting measurement mode

Procedure

- Press the MODE hard key.
- 2 Press the Signal Analyzer soft key.
- 3 Press the EV-DO soft key. The Spectrum mode is set by default.
- 4 Press the MEASURE hot key, and then select the measurement mode option from the following choices:

Spectrum

RF Analysis > Channel Power, Occupied BW, Spectrum Emission Mask, ACPR, Multi-ACPR, or Spurious Emissions

Power vs Time > Power vs Time (Idle Slot) or Power vs Time (Active Slot)

Modulation Analysis > Constellation > Composite 64, Composite 128, Pilot, MAC 64, MAC 128, or Data

Modulation Analysis > Code Domain Power > Pilot, MAC 64, MAC 128, or Data

Modulation Analysis > MAC Codogram, RCSI, or MAC CDP Table

Auto Measure

Power Statistics CCDF

OTA > Channel Scanner, PN Scanner, Multipath Profile, Code Domain Power, or Route Map

Configuring test parameters

Setting frequency

You can set the frequency with either frequency or channel number. If a frequency to be set matches to the frequency corresponding to the selected channel standard, the instrument calculates its channel number and updates the screen with it automatically.

Procedure

To set the center frequency:

- 1 Press the FREQ/DIST hard key.
- 2 Toggle the Unit soft key and select Freq.
- 3 Press the Center Frequency soft key.
- 4 Enter a value by using the numeric keys. You can also use the rotary knob.
- 5 Select the unit: GHz, MHz, kHz, or Hz.
- 6 Optional. To define the amount of frequency increment for the rotary knob, complete the following steps:
 - a Press the Frequency Step soft key.
 - b Enter a value by using the numeric keys. You can also use the rotary knob.
 - c Press the unit: GHz, MHz, kHz, or Hz.

To set the channel number:

- 1 Press the FREQ/DIST hard key.
- 2 Toggle the Unit soft key and select Channel.
- 3 To select the standard channel, complete the following steps:
 - Press the Channel Std soft key. The standard channel window appears.
 See "Appendix C Band, frequency & channel standard" on page 745 for more information.
 - b Highlight the band to be measured by using the rotary knob, the arrow keys, or the Page

Up/Page Down soft keys.

- c Press the **Select** soft key or the rotary knob to confirm the selection.
- 4 Press the Channel Number soft key.
- **5** Enter a value by using the numeric keys. You can also use the rotary knob.
- 6 Press the Enter soft key.
 - The instrument automatically displays the corresponding center frequency value for the selected channel number.
- 7 Optional. To define the amount of channel increment for the rotary knob, complete the following steps:
 - Press the Channel Step soft key.
 - **b** Enter a value by using the numeric keys. You can also use the rotary knob.
 - c Press the Enter soft kev.

NOTE

This frequency setting is not used in the Multi-ACLR and Spurious Emissions modes.

Setting amplitude

Reference level and attenuation

You can set the reference and attenuation levels automatically or manually to optimize the display of the traces measured, as you desire.

Procedure

To automatically set the reference and attenuation level:

- 1 Press the AMP/SCALE hard key.
- 2 Press the Auto Scale soft key. Each time you press this key, both of the Y-axis scale and input attenuation level change to be optimized with some margin.

To set the reference or attenuation level manually:

- 1 Press the AMP/SCALE hard key.
- 2 To set the maximum reference value on the Y-axis manually, complete the following steps:
 - Press the Reference Level soft key.
 - **b** Enter a value by using the numeric keys or the rotary knob with 10 dB increments.
 - Press the unit soft key or the ENTER hard key.
 This unit key name changes according to the setting in the Units menu.

NOTE

In the measurements such as **Code Domain Power** and **MAC Codogram**, you may need to select the reference option between **Relative** and **Absolute** before setting the reference level.

3 To set the attenuation option, select one from the following choices:

To set the input attenuator's level automatically, select **Attenuation > Auto**.

NOTE

It is recommended that you set the **Attenuation** to **Auto** in most situations so that the level of the input attenuator can be set automatically according to your input signal level.

To set the input attenuation manually up to 55 dB for JD780B series or 50 dB for JD740B series to optimize S/N, complete the following steps:

- a Select Attenuation > Manual.
- **b** Press the **Attenuation Value** soft key to set the level.
- c Enter a value in fives by using the numeric keys.
- d Press the dB soft key or the ENTER hard key.

To couple the input attenuator's level with your reference level setting, select **Attenuation >**

Couple.

As you increase the reference setting, the attenuation level also increases accordingly.

Optional. To change the scale unit:

- 1 Select More (1/2) > Units.
- 2 Select the unit of the display scale: dBm, dBV, dBmV, dBμV, V, or W. The scale unit on the screen changes accordingly.

NOTE

This Units menu is available in the Spectrum and RF Analysis modes.

Scale per division

You can use the **Scale/Div** feature available for the spectrum and RF analysis. It represents the value of one division on the horizontal scale. The default setting is 10 dB per division and the maximum value can be set up to 20 dB.

Procedure

To set the scale per division:

- 1 Press the AMP/SCALE hard key.
- 2 Select More (1/2) > Scale/Div.
- 3 Enter a value between 1 and 20 by using the numeric keys.
- 4 Press the **dB** soft key to complete the entry.

Pre-amplifier

You can turn the internal pre-amplifier on to correct and compensate for the gain of the preamp so that amplitude readings show the value at the input connector.

Procedure

- 1 Press the AMP/SCALE hard key.
- 2 Toggle the **Preamp** soft key and select **On** or **Off** as needed.

NOTE

You can turn the Preamp on when the input attenuation range is from 0 dB to 10 dB. If the attenuation value is manually set to greater than 10 dB, the instrument will automatically turn off the pre-amplifier to display low-level signal properly on the chart.

External offset

You can turn the **External Offset** on and manually set the external offset value. An offset consists of a cable loss and a user offset and the measurement result shows the value reflecting both offset values. When the external offset value is set at 40 dB in the Spectrum mode, the measurement result compensates 40 dB at both the Spectrum Analyzer and Signal Analyzer modes.

Procedure

To set the external offset:

- 1 Press the AMP/SCALE hard key.
- 2 Toggle the External Offset soft key and select On.
- 3 Enter a value by using the numeric keys.
- 4 Press the dB soft key to complete the entry.

To turn the external offset off:

- 1 Press the AMP/SCALE hard key.
- 2 Toggle the External Offset soft key and select Off.

Setting average

You can set the number of measurements to be averaged for the trace presentation. A maximum of 100 times of averaging can be set. When the averaging reaches to your setting, a new measurement value replaces the measurement value in sequence from the earliest.

Procedure

- 1 Press the BW/AVG hard key.
- 2 Press the Average soft key.
- 3 Enter a value between 1 and 100 as needed by using the numeric keys.
- 4 Press the Enter soft key.

Setting sweep mode

The default setting is **Continue** to sweep continuously for most on-going measurements. If you want to hold the measurement or get a single sweep, you can change the sweep mode.

Procedure

To select the single sweep mode:

- 1 Press the **SWEEP** hot key.
- 2 Toggle the Sweep Mode soft key and select Single. You can also use the HOLD hot key. The letter HOLD in red appears and the sweeping is paused.
- 3 Optional. Press the Sweep Once soft key to get a new measurement.

To return to the continuous sweep mode:

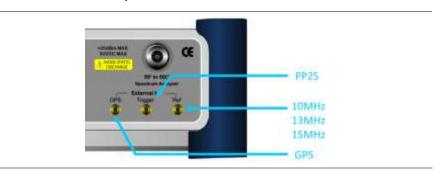
1 Toggle the Sweep Mode soft key and select Continue. You can also use the HOLD hot key. The letter HOLD in red disappears and the sweeping resumes.

Setting trigger source

You can set the trigger source option for your measurements. Connecting an external trigger is necessary for accurate modulation measurements on EV-DO systems.

Procedure

- 1 Press the TRIGGER hot key.
- 2 Select the trigger source option from the choices: Internal, External, and GPS.


Setting external clock

To enhance the reliability of modulation analysis measurements the JD700B series must be synchronized with a base station. When an external clock is not supplied, the instrument works with its built-in internal high-accuracy time base and some measurement results may exhibit inaccurate values. Therefore, it is highly recommended that you use the same reference clock as the signal source. You can use the *TRIGGER* hot key to set the external clock.

Table 16 Standards of external clock operation

Clock	Туре	Reference	Port	Switching Standard
External Reference	Internal	Internal 10 MHz		Default
	External	External Ref Clock	Ext Ref (SMA)	Manual switching (Input signal level >-3 dBm)
	GPS	GPS Clock	GPS (SMA)	Automatic switching (GPS signal received)
Trigger	Internal	Internal Trigger		Default
	External	External Trigger	Trigger (SMA)	Manual switching
	GPS	GPS	GPS (SMA)	Manual switching

Figure 208 Connection ports for external reference clock

Procedure

- 1 Connect an external reference or a GPS antenna to the JD700B series.
- 2 Press the SYSTEM hot key.
- 3 Press the Freq Reference soft key, and then select the reference option: Internal, External 10 MHz, External 13 MHz, External 15 MHz, or GPS.

NOTE

When a GPS antenna is connected and locked, GPS coordinates (longitude and latitude) are displayed on the screen and frequency reference is automatically set to GPS in the **System > Freq Reference**.

Table 17 External reference indicators

Туре	Indicator	Description
Internal	(green)	The green INT icon indicates that the instrument uses the built-in internal time base.
External	(green)	The green EXT icon indicates that an external reference is connected and locked and that the instrument uses the same reference clock as the signal source.
External	(red)	The red EXT icon indicates that an external reference is connect but not locked.
GPS	(green)	The green GPS antenna icon indicates that a GPS antenna is connected and locked.
GPS	(yellow)	The yellow GPS antenna icon indicates that a GPS antenna is connected and locking is in progress.
GPS	(grey)	The grey GPS antenna icon indicates that a GPS antenna is not connected, failed, or unable to be locked.

Conducting spectrum measurements

If you have configured test parameters as described in the "Configuring test parameters" on page 369, your measurement result is displayed on the screen as like the following example, **Figure 209**.

Figure 209 Spectrum measurement screen with EV-DO signal analyzer

Setting trace

You can display up to six traces on the measurement chart simultaneously.

Procedure

- 1 Press the TRACE/DISPLAY hard key.
- Press the Select Trace soft key, and then select the trace number: T1, T2, T3, T4, T5, or T6. The legend shape of the selected trace changes from square to round to indicate that the trace is the active one now.
- 3 Do one of the following:

То	Select	Trace Legend
Clear current data and display with new measurements	Clear Write	W
Display the input signal's maximum response only (unlimited or for a certain amount of time)	Max Hold	M
Display the input signal's minimum response only (unlimited or for a certain amount of time)	Min Hold	m
Capture the selected trace and compare traces	Capture	С
Load a saved trace	More (1/2) > Load	L
Hide the displayed trace	Trace View > Off	F
Remove all the traces and initialize the trace settings	More (1/2) > Trace Clear All	

NOTE

For the **Max Hold** and **Min Hold**, your instrument compares newly acquired data with the active trace and displays larger maximum values or smaller minimum values on the

screen. You can set it to **Unlimited** to hold and view maximum or minimum data or specify a certain amount of time up to 60 seconds by using numeric keys or rotary knob.

- 4 Optional. Select More (1/2) > Trace Info, and then select the trace number to view the trace's parameter setting information stored at the time of the measurement or None to hide the information display.
- Optional. If you have the two traces T1 and T2, you can perform trace math. To view the power difference between the traces, press the T1 T2 -> T5 or T2 T1 -> T6 soft key. The result is overlaid on the screen along with the second Y-axis.

Conducting RF measurements

Channel power

The Channel Power measurement is a common test used in the wireless industry to measure the total transmitted power of a radio within a defined frequency channel. It acquires a number of points representing the input signal in the time domain, transforms this information into the frequency domain using Fast Fourier Transform (FFT), and then calculates the channel power. The effective resolution bandwidth of the frequency domain trace is proportional to the number of points acquired for the FFT.

The channel power measurement identifies the total RF power, power spectral density (PSD) and peak to average ratio (PAR) of the signal in the EV-DO channel bandwidth (1.23 MHz).

After configuring test parameters as described in the "Configuring test parameters" on page 369, your measurement result is displayed on the screen as like the following example, Figure 210.

Figure 210 Channel power measurement with EV-DO signal analyzer

D

NOTE

You can use the *LIMIT* hot key to analyze your measurements with the user-definable limit and Pass/Fail indication. See "Setting limit for RF tests" on page 381 for more information.

Occupied bandwidth

The Occupied Bandwidth measures the spectrum shape of the carrier. It is defined as the bandwidth, which includes 99% of the transmitted power among total transmitted power.

After configuring test parameters as described in the "Configuring test parameters" on page 369, your measurement result is displayed on the screen as like the following example, Figure 211.

Figure 211 Occupied bandwidth measurement with EV-DO signal analyzer

NOTE

You can use the *LIMIT* hot key to analyze your measurements with the user-definable limit and Pass/Fail indication. See "Setting limit for RF tests" on page 381 for more information.

Spectrum emission mask (SEM)

The Spectrum Emission Mask (SEM) measurement required by 3GPP2 specifications encompasses different power limits and different measurement bandwidths (resolution bandwidths) at various frequency offsets. It may be expressed as a ratio of power spectral densities between the carrier and the specified offset frequency band. It provides useful figures-of-merit for the spectral re-growth and emissions produced by components and circuit blocks, without the rigor of performing a full SEM measurement.

The SEM measures spurious signal levels in up to five pairs of offset or region frequencies and relates them to the carrier power.

Setting measure setup

After configuring test parameters as described in the "Configuring test parameters" on page 369, your measurement result is displayed on the screen as like the following example, Figure 212.

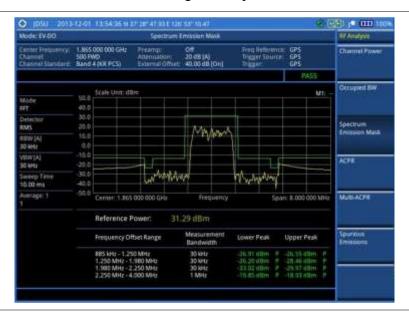


Figure 212 SEM measurement with EV-DO signal analyzer

You can use the *LIMIT* hot key to analyze your measurements with the user-definable limit and Pass/Fail indication. See "Setting limit for RF tests" on page 381 for more information.

ACPR

The Adjacent Channel Power Ratio (ACPR) is defined as the ratio of the average power in the adjacent frequency channel (or offset) to the average power in the transmitted frequency channel. It may be expressed as the ratio of the integrated signal power in the adjacent channel to the integrated signal power in the main channel.

After configuring test parameters as described in the "Configuring test parameters" on page 369, your measurement result is displayed on the screen as like the following example, Figure 213.

Figure 213 ACPR measurement with EV-DO signal analyzer

You can use the *LIMIT* hot key to analyze your measurements with the user-definable limit and Pass/Fail indication. See "Setting limit for RF tests" on page 381 for more information.

Multi-ACPR

The Multi-ACPR measurement is used to perform multi-channel ACPR measurements with as many channels as possible. It helps you to measure ACPR in multi-channel transmitting Base Station environment.

Setting frequency for Multi-ACPR

You can set the frequency with either frequency or channel number.

Procedure

- 1 Press the **MEASURE SETUP** hot key.
- 2 To set the frequency, do one of the following:

To set the center frequency, complete the following steps:

- a Toggle the Unit soft key and select Freq.
- **b** Press the **Lowest Frequency** soft key to set the starting center frequency.
- c Enter a value by using the numeric keys. You can also use the rotary knob.
- d Select the unit: GHz, MHz, kHz, or Hz.
- Press the Highest Frequency soft key to set the stopping center frequency.
- f Enter a value by using the numeric keys. You can also use the rotary knob.
- g Select the unit: GHz, MHz, kHz, or Hz.

To set the channel number, complete the following steps:

- a Toggle the Unit soft key and select Channel.
- b To select the standard channel, press the Channel Std soft key and then select the band to be measured.
- c Press the **Lowest Channel** soft key to set the starting channel.
- **d** Enter a value by using the numeric keys. You can also use the rotary knob.
- e Press the Enter soft key.
- f Press the Highest Channel soft key to set the stopping channel.
- g Enter a value by using the numeric keys. You can also use the rotary knob.
- h Press the Enter soft key.

After configuring the test parameters, your measurement result is displayed on the screen as like the following example, **Figure 214**.

Figure 214 Multi-ACPR measurement with EV-DO signal analyzer

You can use the *LIMIT* hot key to analyze your measurements with the user-definable limit and Pass/Fail indication. See "Setting limit for RF tests" on page 381 for more information.

Spurious emissions

Out-of-band emissions are unwanted emissions immediately outside the channel bandwidth resulting from the modulation process and non-linearity in the transmitter but excluding spurious emissions. The Spurious Emissions measurement is to identify and determine the power level of out-of-band spurious emission within the necessary channel bandwidth and modulated signal measured at the RF port of the Base Station.

Setting measure setup

- 1 Press the **MEASURE SETUP** hot key.
- 2 To set up the range table and frequency range, press the Range Table soft key and then complete the following steps:
 - Press the Range soft key, and then enter the range number to add a new range or change an existing one.
 - b Press the Enter soft key.
 - c Press the **Start Frequency** soft key to set up the frequency range.
 - **d** Enter a value by using the numeric keys. You can also use the rotary knob.
 - e Select the unit: GHz, MHz, kHz, or Hz.
 - f Press the Stop Frequency soft key to set up the frequency range.
 - g Enter a value by using the numeric keys. You can also use the rotary knob.
 - h Select the unit: GHz, MHz, kHz, or Hz.
- 3 Toggle the Range soft key between On and Off to display or hide the selected range.
- 4 To set up the test limits for Pass/Fail indication, complete the following steps:
 - Press the Start Limit soft key.
 - **b** Enter a value by using the numeric keys. You can also use the rotary knob.
 - Select the dBm soft key.
 - d Press the Stop Limit soft key.

- **e** Enter a value by using the numeric keys. You can also use the rotary knob.
- f Select the dBm soft key.
- 5 To set up the other parameters, complete the following steps:
 - Select More (1/2) > Attenuation to set up the attenuation value.
 - Enter a value in the multiple of five.
 - Press the dB soft key or the ENTER hard key.
 - c Press the RBW soft key.
 - d Enter a value by using the numeric keys.
 - e Select the unit: GHz, MHz, kHz, or Hz.
 - f Press the VBW soft key.
 - g Enter a value by using the numeric keys.
 - h Select the unit: GHz, MHz, kHz, or Hz.
- 6 Press the **PREV** hard key.
- 7 Toggle the **Measure Type** soft key between **Examine** and **Full** to select the measurement type.

The **Examine** mode displays only the selected range while the **Full** mode lets the instrument automatically changes the selected range from one another.

- 8 Set the number of measurements to be averaged:
 - Press the Average soft key.
 - Enter a value between 1 and 100.
 - c Press the Enter soft key.

After configuring test parameters as described in the "Configuring test parameters" on page 369, your measurement result is displayed on the screen as like the following example, **Figure 215**.

Figure 215 Spurious emissions measurement with EV-DO signal analyzer

NOTE

You can use the *LIMIT* hot key to analyze your measurements with the user-definable limit and Pass/Fail indication. See "Setting limit for RF tests" on page 381 for more information.

Setting limit for RF tests

By default, test limits specified in the standard are set for you. You can change thresholds if you desire.

Procedure

- 1 Press the LIMIT hot key.
- 2 Press the RF Test Limits soft key.
- 3 Select the test item(s) and set the limit(s) depending on your selected measurement mode:

To set the limit for	Select	Set
Channel power	Channel Power	High Limit, Low Limit
Occupied bandwidth	Occupied BW	High Limit
Spectrum emission mask	Spectrum Emission Mask	(On/Off only)
ACPR	ACPR	(On/Off only)
Multi-ACPR	Multi-ACPR	(On/Off only)
Spurious emissions	Spurious Emissions	(On/Off only)

- 4 Optional. You can enable alarm sound that goes off if the measurement falls outside of the limit. Toggle the Beep soft key between On and Off to enable or disable the beep sound.
- 5 Optional. Go to SAVE/LOAD > Save, and then select Limit to save the limit settings. See "Using save" on page 34 for more information.

Conducting power vs. time measurements

The Power vs. Time (Idle Slot and Active Slot) in EV-DO Signal Analyzer verifies that the transmitter output power has correct amplitude, shape, and timing for the EV-DO format.

- Idle Slot: Slot with no data in traffic channel.
- Active Slot: Slot with the loaded data in traffic channel.

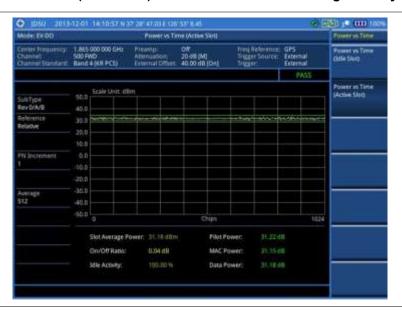
Forward link of 1xEV-DO is a frame structure and each frame consists of 16 slots. The frame period for 1xEV-DO is 26.667 ms, which is also the period of one pilot channel. Each frame is divided into 16 slots of 1.666 ms. 1xEV-DO uses CDMA modulation scheme, but unlike its previous systems the Pilot, MAC (Media Access Control), and Data (Traffic) Channel are not transmitted simultaneously; instead they are transmitted in TDM (Time Division Multiplex).

Power vs. time (idle slot)

The Power vs. Time (Idle Slot) measurement provides the idle slot that includes the Pilot and MAC channels with the masks in all regions.

After configuring test parameters as described in the "Configuring test parameters" on page 369, your measurement result is displayed on the screen as like the following example, **Figure 216**.

Figure 216 Power vs. time (idle slot) measurement with EV-DO signal analyzer


You can use the *LIMIT* hot key to analyze your measurements with the user-definable limit and Pass/Fail indication. See "Setting limit for power vs. time tests" on page 383 for more information.

Power vs. time (active slot)

The Power vs. Time (Active Slot) measurement includes the Pilot, MAC, and Data channels with the upper and lower masks.

After configuring test parameters as described in the "Configuring test parameters" on page 369, your measurement result is displayed on the screen as like the following example, **Figure 217**.

Figure 217 Power vs. time (active slot) measurement with EV-DO signal analyzer

NOTE

You can use the *LIMIT* hot key to analyze your measurements with the user-definable limit and Pass/Fail indication. See "Setting limit for power vs. time tests" on page 383 for more information.

Setting limit for power vs. time tests

Procedure

- 1 Press the *LIMIT* hot key.
- 2 Press the PvsT Test Limits soft key.
- 3 Select the test item(s) and set the limit(s):

To set the limit for	Select	Set
Pilot power	Pilot Power	High Limit, Low Limit
Medium access control power	MAC Power	High Limit, Low Limit
Data power during the data period	Data Power	High Limit, Low Limit
On/off power ratio of the pilot and MAC powers to the data power	On/Off Ratio	Low Limit

- 4 Optional. You can enable alarm sound that goes off if the measurement falls outside of the limit. Toggle the **Beep** soft key between **On** and **Off** to enable or disable the beep sound.
- 5 Optional. Go to SAVE/LOAD > Save, and then select Limit to save the limit settings. See "Using save" on page 34 for more information.

Conducting modulation measurements

In order to make accurate measurements of time offset and PN, you must connect an external trigger before making a modulation measurement.

Constellation

The Constellation is used to observe some aspects of modulation accuracy and can reveal certain fault mechanisms such as I/Q amplitude imbalance or quadrature imbalance. It displays constellation diagram by modulation types.

Setting measure setup

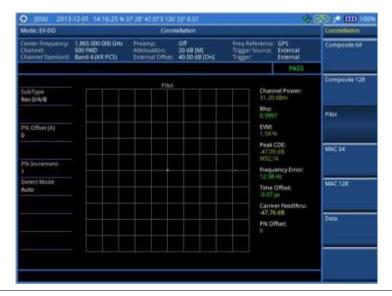
After configuring test parameters as described in the "Configuring test parameters" on page 369, you can continue your measurement. The measurement settings can be saved and recalled as a file. You can also use JDViewer, PC application software to configure a measure setup, save as a file, and load the file on to the instrument.

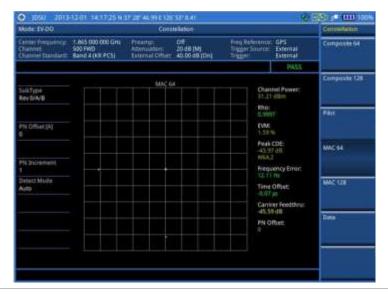
- 1 Press the MEASURE SETUP hot key.
- **2** To set the Pseudo-Noise (PN) offset, complete the following steps:
 - Toggle the PN Offset soft key between Auto and Manual.
 - b Enter a value by using the numeric keys to set manually, and then press the Enter soft key.
- **3** To set the incremental step for the PN offset, complete the following steps:
 - a Press the PN Increment soft key.
 - **b** Enter a value by using the numeric keys, and then press the **Enter** soft key.
- 4 Press the Detect Mode soft key, and then select the detection mode option: Auto, QPSK, 8PSK, 16 QAM, or 64 QAM.
- 5 Optional. Go to SAVE/LOAD > Save, and then select the save option from the choices available for your measurement mode. See "Using save" on page 34 for more information.

You can use the *LIMIT* hot key to analyze your measurements with the user-definable limit and Pass/Fail indication. See "Setting limit for modulation tests" on page 392 for more information. *The Max Inactive is not used in the Constellation mode*.

Measurement example

Figure 218 Constellation measurement with EV-DO signal analyzer


1) Composite 64


2) Composite 128

3) Pilot

4) MAC 64

5) MAC 128

6) Data

Code domain power

The Code Domain Power (CDP) measures the distribution of power across the set of code channels, normalized to the total EV-DO power. It helps to verify that each code channel is operating at its proper level and to identify problems throughout the transmitter design from coding to the RF section. System imperfections such as amplifier non-linearity will present themselves as an undesired distribution of power in the code domain.

Setting measure setup

After configuring test parameters as described in the "Configuring test parameters" on page 369, you can continue your measurement. The measurement settings can be saved and recalled as a file. You can also use JDViewer, PC application software to configure a measure setup, save as a file, and load the file on to the instrument.

- 1 Press the **MEASURE SETUP** hot key.
- **2** To set the Pseudo-Noise (PN) offset, complete the following steps:
 - a Toggle the PN Offset soft key between Auto and Manual.
 - **b** Enter a value by using the numeric keys to set manually.
 - c Press the Enter soft key.
- **3** To set the incremental step for the PN offset, complete the following steps:
 - a Press the PN Increment soft key.
 - **b** Enter a value by using the numeric keys.
 - c Press the Enter soft key.
- 4 To set the threshold between Auto and Manual, complete the following steps:
 - a Press the Threshold soft key. Its default setting is -27 dB.
 - Enter a value between -50 and zero by using the numeric keys to change the value in the Manual mode.
 - c Press the Enter soft key.
- 5 Press the Detect Mode soft key, and then select the detection mode option: Auto, QPSK, 8PSK, 16 QAM, or 64 QAM.
- 6 Optional. Go to **SAVE/LOAD** > **Save**, and then select the save option from the choices available

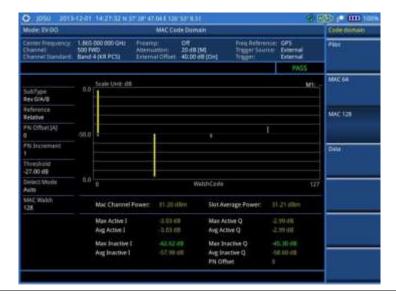
for your measurement mode. See "Using save" on page 34 for more information.

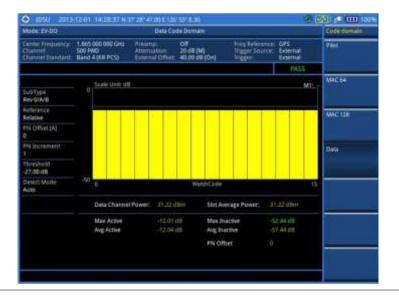
NOTE

You can use the *LIMIT* hot key to analyze your measurements with the user-definable limit and Pass/Fail indication for the Max Inactive. See "Setting limit for modulation tests" on page 392 for more information.

Measurement example

Figure 219 Code domain power measurement with EV-DO signal analyzer


1) Pilot


2) MAC 64

3) MAC 128

4) Data

MAC Codogram

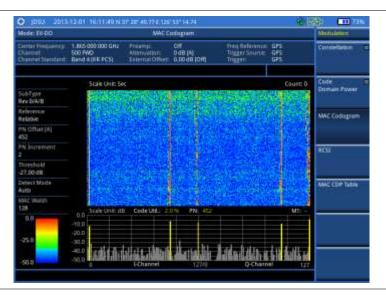
The MAC Codogram displays the power variation for every code over time, presenting a clear view of the traffic load per channels at any given time. The MAC Codogram measurements can be saved into an external USB memory so that a post-analysis can be done with the application software JDViewer.

Setting measure setup

After configuring test parameters as described in the "Configuring test parameters" on page 369, you can continue your measurement. The measurement settings can be saved and recalled as a file. You can also use JDViewer, PC application software to configure a measure setup, save as a file, and load the file on to the instrument.

- 1 Press the **MEASURE SETUP** hot key.
- **2** To set the Pseudo-Noise (PN) offset, complete the following steps:

- Toggle the PN Offset soft key between Auto and Manual.
- **b** Enter a value by using the numeric keys to set manually.
- c Press the Enter soft key.
- **3** To set the incremental step for the PN offset, complete the following steps:
 - Press the PN Increment soft key.
 - **b** Enter a value by using the numeric keys.
 - Press the Enter soft key.
- **4** To set the threshold between Auto and Manual, complete the following steps:
 - Press the Threshold soft key. Its default setting is -27 dB.
 - **b** Enter a value between -50 and zero by using the numeric keys to change the value in the Manual mode.
 - c Press the Enter soft key.
- 5 Toggle the MAC soft key and select the MAC Walsh code option: 64 or 128.
- **6** To set the time interval, complete the following steps:
 - Press the Time Interval soft key.
 - **b** Enter a value by using the numeric keys.
 - c Press the Enter soft key.
- 7 To place the time cursor to analyze your measurements, complete the following steps:
 - a Toggle the Time Cursor soft key between On and Off to enable or disable the time cursor.
 - **b** Enter a value by using the numeric keys.
 - c Press the Enter soft key.



When the time cursor is enabled, the measurement is put on hold and information about the time cursor is displayed.

- 8 To start a new measurement, press the Reset/Restart soft key.
- 9 Optional. Go to **SAVE/LOAD** > **Save**, and then select the save option from the choices available for your measurement mode. See "Using save" on page 34 for more information.

Measurement example

Figure 220 MAC Codogram in full view with EV-DO signal analyzer

RCSI

The Received Code Strength Indicator (RCSI) is used to track the power variation over time of EV-DO channels: Pilot, MAC, Data, and Slot. The RCSI measurements can be saved into an external USB memory

so that a post-analysis can be done with the application software JDViewer.

Setting measure setup

After configuring test parameters as described in the "Configuring test parameters" on page 369, you can continue your measurement. The measurement settings can be saved and recalled as a file. You can also use JDViewer, PC application software to configure a measure setup, save as a file, and load the file on to the instrument.

- 1 Press the **MEASURE SETUP** hot key.
- **2** To set the Pseudo-Noise (PN) offset, complete the following steps:
 - a Toggle the PN Offset soft key between Auto and Manual.
 - Enter a value by using the numeric keys to set manually.
 - c Press the Enter soft key.
- **3** To set the incremental step for the PN offset, complete the following steps:
 - a Press the PN Increment soft key.
 - **b** Enter a value by using the numeric keys.
 - c Press the Enter soft key.
- 4 To set the threshold between Auto and Manual, complete the following steps:
 - Press the Threshold soft key. Its default setting is -27 dB.
 - **b** Enter a value between -50 and zero by using the numeric keys to change the value in the Manual mode.
 - c Press the Enter soft kev.
- 5 Toggle the MAC soft key and select the MAC Walsh code option: 64 or 128.
- 6 Press the Alarm Code soft key, and then select the alarm code option: None, Pilot, MAC, Data, or Slot.
- 7 To set the alarm mask, complete the following steps:
 - a Press the Set Mask soft key.
 - **b** Enter a value by using the numeric keys.
 - c Press the [dB|dBm] soft key.
- **8** Optional. Go to **SAVE/LOAD** > **Save**, and then select the save option from the choices available for your measurement mode. See "Using save" on page 34 for more information.

Measurement example

Figure 221 RCSI measurement with EV-DO signal analyzer

MAC CDP Table

The MAC CDP Table is used for the user to look at a numeric and textual description of all the active control channels in the signal.

Setting measure setup

After configuring test parameters as described in the "Configuring test parameters" on page 369, you can continue your measurement. The measurement settings can be saved and recalled as a file. You can also use JDViewer, PC application software to configure a measure setup, save as a file, and load the file on to the instrument.

- 1 Press the **MEASURE SETUP** hot key.
- 2 To set the Pseudo-Noise (PN) offset, complete the following steps:
 - a Toggle the PN Offset soft key between Auto and Manual.
 - **b** Enter a value by using the numeric keys to set manually.
 - c Press the Enter soft key.
- 3 To set the incremental step for the PN offset, complete the following steps:
 - a Press the PN Increment soft key.
 - **b** Enter a value by using the numeric keys.
 - c Press the Enter soft key.
- 4 To set the threshold between Auto and Manual, complete the following steps:
 - Press the Threshold soft key. Its default setting is -27 dB.
 - Enter a value between -50 and zero by using the numeric keys to change the value in the Manual mode.
 - c Press the Enter soft key.
- 5 Toggle the MAC soft key and select the MAC Walsh code option: 64 or 128.

Measurement example

Figure 222 MAC CDP Table measurement with EV-DO signal analyzer

Setting display

If the MAC CDP table spans over to the next page(s), you can change pages up and down to view your measurement results.

Procedure

- 1 Press the TRACE/DISPLAY hard key.
- 2 Select Page Up or Page Down as needed to scroll the screen up and down.

Setting limit for modulation tests

- 1 Press the *LIMIT* hot key.
- 2 Press the Modulation Test Limits soft key.
- 3 Select the test item(s) and set the limit(s) depending on your selected measurement mode:

To set the limit for	Select	Set
Frequency error	Frequency Error	High Limit, Low Limit
Time offset	Time Offset	High Limit, Low Limit
Carrier feed through	Carrier Feed Through	High Limit
Highest level among inactive channels	Max Inactive	High Limit
Waveform quality (Rho) for pilot	Pilot Rho	Low Limit
Waveform quality (Rho) for MAC	MAC Rho	Low Limit
Waveform quality (Rho) for data	Data Rho	Low Limit

- 4 Optional. You can enable alarm sound that goes off if the measurement falls outside of the limit. Toggle the Beep soft key between On and Off to enable or disable the beep sound.
- 5 Optional. Go to SAVE/LOAD > Save, and then select Limit to save the limit settings.

See "Using save" on page 34 for more information.

NOTE

The Time Offset compares the PN offset timing with the overall system time and the instrument checks the start of PN offset in comparison to either the GPS signal or the even second clock signal.

NOTE

The Carrier Feed Through is a result of the RF carrier signal feeding through the I/Q modulator and riding on the output circuitry without being modulated.

Performing auto measurements

The Auto Measure function of the JD700B series allows a complete signal profiling covering RF characterization and modulation quality parameters of up to 10 different carriers, particularly useful on an overlay architecture where base stations are transmitting in different frequencies.

The Auto Measure can be easily executed either by selecting a menu in the instrument or by running a programmed scenario in the PC-based application so that the instrument automatically configure and perform tests on every aspect of all the carriers.

Setting limit for auto measure

You can set test limits for test item(s) in the auto measurement.

Procedure

- 1 Press the LIMIT hot key.
- 2 Press the RF Test Limits soft key, and then enable test limits as desired.
- 3 Press the PvsT Test Limits soft key, and then enable test limits as desired.
- 4 Press the Modulation Test Limits soft key, and then enable test limits as desired.
- 5 Optional. You can enable alarm sound that goes off if the measurement falls outside of the limit. Toggle the Beep soft key between On and Off to enable or disable the beep sound.
- **6** Optional. Go to **SAVE/LOAD > Save**, and then select **Limit** to save the limit settings. See "Using save" on page 34 for more information.

Setting measure setup

After configuring test parameters as described in the "Configuring test parameters" on page 369, you can continue your measurement. The measurement settings can be saved and recalled as a file. You can also use JDViewer, PC application software to configure a measure setup, save as a file, and load the file on to the instrument.

Procedure

- 1 Press the **MEASURE SETUP** hot key.
- 2 Toggle the **Configuration** soft key and select the configuration option:

Current: Lets the instrument use current frequency (single carrier) and determine pass or fail based on the instrument's limit settings in Auto Measure.

Scenario: Runs a test with a programmed scenario in JDViewer.

The Scenario menu becomes activated.

3 To load a scenario, press the **Scenario** soft key, and then select a scenario file to load.

4 Toggle the **Test Time** soft key and select the test time option:

Now: Lets the instrument run a test only once.

Schedule: Lets the instrument repeat tests as defined in the Set Timing.

The Set Timing menu becomes activated.

- **5** To define a schedule for an auto measurement, complete the following steps:
 - Press the Set Timing soft key.
 - b Press the Start Time (HH:MM) soft key.
 - c Enter the time in the HH:MM format, and then press the Enter soft key.
 - d Press the Stop Time (HH:MM) soft key.
 - Enter the time in the HH:MM format, and then press the Enter soft key.
 - f Press the Time Interval soft key.
 - g Enter the amount of time in minutes, and then press the **Enter** soft key.
- 6 Press the **Settings** soft key, and then set the following:
 - Toggle the MAC soft key and select the MAC Walsh code option: 64 or 128.
 - **b** Toggle the **PvsT** soft key and select the slot option: **Idle** or **Active**.
 - c Toggle the External Offset soft key and select On.
 - **d** Enter a value by using the numeric keys, and then press the **dB** soft key.
- 7 To save your settings and results, go to **SAVE/LOAD** > **Save** and then perform functions as you desire. See "Using save" on page 34 for more information.
- 8 Press the Run Test soft key to start to run a test. The Auto Measure Results window appears at the end of the test.
- 9 To stop running the test, press the Abort soft key.
- **10** To change the view on the screen during the test, press the **Display** and then select the view option from the following choices:

Screen: You can view each measurement screen as the test progresses.

Results: You can view a measurement result table as the test progresses.

Settings: You can view a measurement setting table as the test progresses.

Setting display

After completion of the auto measurement, the screen menu changes to Trace/Display so that you can view the results in different forms.

Procedure

1 Toggle the **Display** soft key and select the display option:

Result: You can view the result table.

The Display Result menu becomes activated.

Settings: You can view the measurement settings for the auto measurement.

2 Toggle the **Display Result** soft key and select the display result option:

Full: You can view detailed measurement readings with the pass/fail indication.

Quick: You can view only the Pass/Fail results.

3 To view the measurement results for a different carrier, press the **View Carrier** soft key and then select the carrier number to view.

Performing power statistics CCDF measurements

The Power Statistics Complementary Cumulative Distribution Function (CCDF) measurement characterizes the power statistics of the input signal. It provides PAR (Peak to Average power Ratio) versus different probabilities.

Setting measure setup

After configuring test parameters as described in the "Configuring test parameters" on page 369, you can continue your measurement. The measurement settings can be saved and recalled as a file. You can also use JDViewer, PC application software to configure a measure setup, save as a file, and load the file on to the instrument.

Procedure

- 1 Press the **MEASURE SETUP** hot key.
- 2 Press the CCDF Length soft key to set the length of the CCDF.
- 3 Enter a value between 1 and 100 by using the numeric keys. You can also use the rotary knob.
- 4 Press the Enter soft key.

Measurement example

Figure 223 CCDF measurement with EV-DO signal analyzer

Conducting EV-DO OTA measurements

This Over The Air (OTA) measurement has channel scanner, PN scanner, multipath profile, and Code Domain power screens. It is used to verify EV-DO transmitter performance at any location providing reflective measurements and identifying signals providing from different sites. The Code Domain power shows not only modulation performance metric but also amplifier capacity and code utilization metric. The Amplifier capacity (code utilization) measurement is an estimate of the amount of power amplifier capacity (code utilization) that is being used expressed in percent of maximum.

Channel scanner

Setting channel/frequency

Procedure

To set the channels to be scanned:

- Press the FREQ/DIST hard key.
- 2 Toggle the Unit soft key and select Channel.
- 3 Press the Index soft key, and then enter an index number between one and six by turning the rotary knob or using the numeric keys.
- **4** To select the standard channel, complete the following steps:
 - Press the Channel Std soft key. The standard channel window appears.
 See "Appendix C Band, frequency & channel standard" on page 745 for more information.
 - b Highlight the band to be measured by using the rotary knob, the arrow keys, or the Page Up/Page Down soft keys.
 - c Press the **Select** soft key or the rotary knob to confirm the selection.
- **5** To set the channel number for the selected index, complete the following steps:
 - a Press the Channel Number soft key.
 - **b** Enter a value by using the numeric keys. You can also use the rotary knob.
 - c Press the Enter soft key.
- **6** The instrument displays a corresponding center frequency for the channel number.
- 7 To set the integration bandwidth for the selected index, complete the following steps:
 - a Press the Integration Bandwidth soft key.
 - **b** Enter a value by using the numeric keys. You can also use the rotary knob.
 - c Select the unit: GHz, MHz, kHz, or Hz.
- 8 To add more channels to be scanned, repeat steps 3-6.
- 9 Press the ESC hard key to dismiss the channel list window and view the scanning result.

To set the frequencies to be scanned:

- 1 Press the FREQ/DIST hard key.
- 2 Toggle the Unit soft key and select Freq.
- 3 Press the **Index** soft key, and then enter an index number between one and six by turning the rotary knob or using the numeric keys.
- **4** To set the center frequency for the selected index, complete the following steps:
 - Press the Center Frequency soft key.
 - **b** Enter a value by using the numeric keys. You can also use the rotary knob.
 - Select the unit: GHz, MHz, kHz, or Hz.
- 5 To set the integration bandwidth for the selected index, complete the following steps:
 - a Press the Integration Bandwidth soft key.
 - **b** Enter a value by using the numeric keys. You can also use the rotary knob.
 - Select the unit: GHz, MHz, kHz, or Hz.
- 6 To add more channels to be scanned, repeat steps 3-5.
- 7 Press the ESC hard key to dismiss the channel list window and view the scanning result.

Setting measure setup

After configuring other test parameters as described in the "Configuring test parameters" on page 369, you can continue your measurement. The measurement settings can be saved and recalled as a file. You can also use JDViewer, PC application software to configure a measure setup, save as a file, and load the file on to the instrument.

Procedure

- 1 Press the **MEASURE SETUP** hot key.
- **2** To set the incremental step for the PN offset, complete the following steps:
 - Press the PN Increment soft key.
 - **b** Enter a value by using the numeric keys.
 - c Press the Enter soft key.
- 3 Optional. Go to **SAVE/LOAD** > **Save**, and then select the save option from the choices available for your measurement mode. See "Using save" on page 34 for more information.


Setting limit for OTA channel scanner

Procedure

- 1 Press the *LIMIT* hot key.
- 2 Press the Limit Line soft key to set a threshold for the limit line and Pass/Fail indication.
- 3 Enter a value, and then press the dBm unit soft key.
- 4 Toggle the Limit Line soft key between On and Off to display or dismiss the limit line.
- 5 Optional. You can enable alarm sound that goes off if the measurement falls outside of the limit. Toggle the Beep soft key between On and Off to enable or disable the beep sound.
- 6 Optional. Go to **SAVE/LOAD** > **Save**, and then select **Limit** to save the limit settings. See "Using save" on page 34 for more information.

Measurement example

Figure 224 Channel scanner measurement with EV-DO OTA signal analyzer

PN scanner

Each access network sector has a unique PN offset. The PN Scanner is used to identify all the active PNs in an area.

Setting measure setup

After configuring test parameters as described in the "Configuring test parameters" on page 369, you can continue your measurement. The measurement settings can be saved and recalled as a file. You can also

use JDViewer, PC application software to configure a measure setup, save as a file, and load the file on to the instrument.

Procedure

- 1 Press the **MEASURE SETUP** hot key.
- 2 To set the incremental step for the PN offset, complete the following steps:
 - a Press the PN Increment soft key.
 - **b** Enter a value by using the numeric keys.
 - Press the Enter soft key.
- 3 Optional. Go to **SAVE/LOAD** > **Save**, and then select the save option from the choices available for your measurement mode. See "Using save" on page 34 for more information.

Measurement example

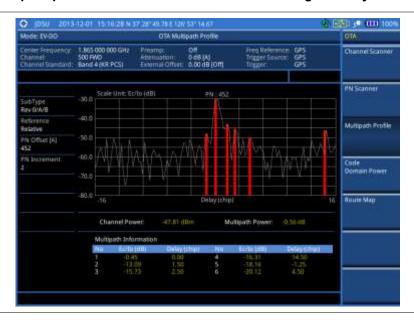
Figure 225 PN scanner measurement with EV-DO OTA signal analyzer

Multipath profile

The Multipath Profile enables you to determine RF environmental conditions of testing area. It indicates the amount of power of the dominant pilot signal that is dispersed outside the main correlation peak due to multipath echoes that are expressed in dB. This value should be very small ideally.

The multipath profile is the result of portions of the original broadcast signal arriving at the receiving antenna out of phase. This can be caused by the signal being reflected off objects such as buildings, or being refracted through the atmosphere differently from the main signal.

Setting measure setup


After configuring test parameters as described in the "Configuring test parameters" on page 369, you can continue your measurement. The measurement settings can be saved and recalled as a file. You can also use JDViewer, PC application software to configure a measure setup, save as a file, and load the file on to the instrument.

Procedure

- 1 Press the **MEASURE SETUP** hot key.
- **2** To set the incremental step for the PN offset, complete the following steps:
 - Press the PN Increment soft key.
 - **b** Enter a value by using the numeric keys.
 - c Press the Enter soft key.
- 3 Optional. Go to SAVE/LOAD > Save, and then select the save option from the choices available for your measurement mode. See "Using save" on page 34 for more information.

Measurement example

Figure 226 Multipath profile measurement with EV-DO OTA signal analyzer

Code domain power

Channels with high correlation factors are determined to be active channels and are indicated as such on the display. Once the channels are decoded, the analyzer determines the power of each channel relative to the total signal power.

This measurement helps to verify that each code channel is operating at its proper level and helps to identify problems throughout the transmitter design from the coding to the RF section. System imperfections, such as the non-linearity of amplifiers, will present themselves as an undesired distribution of power in the code domain.

Setting measure setup

After configuring test parameters as described in "Configuring test parameters" on page 369, you can continue your measurement. The measurement settings can be saved and recalled as a file. You can also use JDViewer, PC application software to configure a measure setup, save as a file, and load the file on to the instrument.

Procedure

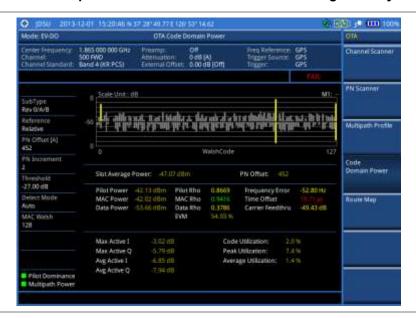
1 Press the **MEASURE SETUP** hot key.

- **2** To set the Pseudo-Noise (PN) offset, complete the following steps:
 - Toggle the PN Offset soft key between Auto and Manual.
 - **b** Enter a value by using the numeric keys to set manually.
 - c Press the Enter soft key.
- 3 To set the incremental step for the PN offset, complete the following steps:
 - Press the PN Increment soft key.
 - b Enter a value by using the numeric keys.
 - c Press the Enter soft key.
- 4 To set the threshold between **Auto** and **Manual**, complete the following steps:
 - a Press the **Threshold** soft key. Its default setting is -27 dB.
 - **b** Enter a value between -50 and zero by using the numeric keys to change the value in the Manual mode.
 - c Press the Enter soft key.
- 5 Toggle the MAC soft key and select the MAC Walsh code option: 64 or 128.
- 6 Press the Detect Mode soft key, and then select the detection mode option: Auto, QPSK, 8PSK, 16 QAM, or 64 QAM.
- 7 To set the threshold for pilot dominance, complete the following steps:
 - a Press the Pilot Dominance > soft key.
 - **b** Enter a value by using the numeric keys.
 - c Press the Enter soft key.

NOTE

Recommended value is 10. Color of the Pilot Dominance indicator on the screen bases on this setting.

- **8** To set the threshold for multipath power, complete the following steps:
 - Press the Multipath Power < soft key.</p>
 - **b** Enter a value by using the numeric keys.
 - c Press the Enter soft key.



NOTE

Recommended value is one. Color of the multipath power indicator on the screen bases on this setting.

9 Optional. Go to SAVE/LOAD > Save, and then select the save option from the choices available for your measurement mode. See "Using save" on page 34 for more information.

Figure 227 Code domain power measurement with EV-DO OTA signal analyzer

NOTE

You can use the *LIMIT* hot key to analyze your measurements with the user-definable limit and Pass/Fail indication.

Route map

The JD700B Series provides the Route Map function that allows you to collect data of points in an indoor or outdoor environment and track the received signals and coverage of RF transmitters by plotting data real time directly on top of a loaded floor plan or a map.

Setting measure setup

Procedure

- 1 If required, connect a GPS receiver to your JD700B series for outdoor mapping. Indoor mapping does not necessarily need a GPS antenna.
- 2 Configure test parameters as described in the "Configuring test parameters" on page 369.
- **3** To load your map file, complete the following steps:
 - a Plug in your USB drive that has a floor map or .mcf file type created in JDMapCreator. If the JDMapCreator application on your computer is connected to the instrument via USB or LAN, you can send a map file with a single layer to the instrument directly by using the Send to EQP menu in JDMapCreator.

NOTE

The JDMapCreator converts and resizes any scanned floor plan or layout to fit onto your instrument's display. JDMapCreator 1.2.0 or later can save a multiple-layered map, providing x1, x2, and x4 views, as a sizable map file so that you can zoom in and out after loading it.

- b Press SAVE/LOAD hot key, and then select Load > Load Map. See "Using load" on page 36 for more information.
- 4 Press the **MEASURE SETUP** hot key.
- 5 Press the **Plot Point** soft key, and then select the plot point option from the following choices:

To collect data/plot points automatically as you move around in a vehicle or outside, press the **GPS** soft key and then toggle the **Screen Mode** soft key between **Map** and **Full**.

NOTE

With the Map setting, you can view only the collected points that can be seen within the

boundary of the loaded map. If a point is off the map, the instrument displays an arrow to indicate the direction of the current location on the map and the distance from the center to the location at the top of the screen.

With the **Full** setting, you can view all the collected points of the route without the loaded map.

To collect data/plot points manually without a GPS antenna in an indoor environment, press the **Position** soft key.

- 6 Press the Plot Item soft key, and then select the measurement option: Pilot Power or Ec/lo.
- 7 To set the incremental step for the PN offset, complete the following steps:
 - a Press the PN Increment soft key.
 - b Enter a value by using the numeric keys.
 - c Press the Enter soft key.
- 8 Toggle the Plot soft key and select Start.
- 9 Touch directly on the screen or press the ENTER hard key to collect data and plot points on the loaded map for the Position setting.

NOTE

For the **Position** setting, you can change the direction of the route with the arrow keys and the distance with the rotary knob.

- 10 Toggle the Plot soft key and select Stop to stop plotting.
- **11** Press the **SAVE/LOAD** hot key to save the result. See "Using save" on page 34 for more information.

NOTE

The instrument does not automatically save the collected data. It is recommended that you save the result. Otherwise, you will lose all the collected data.

Setting limit

You can set the thresholds for the four different color indicators for Pilot power or Ec/lo.

Procedure

- 1 Press the *LIMIT* hot key.
- 2 Select the plot items and set the limits as needed:

To set the limit for	Select	Set
Pilot Power	Pilot Power	Excellent, Very Good, Good, Fair, Poor (dBm)
Ec/lo	Ec/Io	Good, Fair, Poor (dB)

3 Optional. Go to SAVE/LOAD > Save, and then select Limit to save the limit settings. See "Using save" on page 34 for more information.

Figure 228 Route map measurement with EV-DO OTA signal analyzer

1) Pilot Power

2) Pilot Ec/lo

Controlling a map

If you have loaded a sizable map that was created in JDMapCreator 1.2.0 or later, you can use the Map Control feature that enables you to zoom into the map and view a specific area of interest in detail.

Procedure

- 1 Press the TRACE/DISPLAY hard key.
- 2 Press the **Map Control** soft key. This key is active only when you have loaded a sizable map.
- 3 Do one of the following:

To zoom into an area of interest directly, complete the following steps:

- **a** Toggle the **Zoom to** soft key and select **Area**. The black rectangle appears on the map.
- **b** Press the **Zoom In** and **Zoom Out** soft keys, as you need, to decrease and increase the selected area.
- Move the rectangle by using the four arrow keys, as you need, to place it in a specific area of interest.

d Press the center of the rotary knob to zoom into the selected area. You can also press the **Zoom to** soft key again to zoom into the selected area.

To zoom into the center or zoom out from the center, complete the following steps:

- a Toggle the Zoom to soft key and select Center.
- **b** Press the **Zoom In** and **Zoom Out** soft keys, as you need, to zoom in and zoom out.
- Move the zoomed-in area by using the four arrow keys, as you need.
- 4 To set the location mode, toggle the Location Mode soft key between Auto and Manual and select the one you desire.

Auto: The instrument compares the coordinates of the displayed map with recevied GPS information. If your current location goes out of the displayed area and enters into the next zoomed-in section within the base map, the map display changes automatically to the next section in which your current position is.

Manual: The map display of the zoomed-in area remains unchanged even if your current location goes out of the displayed area. You can change the displayed area manually by using the arrow keys.

Chapter 12 Using TD-SCDMA Signal Analyzer

This chapter provides instructions for using the TD-SCDMA Signal Analyzer function (option 025) with the TD-SCDMA OTA Analyzer function (option 045). Topics discussed in this chapter are as follows:

	Introduction	.406
-	Display overview	.407
-	Connecting a cable	.407
=	Selecting measurement mode	.409
=	Configuring test parameters	.409
-	Conducting spectrum measurements	.413
-	Conducting RF measurements	.415
	Conducting power vs. time measurements	.422
	Conducting modulation measurements	.428
-	Performing auto measurements	.435
	Conducting TD-SCDMA OTA measurements	.437

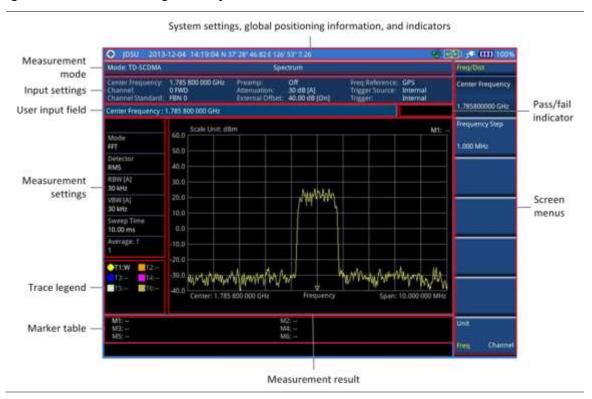
Introduction

The Time Division-Synchronous Code Division Multiple Access, also known as TD-SCDMA, is a 3G mobile telecommunications standard that is pursued by the Chinese Academy of Telecommunications Technology (CATT) in the People's Republic of China. The TD-SCDMA uses the TDD scheme while the WCDMA uses the FDD.

This TD-SCDMA Signal Analyzer can be used for testing of TD-SCDMA systems, made according to the following standard documentation.

- 3GPP TS 25.105 Base Station radio transmission and reception (TDD)
- 3GPP TS 25.142 Base Station conformance testing (TDD)
- 3GPP TS 25.222 Multiplexing and channel coding (TDD)
- 3GPP TS 25.223 Spreading and modulation (TDD)

The instrument automatically makes standard defined measurements using the measurement methods and limits as defined in the standard. The detailed results allow you to analyze TD-SCDMA/HSDPA system performance. You may alter the measurement parameters for specialized analysis. Pass/Fail testing with standard defined or user defined upper and lower limits and the Pass/Fail indictor help you to determine base station performance easily.

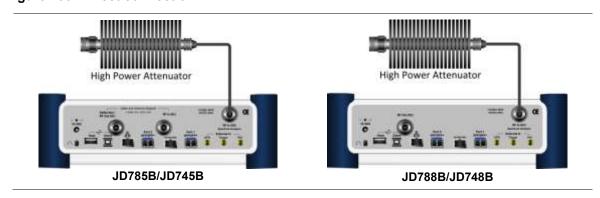

This instrument provides the following measurement tools for TD-SCDMA system:

- Spectrum Analysis
- RF Analysis
 - Channel Power
 - Occupied Bandwidth
 - Spectrum Emission Mask
 - Adjacent Channel Leakage power Ratio (ACLR)
 - Multi-ACLR
 - Spurious Emissions
- Power vs. Time:
 - Power vs. Time (Slot)
 - Power vs. Time (Frame)
 - Power vs. Time (Mask)
 - Timogram
- Modulation Analysis
 - Constellation
 - Midamble Power
 - Code Power
 - Code Error
- Auto Measure
- Over The Air (OTA)
 - Sync-DL ID Scanner
 - Sync-DL ID vs. Tau
 - Sync-DL ID Multipath
 - Sync-DL ID Analyzer
 - Route Map

Display overview

Figure 229 provides descriptions for each segment of the measurement screen.

Figure 229 TD-SCDMA signal analyzer measurement screen

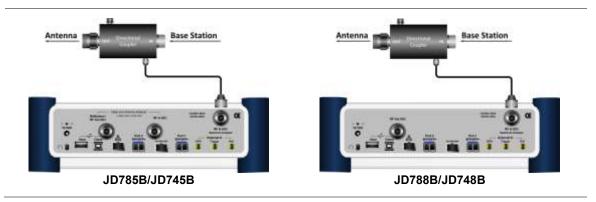

Connecting a cable

Direct connection

Procedure

1 Connect the Spectrum Analyzer RF In port of the JD700B series and the Power amplifier output port of BTS.

Figure 230 Direct connection



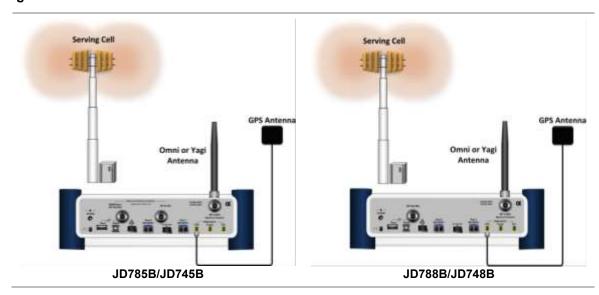
Indirect connection

Procedure

1 Connect the Spectrum Analyzer RF In port of the JD700B series and the monitor (test) port of BTS.

Figure 231 Indirect connection

CAUTION


The maximum power for the **Spectrum Analyzer RF In** port is +25 dBm (0.316 W) for JD780B series and +20 dBm (0.1 W) for JD740B series. If the level of the input signal to be measured is greater than this, use a *High Power Attenuator* to prevent damage when you directly connect the signal to the instrument or connect the signal from the coupling port of a directional coupler.

Over the air (OTA)

Procedure

- 1 Connect an Omni/directional RF antenna to the Spectrum Analyzer RF In port of the JD700B series.
- 2 Connect a GPS antenna to the GPS port of the JD700B series.

Figure 232 OTA connection

CAUTION

If the input signal level to be measured is less than 0 dBm, set 0 dB attenuation or turn on the preamp to have better dynamic range for the OTA testing.

Selecting measurement mode

Procedure

- 1 Press the MODE hard key.
- 2 Press the Signal Analyzer soft key.
- 3 Select More (1/2) > TD-SCDMA. The Spectrum mode is set by default.
- 4 Press the MEASURE hot key, and then select the measurement mode option from the following choices:

Spectrum

RF Analysis > Channel Power, Occupied BW, Spectrum Emission Mask, ACLR, Multi-ACLR, or Spurious Emissions

Power vs Time > Power vs Time (Slot), Power vs Time (Frame),

Power vs Time (Frame), or Timogram

Modulation Analysis > Constellation, Midamble Power, Code Power, or Code Error

Auto Measure

OTA > Sync-DL ID Scanner, Sync-DL ID vs Tau, Sync-DL ID Multipath, Sync-DL ID Analyzer, or Route Map

Configuring test parameters

Setting frequency

You can set the frequency with either frequency or channel number. If a frequency to be set matches to the frequency corresponding to the selected channel standard, the instrument calculates its channel number and updates the screen with it automatically.

Procedure

To set the center frequency:

- 1 Press the FREQ/DIST hard key.
- 2 Toggle the Unit soft key and select Freq.
- 3 Press the Center Frequency soft key.
- 4 Enter a value by using the numeric keys. You can also use the rotary knob.
- 5 Select the unit: GHz, MHz, kHz, or Hz.
- 6 Optional. To define the amount of frequency increment for the rotary knob, complete the following steps:
 - Press the Frequency Step soft key.
 - b Enter a value by using the numeric keys. You can also use the rotary knob.
 - c Press the unit: GHz, MHz, kHz, or Hz.

To set the channel number:

- 1 Press the FREQ/DIST hard key.
- 2 Toggle the Unit soft key and select Channel.
- **3** To select the standard channel, complete the following steps:
 - Press the Channel Std soft key. The standard channel window appears.

See "Appendix C - Band, frequency & channel standard" on page 745 for more information.

- b Highlight the band to be measured by using the rotary knob, the arrow keys, or the Page Up/Page Down soft keys.
- Press the Select soft key or the rotary knob to confirm the selection.
- 4 Press the Channel Number soft key.
- 5 Enter a value by using the numeric keys. You can also use the rotary knob.
- 6 Press the Enter soft key.

The instrument automatically displays the corresponding center frequency value for the selected channel number.

- 7 Optional. To define the amount of channel increment for the rotary knob, complete the following steps:
 - a Press the Channel Step soft key.
 - **b** Enter a value by using the numeric keys. You can also use the rotary knob.
 - c Press the Enter soft key.

NOTE

This frequency setting is not used in the Multi-ACLR and Spurious Emissions modes.

Setting amplitude

Reference level and attenuation

You can set the reference and attenuation levels automatically or manually to optimize the display of the traces measured, as you desire.

Procedure

To automatically set the reference and attenuation level:

- 1 Press the AMP/SCALE hard key.
- 2 Press the Auto Scale soft key. Each time you press this key, both of the Y-axis scale and input attenuation level change to be optimized with some margin.

To set the reference or attenuation level manually:

- 1 Press the AMP/SCALE hard key.
- 2 To set the maximum reference value on the Y-axis manually, complete the following steps:
 - Press the Reference Level soft key.
 - **b** Enter a value by using the numeric keys or the rotary knob with 10 dB increments.
 - c Press the unit soft key or the ENTER hard key. This unit key name changes according to the setting in the Units menu.

NOTE

In the measurements such as **Midamble Power**, **Code Power**, and **Code Error**, you may need to select the reference option between **Relative** and **Absolute** before setting the reference level.

3 To set the attenuation option, select one from the following choices:

To set the input attenuator's level automatically, select **Attenuation > Auto**.

NOTE

It is recommended that you set the **Attenuation** to **Auto** in most situations so that the level of the input attenuator can be set automatically according to your input signal level.

To set the input attenuation manually up to 55 dB for JD780B series or 50 dB for JD740B series to optimize S/N, complete the following steps:

- a Select Attenuation > Manual.
- b Press the Attenuation Value soft key to set the level.

- c Enter a value in fives by using the numeric keys.
- d Press the dB soft key or the ENTER hard key.

To couple the input attenuator's level with your reference level setting, select **Attenuation > Couple**.

As you increase the reference setting, the attenuation level also increases accordingly.

Optional. To change the scale unit:

- 1 Select More (1/2) > Units.
- 2 Select the unit of the display scale: dBm, dBV, dBmV, dBμV, V, or W. The scale unit on the screen changes accordingly.

NOTE

This Units menu is available in the Spectrum and RF Analysis modes.

Scale per division

You can use the **Scale/Div** feature available for the spectrum and RF analysis. It represents the value of one division on the horizontal scale. The default setting is 10 dB per division and the maximum value can be set up to 20 dB.

Procedure

- 1 Press the AMP/SCALE hard key.
- 2 Select More (1/2) > Scale/Div.
- 3 Enter a value between 1 and 20 by using the numeric keys.
- 4 Press the **dB** soft key to complete the entry.

Pre-amplifier

You can turn the internal pre-amplifier on to correct and compensate for the gain of the preamp so that amplitude readings show the value at the input connector.

Procedure

- 1 Press the AMP/SCALE hard key.
- 2 Toggle the **Preamp** soft key and select **On** or **Off** as needed.

NOTE

You can turn the Preamp on when the input attenuation range is from 0 dB to 10 dB. If the attenuation value is manually set to greater than 10 dB, the instrument will automatically turn off the pre-amplifier to display low-level signal properly on the chart.

External offset

You can turn the **External Offset** on and manually set the external offset value. An offset consists of a cable loss and a user offset and the measurement result shows the value reflecting both offset values. When the external offset value is set at 40 dB in the Spectrum mode, the measurement result compensates 40 dB at both the Spectrum Analyzer and Signal Analyzer modes.

Procedure

To set the external offset:

- 1 Press the AMP/SCALE hard key.
- 2 Toggle the External Offset soft key and select On.
- 3 Enter a value by using the numeric keys.
- 4 Press the dB soft key to complete the entry.

To turn the external offset off:

- 1 Press the AMP/SCALE hard key.
- 2 Toggle the External Offset soft key and select Off.

Setting average

You can set the number of measurements to be averaged for the trace presentation in the spectrum and RF analysis. A maximum of 100 times of averaging can be set. When the averaging reaches to your setting, a new measurement value replaces the measurement value in sequence from the earliest.

Procedure

- 1 Press the BW/AVG hard key.
- 2 Press the Average soft key.
- 3 Enter a value between 1 and 100 as needed by using the numeric keys.
- 4 Press the Enter soft key.

Setting sweep mode

The default setting is **Continue** to sweep continuously for most on-going measurements. If you want to hold the measurement or get a single sweep, you can change the sweep mode.

Procedure

To select the single sweep mode:

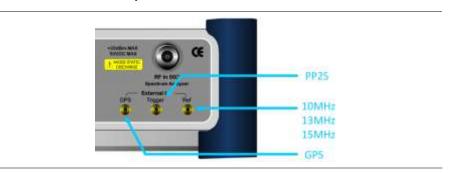
- 1 Press the SWEEP hot key.
- 2 Toggle the Sweep Mode soft key and select Single. You can also use the HOLD hot key. The letter HOLD in red appears and the sweeping is paused.
- 3 Optional. Press the Sweep Once soft key to get a new measurement.

To return to the continuous sweep mode:

1 Toggle the Sweep Mode soft key and select Continue. You can also use the HOLD hot key. The letter HOLD in red disappears and the sweeping resumes.

Setting trigger source

You can set the trigger source option for your measurements.


Procedure

- 1 Press the TRIGGER hot key.
- 2 Select the trigger source option from the choices: Internal, External, and GPS.

Setting external clock

To enhance the reliability of modulation analysis measurements the JD700B series must be synchronized with a base station. When an external clock is not supplied, the instrument works with its built-in internal high-accuracy time base and some measurement results may exhibit inaccurate values. Therefore, it is highly recommended that you use the same reference clock as the signal source. You can use the *TRIGGER* hot key to set the external clock.

Figure 233 Connection ports for external reference clock

Procedure

- 1 Connect an external reference or a GPS antenna to the JD700B series.
- 2 Press the SYSTEM hot key.
- 3 Press the Freq Reference soft key, and then select the reference option: Internal, External 10 MHz, External 13 MHz, External 15 MHz, or GPS.

Table 18 External reference indicators

Туре	Indicator	Description
Internal	(green)	The green INT icon indicates that the instrument uses the built-in internal time base.
External	(green)	The green EXT icon indicates that an external reference is connected and locked and that the instrument uses the same reference clock as the signal source.
External	(red)	The red EXT icon indicates that an external reference is connect but not locked.
GPS	(green)	The green GPS antenna icon indicates that a GPS antenna is connected and locked.
GPS	(yellow)	The yellow GPS antenna icon indicates that a GPS antenna is connected and locking is in progress.
GPS	(grey)	The grey GPS antenna icon indicates that a GPS antenna is not connected, failed, or unable to be locked.

Conducting spectrum measurements

Setting measure setup

After configuring test parameters as described in the "Configuring test parameters" on page 409, you can continue your measurement.

Procedure

- 1 Press the **MEASURE SETUP** hot key.
- 2 Press the Slot Number soft key, and then select the time slot number to be displayed: TS0, TS1, TS2, TS3, TS4, TS5, or TS6.
- **3** Optional. To set the delay, complete the following steps:
 - Press the Delay soft key to set the amount of delay in μs.
 - **b** Enter a value by using the numeric keys. You can also use the rotary knob.
 - c Press the µs soft key.

NOTE

The Delay setting is used only when there is a time offset in the signals to be measured.

Your measurement result is displayed on the screen as like the following example, Figure 234.

Figure 234 Spectrum measurement screen with TD-SCDMA signal analyzer

Setting trace

You can display up to six traces on the measurement chart simultaneously.

Procedure

- 1 Press the TRACE/DISPLAY hard key.
- Press the **Select Trace** soft key, and then select the trace number: **T1**, **T2**, **T3**, **T4**, **T5**, or **T6**. The legend shape of the selected trace changes from square to round to indicate that the trace is the active one now.
- 3 Do one of the following:

То	Select	Trace Legend
Clear current data and display with new measurements	Clear Write	W
Display the input signal's maximum response only (unlimited or for a certain amount of time)	Max Hold	M
Display the input signal's minimum response only (unlimited or for a certain amount of time)	Min Hold	m

Capture the selected trace and compare traces	Capture	С
Load a saved trace	More (1/2) > Load	L
Hide the displayed trace	Trace View > Off	F
Remove all the traces and initialize the trace settings	More (1/2) > Trace Clear All	

NOTE

For the **Max Hold** and **Min Hold**, your instrument compares newly acquired data with the active trace and displays larger maximum values or smaller minimum values on the screen. You can set it to **Unlimited** to hold and view maximum or minimum data or specify a certain amount of time up to 60 seconds by using numeric keys or rotary knob.

- 4 Optional. Select More (1/2) > Trace Info, and then select the trace number to view the trace's parameter setting information stored at the time of the measurement or None to hide the information display.
- Optional. If you have the two traces T1 and T2, you can perform trace math. To view the power difference between the traces, press the T1 T2 -> T5 or T2 T1 -> T6 soft key. The result is overlaid on the screen along with the second Y-axis.

Conducting RF measurements

Channel power

The Channel Power measurement determines the average power of an RF signal burst at or above a specified threshold value.

The purpose of the Channel Power measurement is to determine the power delivered to the antenna system on the RF channel under test. The instrument acquires a TD-SCDMA signal in the time domain. The average power level above the threshold is then computed and displayed.

Setting measure setup

After configuring test parameters as described in the "Configuring test parameters" on page 409, you can continue your measurement.

Procedure

- 1 Press the **MEASURE SETUP** hot key.
- Press the **Slot Number** soft key, and then select the time slot number to be displayed: **TS0**, **TS1**, **TS2**, **TS3**, **TS4**, **TS5**, or **TS6**.
- **3** Optional. To set the delay, complete the following steps:
 - a Press the **Delay** soft key to set the amount of delay in µs.
 - **b** Enter a value by using the numeric keys. You can also use the rotary knob.
 - c Press the µs soft key.

NOTE

The Delay setting is used only when there is a time offset in the signals to be measured.

Figure 235 Channel power measurement with TD-SCDMA signal analyzer

NOTE

You can use the *LIMIT* hot key to analyze your measurements with the user-definable limit and Pass/Fail indication. See "Setting limit for RF tests" on page 422 for more information.

Occupied bandwidth

The Occupied Bandwidth measures the spectrum shape of the carrier. It is defined as the bandwidth, which includes 99% of the transmitted power among total transmitted power.

Setting measure setup

After configuring test parameters as described in the "Configuring test parameters" on page 409, you can continue your measurement.

Procedure

- 1 Press the **MEASURE SETUP** hot key.
- Press the Slot Number soft key, and then select the time slot number to be displayed: TS0, TS1, TS2, TS3, TS4, TS5, or TS6.
- **3** Optional. To set the delay, complete the following steps:
 - Press the **Delay** soft key to set the amount of delay in μs.
 - **b** Enter a value by using the numeric keys. You can also use the rotary knob.
 - c Press the µs soft key.

NOTE

The Delay setting is used only when there is a time offset in the signals to be measured.

Figure 236 Occupied bandwidth measurement with TD-SCDMA signal analyzer

NOTE

You can use the *LIMIT* hot key to analyze your measurements with the user-definable limit and Pass/Fail indication. See "Setting limit for RF tests" on page 422 for more information.

Spectrum emission mask (SEM)

The Spectrum Emission Mask (SEM) measurement required by 3GPP specifications encompasses different power limits and different measurement bandwidths (resolution bandwidths) at various frequency offsets. It may be expressed as a ratio of power spectral densities between the carrier and the specified offset frequency band. It provides useful figures-of-merit for the spectral re-growth and emissions produced by components and circuit blocks, without the rigor of performing a full SEM measurement.

The SEM measures spurious signal levels in up to five pairs of offset or region frequencies and relates them to the carrier power.

Setting measure setup

After configuring test parameters as described in the "Configuring test parameters" on page 409, you can continue your measurement.

Procedure

- 1 Press the MEASURE SETUP hot key.
- 2 Press the Slot Number soft key, and then select the time slot number to be displayed: TS0, TS1, TS2, TS3, TS4, TS5, or TS6.
- 3 To select the mask type according to the output power of the base station, complete the following steps:
 - a Press the Mask Type soft key.
 - Select the mask type option: 26 dBm, 26 34 dBm, or 34 dBm -.
- 4 Optional. To set the delay, complete the following steps:
 - a Press the **Delay** soft key to set the amount of delay in μs.

- **b** Enter a value by using the numeric keys. You can also use the rotary knob.
- c Press the µs soft key.

NOTE

The Delay setting is used only when there is a time offset in the signals to be measured.

Measurement example

Figure 237 SEM measurement with TD-SCDMA signal analyzer

NOTE

You can use the *LIMIT* hot key to analyze your measurements with the user-definable limit and Pass/Fail indication. See "Setting limit for RF tests" on page 422 for more information.

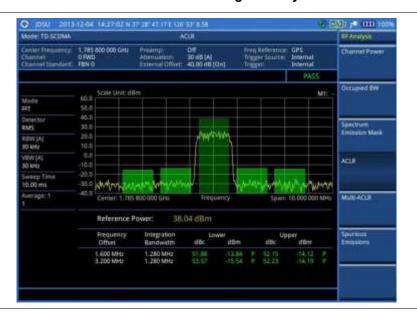
ACLR

The Adjacent Channel Leakage power Ratio (ACLR) measures the amount of interference or power in an adjacent frequency channel according to the standards.

Setting measure setup

After configuring test parameters as described in the "Configuring test parameters" on page 409, you can continue your measurement.

Procedure


- 1 Press the MEASURE SETUP hot key.
- 2 Press the Slot Number soft key, and then select the time slot number to be displayed: TS0, TS1, TS2, TS3, TS4, TS5, or TS6.
- 3 Optional. To set the delay, complete the following steps:
 - Press the Delay soft key to set the amount of delay in μs.
 - **b** Enter a value by using the numeric keys. You can also use the rotary knob.
 - c Press the µs soft key.

NOTE

The Delay setting is used only when there is a time offset in the signals to be measured.

Figure 238 ACLR measurement with TD-SCDMA signal analyzer

NOTE

You can use the *LIMIT* hot key to analyze your measurements with the user-definable limit and Pass/Fail indication. See "Setting limit for RF tests" on page 422 for more information.

Multi-ACLR

The Multi-ACLR measurement is used to perform multi-channel ACLR measurements with as many channels as possible. It helps you to measure ACLR in multi-channel transmitting Base Station environment.

Setting measure setup

After configuring test parameters as described in the "Configuring test parameters" on page 409, you can continue your measurement.

Procedure

- 1 Press the **MEASURE SETUP** hot key.
- 2 To set the frequency, do one of the following:

To set the center frequency, complete the following steps:

- a Toggle the Unit soft key and select Freq.
- **b** Press the **Lowest Frequency** soft key to set the starting center frequency.
- c Enter a value by using the numeric keys. You can also use the rotary knob.
- d Select the unit: **GHz**, **MHz**, **kHz**, or **Hz**.
- Press the Highest Frequency soft key to set the stopping center frequency.
- f Enter a value by using the numeric keys. You can also use the rotary knob.
- Select the unit: GHz, MHz, kHz, or Hz.

To set the channel number, complete the following steps:

- a Toggle the Unit soft key and select Channel.
- **b** To select the standard channel, press the **Channel Std** soft key and then select the band to be measured.
- c Press the Lowest Channel soft key to set the starting channel.

- **d** Enter a value by using the numeric keys. You can also use the rotary knob.
- e Press the Enter soft key.
- f Press the **Highest Channel** soft key to set the stopping channel.
- g Enter a value by using the numeric keys. You can also use the rotary knob.
- h Press the Enter soft key.

Figure 239 Multi-ACLR measurement with TD-SCDMA signal analyzer

NOTE

You can use the *LIMIT* hot key to analyze your measurements with the user-definable limit and Pass/Fail indication. See "Setting limit for RF tests" on page 422 for more information.

Spurious emissions

Out-of-band emissions are unwanted emissions immediately outside the channel bandwidth resulting from the modulation process and non-linearity in the transmitter but excluding spurious emissions. The Spurious Emissions measurement is to identify and determine the power level of out-of-band spurious emission within the necessary channel bandwidth and modulated signal measured at the RF port of the Base Station.

Setting measure setup

After configuring test parameters as described in the "Configuring test parameters" on page 409, you can continue your measurement.

Procedure

- 1 Press the **MEASURE SETUP** hot key.
- **2** To set up the range table and parameters, press the **Range Table** soft key and then complete the following steps:
 - Press the Range soft key, and then select the range number between 1 and 20 to add as a new or change the existing settings.
 - b Do the following as desired:

Select Start Frequency, and then specify the start frequency for the selected range.

Select **Stop Frequency**, and then specify the stop frequency for the selected range.

Select Start Limit, and then specify the lower limit for Pass/Fail indication.

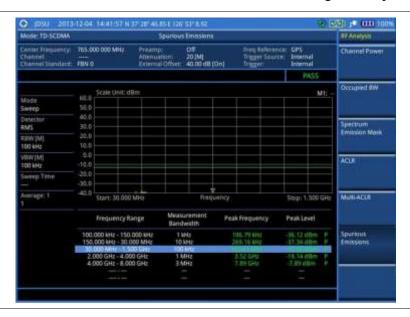
Select Stop Limit, and then specify the upper limit for Pass/Fail indication.

Select More (1/2) > Attenuation, and then specify an value in the multiple of five.

Select More (1/2) > RBW, and then specify a RBW value.

Select More (1/2) > VBW, and then specify a VBW value.

- c Press the PREV hard key.
- d Toggle the Range soft key and select On to display the selected range in the result table or Off to hide it from the table.
- 3 Toggle the **Measure Type** soft key between **Examine** and **Full** to select the measurement type.


NOTE

The **Examine** mode displays only the selected range while the **Full** mode lets the instrument automatically changes the selected range from one another.

- **4** To set the number of measurements to be averaged, complete the following steps:
 - Press the Average soft key.
 - **b** Enter a value between **1** and **100**, and then press the **Enter** soft key.
- 5 To move the highlighted bar in the result table to other range, complete the following steps:
 - a Press the **Range** soft key in the Measure Setup menu bar.
 - **b** Enter a value between **1** and **20**, and then press the **Enter** soft key.

Measurement example

Figure 240 Spurious emissions measurement with TD-SCDMA signal analyzer

NOTE

You can use the *LIMIT* hot key to analyze your measurements with the user-definable limit and Pass/Fail indication. See "Setting limit for RF tests" on page 422 for more information.

Setting limit for RF tests

By default, test limits specified in the standard are set for you. You can change thresholds if you desire.

Procedure

- 1 Press the *LIMIT* hot key.
- 2 Press the RF Test Limits soft key.
- 3 Select the test item(s) and set the limit(s) depending on your selected measurement mode:

To set the limit for	Select	Set
Channel power	Channel Power	High Limit, Low Limit
Occupied bandwidth	Occupied BW	High Limit
Spectrum emission mask	Spectrum Emission Mask	(On/Off only)
ACLR	ACLR	(On/Off only)
Multi-ACLR	Multi-ACLR	(On/Off only)
Spurious emissions	Spurious Emissions	(On/Off only)

- 4 Optional. You can enable alarm sound that goes off if the measurement falls outside of the limit. Toggle the Beep soft key between On and Off to enable or disable the beep sound.
- 5 Optional. Go to SAVE/LOAD > Save, and then select Limit to save the limit settings. See "Using save" on page 34 for more information.

Conducting power vs. time measurements

The Power vs. Time (P vs T) measurement analyzes the amplitude profile and timing of the burst signal and provides a time mask for the signal. It measures the mean transmit power during the "useful part" of TD-SCDMA bursts and verifies that the power ramp fits within the defined mask. TD-SCDMA is a Time Division Multiple Access (TDMA) scheme with seven time slots, or bursts, per RF channel and by using the "Multi-Slot" function, up to seven slots in a frame can be viewed at one time.

Power vs. time (slot)

The Power vs. Time (Slot) in TD-SCDMA Signal Analyzer measures the modulation envelope in the time domain, showing the signal rise and fall shape of TD-SCDMA signal.

Setting measure setup

After configuring test parameters as described in the "Configuring test parameters" on page 409, you can continue your measurement. The measurement settings can be saved and recalled as a file.

Procedure

- 1 Press the **MEASURE SETUP** hot key.
- 2 Press the Slot Number soft key, and then select the time slot number to be displayed: TS0, TS1, TS2, TS3, TS4, TS5, or TS6.
- 3 Press the Spread Factor soft key, and then select the spread factor option: DL Auto for auto detection of downlink, UL Auto for auto detection of uplink, SF1, SF2, SF4, SF8, or SF16
- **4** To set the number of maximum users, complete the following steps:
 - a Press the Max Users soft key.

- **b** Enter a value up to 16 by using the numeric keys.
- c Press the Enter soft key.
- **5** Optional. To set the delay, complete the following steps:
 - a Press the **Delay** soft key to set the amount of delay in μs.
 - **b** Enter a value by using the numeric keys. You can also use the rotary knob.
 - c Press the µs soft key.

NOTE

The Delay setting is used only when there is a time offset in the signals to be measured.

6 Optional. Press the Miscellaneous soft key, and then do the following as needed:

To select how to determine scrambling estimation, toggle the **Scramble** soft key and select **Spec** or **Full**.

NOTE

The Spec searches "Sync Sequence Number" from 0 to 31 based on the TD-SCDMA specification and determines "Scrambling Code Number" by using the sync sequence number, while the Full does from 0 to 127 fully.

To select how to determine the Midamble spread factor estimation either in full or maximum power search, toggle the **Mid SF Map** soft key and select **Max** or **Spec**.

NOTE

The Max determines the spread factor of the Midamble by using the maximum power of the received Midamble, while the Spec searches "Default Midamble Allocation" based on the TD-SCDMA specification.

To select the detect mode, press the **Detect Mode** soft key and then select the option: **Auto**, **QPSK/8PSK**, **QPSK**, **8PSK**, **16 QAM**, or **64 QAM**.

Measurement example

Figure 241 Power vs. time (slot) measurement with TD-SCDMA signal analyzer

NOTE

You can use the *LIMIT* hot key to analyze your measurements with the user-definable limit and Pass/Fail indication. See "Setting limit for power vs. time tests" on page 428 for more information.

Power vs. time (frame)

The Power vs. Time (Frame) measures the modulation envelope in the time domain, showing the power of each time slot of the TD-SCDMA signal.

Setting measure setup

After configuring test parameters as described in the "Configuring test parameters" on page 409, you can continue your measurement. The measurement settings can be saved and recalled as a file.

Procedure

- 1 Press the MEASURE SETUP hot key.
- 2 Press the Slot Number soft key, and then select the time slot number to be displayed: TS0, TS1, TS2, TS3, TS4, TS5, or TS6.
- 3 Press the Spread Factor soft key, and then select the spread factor option: DL Auto for auto detection of downlink, UL Auto for auto detection of uplink, SF1, SF2, SF4, SF8, or SF16
- **4** To set the number of maximum users, complete the following steps:
 - a Press the Max Users soft key.
 - **b** Enter a value up to 16 by using the numeric keys.
 - c Press the Enter soft key.
- 5 Optional. To set the delay, complete the following steps:
 - a Press the Delay soft key to set the amount of delay in μs.
 - **b** Enter a value by using the numeric keys. You can also use the rotary knob.
 - c Press the µs soft key.

NOTE

The Delay setting is used only when there is a time offset in the signals to be measured.

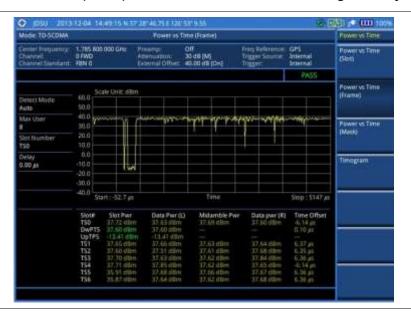
6 Optional. Press the **Miscellaneous** soft key, and then do the following as needed:

To select how to determine scrambling estimation, toggle the **Scramble** soft key and select **Spec** or **Full**.

NOTE

The Spec searches "Sync Sequence Number" from 0 to 31 based on the TD-SCDMA specification and determines "Scrambling Code Number" by using the sync sequence number, while the Full does from 0 to 127 fully.

To select how to determine the Midamble spread factor estimation either in full or maximum power search, toggle the **Mid SF Map** soft key and select **Max** or **Spec**.



NOTE

The Max determines the spread factor of the Midamble by using the maximum power of the received Midamble, while the Spec searches "Default Midamble Allocation" based on the TD-SCDMA specification.

To select the detect mode, press the **Detect Mode** soft key and then select the option: **Auto, QPSK/8PSK, QPSK, 8PSK, 16 QAM**, or **64 QAM**.

Figure 242 Power vs. time (frame) measurement with TD-SCDMA signal analyzer

NOTE

You can use the *LIMIT* hot key to analyze your measurements with the user-definable limit and Pass/Fail indication. See "Setting limit for power vs. time tests" on page 428 for more information. The On/Off Ratio is not used in the power vs. time (frame) tests.

Power vs. time (mask)

Setting measure setup

After configuring test parameters as described in the "Configuring test parameters" on page 409, you can continue your measurement. The measurement settings can be saved and recalled as a file.

Procedure

- 1 Press the **MEASURE SETUP** hot key.
- 2 Press the Slot Number soft key, and then select the time slot number to be displayed: TS0, TS1, TS2, TS3, TS4, TS5, or TS6.
- 3 Press the Spread Factor soft key, and then select the spread factor option: DL Auto for auto detection of downlink, UL Auto for auto detection of uplink, SF1, SF2, SF4, SF8, or SF16
- **4** To set the number of maximum users, complete the following steps:
 - Press the Max Users soft key.
 - **b** Enter a value up to 16 by using the numeric keys.
 - c Press the Enter soft key.
- **5** Optional. To set the delay, complete the following steps:
 - a Press the **Delay** soft key to set the amount of delay in μs.
 - **b** Enter a value by using the numeric keys. You can also use the rotary knob.
 - c Press the µs soft key.

NOTE

The Delay setting is used only when there is a time offset in the signals to be measured.

6 Optional. Press the **Miscellaneous** soft key, and then do the following as needed:

To select how to determine scrambling estimation, toggle the **Scramble** soft key and select **Spec** or **Full**.

NOTE

The Spec searches "Sync Sequence Number" from 0 to 31 based on the TD-SCDMA specification and determines "Scrambling Code Number" by using the sync sequence number, while the Full does from 0 to 127 fully.

To select how to determine the Midamble spread factor estimation either in full or maximum power search, toggle the **Mid SF Map** soft key and select **Max** or **Spec**.

NOTE

The Max determines the spread factor of the Midamble by using the maximum power of the received Midamble, while the Spec searches "Default Midamble Allocation" based on the TD-SCDMA specification.

To select the detect mode, press the **Detect Mode** soft key and then select the option: **Auto**, **QPSK/8PSK**, **QPSK**, **8PSK**, **16 QAM**, or **64 QAM**.

Measurement example

Figure 243 Power vs. time (mask) measurement with TD-SCDMA signal analyzer

NOTE

You can use the *LIMIT* hot key to analyze your measurements with the user-definable limit and Pass/Fail indication. See "Setting limit for power vs. time tests" on page 428 for more information. The DwPTS Power and UpPTS Power are not used in the power vs. time (mask) tests.

Timogram

Setting measure setup

After configuring test parameters as described in the "Configuring test parameters" on page 409, you can continue your measurement. The measurement settings can be saved and recalled as a file.

Procedure

- 1 Press the **MEASURE SETUP** hot key.
- 2 Press the Spread Factor soft key, and then select the spread factor option: DL Auto for auto detection of downlink, UL Auto for auto detection of uplink, SF1, SF2, SF4, SF8, or SF16
- **3** To set the number of maximum users, complete the following steps:

- a Press the Max Users soft key.
- Enter a value up to 16 by using the numeric keys.
- c Press the Enter soft key.
- **4** To set the time interval, complete the following steps:
 - a Press the Time Interval soft key.
 - **b** Enter a value by using the numeric keys.
 - c Press the Enter soft key.
- **5** To place the time cursor to analyze your measurements, complete the following steps:
 - a Toggle the Time Cursor soft key between On and Off to enable or disable the time cursor.
 - **b** Enter a value by using the numeric keys.
 - Press the Enter soft key.

NOTE

When the time cursor is enabled, the measurement is put on hold and information about the time cursor is displayed.

6 Optional. Press the Miscellaneous soft key, and then do the following as needed:

To set the delay, complete the following steps:

- a Press the **Delay** soft key to set the amount of delay in μs.
- **b** Enter a value by using the numeric keys. You can also use the rotary knob.
- c Press the µs soft key.

NOTE

The Delay setting is used only when there is a time offset in the signals to be measured.

To select how to determine scrambling estimation, toggle the **Scramble** soft key and select **Spec** or **Full**.

NOTE

The Spec searches "Sync Sequence Number" from 0 to 31 based on the TD-SCDMA specification and determines "Scrambling Code Number" by using the sync sequence number, while the Full does from 0 to 127 fully.

To select how to determine the Midamble spread factor estimation either in full or maximum power search, toggle the **Mid SF Map** soft key and select **Max** or **Spec**.

NOTE

The Max determines the spread factor of the Midamble by using the maximum power of the received Midamble, while the Spec searches "Default Midamble Allocation" based on the TD-SCDMA specification.

To select the detect mode, press the **Detect Mode** soft key and then select the option: **Auto, QPSK/8PSK, QPSK, 8PSK, 16 QAM**, or **64 QAM**.

Figure 244 Timogram with TD-SCDMA signal analyzer

Setting limit for power vs. time tests

Procedure

- 1 Press the *LIMIT* hot key.
- 2 Press the PvsT Test Limits soft key.
- 3 Select the test item(s) and set the limit(s) depending on your selected measurement mode:

To set the limit for	Select	Set
Slot power	Slot Power	High Limit, Low Limit
Downlink pilot signal power	DwPTS Power	High Limit, Low Limit
Uplink pilot signal power	UpPTS Power	High Limit, Low Limit
Power between on and off portions of the downlink slots	On/Off Ratio	High Limit, Low Limit

- 4 Optional. You can enable alarm sound that goes off if the measurement falls outside of the limit. Toggle the Beep soft key between On and Off to enable or disable the beep sound.
- Optional. Go to SAVE/LOAD > Save, and then select Limit to save the limit settings. See "Using save" on page 34 for more information.

Conducting modulation measurements

TD-SCDMA receivers rely on the frequency or phase quality of the QPSK or 8PSK signal in order to achieve the expected carrier to noise performance. A transmitter with high frequency or phase error is often still able to support phone calls during a functional test. It displays the frequency errors numerically and graphically, showing the binary representation of the demodulated data bits of the received signal using Constellation, Midamble Power, Code Power, and Code Error screens.

Constellation

The Constellation is used to observe some aspects of modulation accuracy and can reveal certain fault mechanisms such as I/Q amplitude imbalance or quadrature imbalance. It displays constellation diagram by modulation types.

Setting measure setup

After configuring test parameters as described in the "Configuring test parameters" on page 409, you can continue your measurement. The measurement settings can be saved and recalled as a file. You can also use JDViewer, PC application software to configure a measure setup, save as a file, and load the file on to the instrument.

Procedure

- 1 Press the MEASURE SETUP hot key.
- 2 Toggle the Scramble soft key and select Auto or Manual to set the scramble code automatically or manually.
- 3 Press the Slot Number soft key, and then select the time slot number to be displayed: TS0, TS1, TS2, TS3, TS4, TS5, or TS6.
- 4 Press the Spread Factor soft key, and then select the spread factor option: DL Auto for auto detection of downlink, UL Auto for auto detection of uplink, SF1, SF2, SF4, SF8, or SF16
- **5** To set the number of maximum users, complete the following steps:
 - a Press the Max Users soft key.
 - b Enter a value up to 16 by using the numeric keys, and then press the **Enter** soft key.
- 6 Optional. Press the Miscellaneous soft key, and then do the following as needed:

To set the delay, complete the following steps:

- a Press the **Delay** soft key to set the amount of delay in µs.
- **b** Enter a value by using the numeric keys. You can also use the rotary knob.
- c Press the µs soft key.

NOTE

The Delay setting is used only when there is a time offset in the signals to be measured.

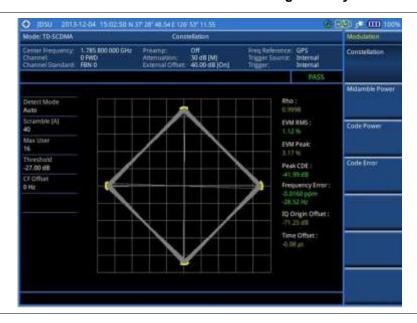
To select how to determine scrambling estimation, toggle the **Scramble** soft key and select **Spec** or **Full**.

NOTE

The Spec searches "Sync Sequence Number" from 0 to 31 based on the TD-SCDMA specification and determines "Scrambling Code Number" by using the sync sequence number, while the Full does from 0 to 127 fully.

To select how to determine the Midamble spread factor estimation either in full or maximum power search, toggle the **Mid SF Map** soft key and select **Max** or **Spec**.

NOTE


The Max determines the spread factor of the Midamble by using the maximum power of the received Midamble, while the Spec searches "Default Midamble Allocation" based on the TD-SCDMA specification.

To select the detect mode, press the **Detect Mode** soft key and then select the option: **Auto**, **QPSK/8PSK**, **QPSK**, **8PSK**, **16 QAM**, or **64 QAM**.

To set the relative threshold, complete the following steps:

- a Press the Threshold soft key. Its default setting is -27 dB.
- **b** Enter a value between -50 and zero by using the numeric keys.
- c Press the Enter soft key.

Figure 245 Constellation measurement with TD-SCDMA signal analyzer

NOTE

You can use the *LIMIT* hot key to analyze your measurements with the user-definable limit and Pass/Fail indication. See "Setting limit for modulation tests" on page 434 for more information. The Max Inactive is not used in the Constellation mode.

Midamble power

Setting measure setup

After configuring test parameters as described in the "Configuring test parameters" on page 409, you can continue your measurement. The measurement settings can be saved and recalled as a file. You can also use JDViewer, PC application software to configure a measure setup, save as a file, and load the file on to the instrument.

Procedure

- 1 Press the **MEASURE SETUP** hot key.
- 2 Toggle the Scramble soft key and select Auto or Manual to set the scramble code automatically or manually.
- 3 Press the Slot Number soft key, and then select the time slot number to be displayed: TS0, TS1, TS2, TS3, TS4, TS5, or TS6.
- 4 Press the Spread Factor soft key, and then select the spread factor option: DL Auto for auto detection of downlink, UL Auto for auto detection of uplink, SF1, SF2, SF4, SF8, or SF16
- **5** To set the number of maximum users, complete the following steps:
 - a Press the Max Users soft key.
 - **b** Enter a value up to 16 by using the numeric keys.
 - c Press the Enter soft key.
- 6 Optional. Press the **Miscellaneous** soft key, and then do the following as needed:

To set the delay, complete the following steps:

- Press the **Delay** soft key to set the amount of delay in µs.
- **b** Enter a value by using the numeric keys. You can also use the rotary knob.
- c Press the µs soft key.

NOTE

The Delay setting is used only when there is a time offset in the signals to be measured.

To select how to determine scrambling estimation, toggle the **Scramble** soft key and select **Spec** or **Full**.

NOTE

The Spec searches "Sync Sequence Number" from 0 to 31 based on the TD-SCDMA specification and determines "Scrambling Code Number" by using the sync sequence number, while the Full does from 0 to 127 fully.

To select how to determine the Midamble spread factor estimation either in full or maximum power search, toggle the **Mid SF Map** soft key and select **Max** or **Spec**.

NOTE

The Max determines the spread factor of the Midamble by using the maximum power of the received Midamble, while the Spec searches "Default Midamble Allocation" based on the TD-SCDMA specification.

To select the detect mode, press the **Detect Mode** soft key and then select the option: **Auto, QPSK/8PSK, QPSK, 8PSK, 16 QAM**, or **64 QAM**.

To set the relative threshold, complete the following steps:

- Press the Threshold soft key. Its default setting is -27 dB.
- **b** Enter a value between -50 and zero by using the numeric keys.
- c Press the Enter soft key.

Measurement example

Figure 246 Midamble measurement with TD-SCDMA signal analyzer

Code power

Setting measure setup

After configuring test parameters as described in the "Configuring test parameters" on page 409, you can continue your measurement. The measurement settings can be saved and recalled as a file. You can also use JDViewer, PC application software to configure a measure setup, save as a file, and load the file on to the instrument.

Procedure

- 1 Press the **MEASURE SETUP** hot key.
- 2 Toggle the Scramble soft key and select Auto or Manual to set the scramble code automatically or manually.
- 3 Press the Slot Number soft key, and then select the time slot number to be displayed: TS0, TS1, TS2, TS3, TS4, TS5, or TS6.
- 4 Press the Spread Factor soft key, and then select the spread factor option: DL Auto for auto detection of downlink, UL Auto for auto detection of uplink, SF1, SF2, SF4, SF8, or SF16
- **5** To set the number of maximum users, complete the following steps:
 - Press the Max Users soft key.
 - **b** Enter a value up to 16 by using the numeric keys.
 - c Press the Enter soft key.
- 6 Optional. Press the Miscellaneous soft key, and then do the following as needed:

To set the delay, complete the following steps:

- a Press the **Delay** soft key to set the amount of delay in µs.
- **b** Enter a value by using the numeric keys. You can also use the rotary knob.
- c Press the µs soft key.

NOTE

The Delay setting is used only when there is a time offset in the signals to be measured.

To select how to determine scrambling estimation, toggle the **Scramble** soft key and select **Spec** or **Full**.

NOTE

The Spec searches "Sync Sequence Number" from 0 to 31 based on the TD-SCDMA specification and determines "Scrambling Code Number" by using the sync sequence number, while the Full does from 0 to 127 fully.

To select how to determine the Midamble spread factor estimation either in full or maximum power search, toggle the **Mid SF Map** soft key and select **Max** or **Spec**.

NOTE

The Max determines the spread factor of the Midamble by using the maximum power of the received Midamble, while the Spec searches "Default Midamble Allocation" based on the TD-SCDMA specification.

To select the detect mode, press the **Detect Mode** soft key and then select the option: **Auto, QPSK/8PSK, QPSK, 8PSK, 16 QAM**, or **64 QAM**.

To set the relative threshold, complete the following steps:

- a Press the Threshold soft key. Its default setting is -27 dB.
- **b** Enter a value between -50 and zero by using the numeric keys.
- c Press the Enter soft key.

Measurement example

Figure 247 Code power measurement with TD-SCDMA signal analyzer

NOTE

You can use the *LIMIT* hot key to analyze your measurements with the user-definable limit and Pass/Fail indication for the Max Inactive. See "Setting limit for modulation tests" on page 434 for more information.

Code error

Setting measure setup

After configuring test parameters as described in the "Configuring test parameters" on page 409, you can continue your measurement. The measurement settings can be saved and recalled as a file. You can also use JDViewer, PC application software to configure a measure setup, save as a file, and load the file on to the instrument.

Procedure

- 1 Press the **MEASURE SETUP** hot key.
- 2 Toggle the Scramble soft key and select Auto or Manual to set the scramble code automatically or manually.
- 3 Press the Slot Number soft key, and then select the time slot number to be displayed: TS0, TS1, TS2, TS3, TS4, TS5, or TS6.
- 4 Press the Spread Factor soft key, and then select the spread factor option: DL Auto for auto detection of downlink, UL Auto for auto detection of uplink, SF1, SF2, SF4, SF8, or SF16
- **5** To set the number of maximum users, complete the following steps:
 - a Press the Max Users soft key.
 - **b** Enter a value up to 16 by using the numeric keys.
 - Press the Enter soft key.
- 6 Optional. Press the Miscellaneous soft key, and then do the following as needed:

To set the delay, complete the following steps:

- a Press the **Delay** soft key to set the amount of delay in μs.
- **b** Enter a value by using the numeric keys. You can also use the rotary knob.
- Press the µs soft key.

NOTE

The Delay setting is used only when there is a time offset in the signals to be measured.

To select how to determine scrambling estimation, toggle the **Scramble** soft key and select **Spec** or **Full**.

NOTE

The Spec searches "Sync Sequence Number" from 0 to 31 based on the TD-SCDMA specification and determines "Scrambling Code Number" by using the sync sequence number, while the Full does from 0 to 127 fully.

To select how to determine the Midamble spread factor estimation either in full or maximum power search, toggle the **Mid SF Map** soft key and select **Max** or **Spec**.

NOTE

The Max determines the spread factor of the Midamble by using the maximum power of the received Midamble, while the Spec searches "Default Midamble Allocation" based on the TD-SCDMA specification.

To select the detect mode, press the **Detect Mode** soft key and then select the option: **Auto, QPSK/8PSK, QPSK, 8PSK, 16 QAM**, or **64 QAM**.

To set the relative threshold, complete the following steps:

- a Press the Threshold soft key. Its default setting is -27 dB.
- **b** Enter a value between -50 and zero by using the numeric keys.
- c Press the Enter soft key.

Measurement example

Figure 248 Code error measurement with TD-SCDMA signal analyzer

NOTE

You can use the *LIMIT* hot key to analyze your measurements with the user-definable limit and Pass/Fail indication for the Max Inactive. See "Setting limit for modulation tests" on page 434 for more information.

Setting limit for modulation tests

Procedure

1 Press the LIMIT hot key.

- 2 Press the Modulation Test Limits soft key.
- 3 Select the test item(s) and set the limit(s) depending on your selected measurement mode:

To set the limit for	Select	Set
Frequency error	Frequency Error	High Limit, Low Limit
Error vector magnitude rms	EVM RMS	High Limit
Peak code domain error	PCDE	High Limit
Highest level among inactive channels	Max Inactive	High Limit

- 4 Optional. You can enable alarm sound that goes off if the measurement falls outside of the limit. Toggle the **Beep** soft key between **On** and **Off** to enable or disable the beep sound.
- 5 Optional. Go to SAVE/LOAD > Save, and then select Limit to save the limit settings. See "Using save" on page 34 for more information.

Performing auto measurements

The Auto Measure function of the JD700B series allows a complete signal profiling covering RF characterization and modulation quality parameters of up to 10 different carriers, particularly useful on an overlay architecture where base stations are transmitting in different frequencies.

The Auto Measure can be easily executed either by selecting a menu in the instrument or by running a programmed scenario in the PC-based application so that the instrument automatically configure and perform tests on every aspect of all the carriers.

Setting limit

You can set test limits for test item(s) in the auto measurement.

Procedure

- 1 Press the *LIMIT* hot key.
- 2 Press the RF Test Limits soft key, and then enable test limits as desired.
- 3 Press the PvsT Test Limits soft key, and then enable test limits as desired.
- 4 Press the Modulation Test Limits soft key, and then enable test limits as desired.
- **5** Optional. You can enable alarm sound that goes off if the measurement falls outside of the limit. Toggle the **Beep** soft key between **On** and **Off** to enable or disable the beep sound.
- 6 Optional. Go to **SAVE/LOAD > Save**, and then select **Limit** to save the limit settings. See "Using save" on page 34 for more information.

Setting measure setup

After configuring test parameters as described in the "Configuring test parameters" on page 409, you can continue your measurement. The measurement settings can be saved and recalled as a file. You can also use JDViewer, PC application software to configure a measure setup, save as a file, and load the file on to the instrument.

- 1 Press the **MEASURE SETUP** hot key.
- 2 Toggle the **Configuration** soft key and select the configuration option:

Current: Lets the instrument use current frequency (single carrier) and determine pass or fail based on the instrument's limit settings in Auto Measure.

Scenario: Runs a test with a programmed scenario in JDViewer.

The Scenario menu becomes activated.

- 3 To load a scenario, press the Scenario soft key, and then select a scenario file to load.
- 4 Toggle the **Test Time** soft key and select the test time option:

Now: Lets the instrument run a test only once.

Schedule: Lets the instrument repeat tests as defined in the Set Timing.

The Set Timing menu becomes activated.

- **5** To define a schedule for an auto measurement, complete the following steps:
 - a Press the Set Timing soft key.
 - b Press the Start Time (HH:MM) soft key.
 - Enter the time in the HH:MM format, and then press the **Enter** soft key.
 - d Press the Stop Time (HH:MM) soft key.
 - e Enter the time in the HH:MM format, and then press the **Enter** soft key.
 - f Press the Time Interval soft key.
 - g Enter the amount of time in minutes, and then press the Enter soft key.
- **6** Press the **Settings** soft key, and then set the following:
 - Press the Slot Number soft key, and then select the time slot number to be displayed: TS0, TS1, TS2, TS3, TS4, TS5, or TS6.
 - b Toggle the External Offset soft key and select On.
 - c Enter a value by using the numeric keys, and then press the dB soft key.
- 7 To save your settings and results, go to SAVE/LOAD > Save and then perform functions as you desire. See "Using save" on page 34 for more information.
- 8 Press the Run Test soft key to start to run a test. The Auto Measure Results window appears at the end of the test.
 - To stop running the test, press the **Abort** soft key.
- **10** To change the view on the screen during the test, press the **Display** and then select the view option from the following choices:

Screen: You can view each measurement screen as the test progresses.

Results: You can view a measurement result table as the test progresses.

Settings: You can view a measurement setting table as the test progresses.

Setting display

After completion of the auto measurement, the screen menu changes to Trace/Display so that you can view the results in different forms.

Procedure

1 Toggle the **Display** soft key and select the display option:

Result: You can view the result table.

The Display Result menu becomes activated.

Settings: You can view the measurement settings for the auto measurement.

2 Toggle the **Display Result** soft key and select the display result option:

Full: You can view detailed measurement readings with the pass/fail indication.

Quick: You can view only the Pass/Fail results.

3 To view the measurement results for a different carrier, press the View Carrier soft key and then select the carrier number to view.

Conducting TD-SCDMA OTA measurements

Sync-DL ID scanner

Setting measure setup

After configuring test parameters as described in the "Configuring test parameters" on page 409, you can continue your measurement.

Procedure

- 1 Press the MEASURE SETUP hot key.
- 2 Toggle the Sync-DL ID soft key and select Auto or Manual to set the Sync Downlink ID automatically or manually.
- **3** Optional. To select the delay, complete the following steps:
 - a Press the Miscellaneous soft key.
 - b Press the **Delay** soft key to set the amount of delay in μs.
 - c Enter a value by using the numeric keys. You can also use the rotary knob.
 - d Press the µs soft key.

NOTE

The Delay setting is used only when there is a time offset in the signals to be measured.

4 Optional. Go to **SAVE/LOAD** > **Save**, and then select the save option from the choices available for your measurement mode. See "Using save" on page 34 for more information.

Measurement example

Figure 249 Sync-DL ID scanner measurement with TD-SCDMA OTA signal analyzer

Sync-DL ID vs. Tau

Setting measure setup

After configuring test parameters as described in the "Configuring test parameters" on page 409, you can continue your measurement.

Procedure

- 1 Press the **MEASURE SETUP** hot key.
- 2 Toggle the Sync-DL ID soft key and select Auto or Manual to set the Sync Downlink ID automatically or manually.
- **3** Optional. To select the delay, complete the following steps:
 - a Press the Miscellaneous soft key.
 - b Press the **Delay** soft key to set the amount of delay in µs.
 - c Enter a value by using the numeric keys. You can also use the rotary knob.
 - d Press the µs soft key.

NOTE

The Delay setting is used only when there is a time offset in the signals to be measured.

4 Optional. Go to SAVE/LOAD > Save, and then select the save option from the choices available for your measurement mode. See "Using save" on page 34 for more information.

Measurement example

Figure 250 Sync-DL ID vs. Tau measurement with TD-SCDMA OTA signal analyzer

Sync-DL ID multipath

Setting measure setup

After configuring test parameters as described in the "Configuring test parameters" on page 409, you can continue your measurement.

- 1 Press the **MEASURE SETUP** hot key.
- 2 Toggle the Sync-DL ID soft key and select Auto or Manual to set the Sync Downlink ID automatically or manually.
- **3** Optional. To select the delay, complete the following steps:
 - a Press the Miscellaneous soft key.
 - **b** Press the **Delay** soft key to set the amount of delay in μs.
 - **c** Enter a value by using the numeric keys. You can also use the rotary knob.

d Press the µs soft key.

NOTE

The Delay setting is used only when there is a time offset in the signals to be measured.

4 Optional. Go to **SAVE/LOAD** > **Save**, and then select the save option from the choices available for your measurement mode. See "Using save" on page 34 for more information.

Measurement example

Figure 251 Sync-DL ID multipath measurement with TD-SCDMA OTA signal analyzer

Sync-DL ID analyzer

Setting measure setup

After configuring test parameters as described in the "Configuring test parameters" on page 409, you can continue your measurement.

Procedure

- 1 Press the MEASURE SETUP hot key.
- 2 Toggle the **Sync-DL ID** soft key and select **Auto** or **Manual** to set the Sync Downlink ID automatically or manually.
- **3** Optional. To select the delay, complete the following steps:
 - a Press the Miscellaneous soft key.
 - b Press the **Delay** soft key to set the amount of delay in μs.
 - **c** Enter a value by using the numeric keys. You can also use the rotary knob.
 - d Press the µs soft key.

NOTE

The Delay setting is used only when there is a time offset in the signals to be measured.

4 Optional. Go to **SAVE/LOAD** > **Save**, and then select the save option from the choices available for your measurement mode. See "Using save" on page 34 for more information.

Setting limit for Sync-DL ID analyzer

Procedure

- 1 Press the *LIMIT* hot key.
- 2 To set the limit for rms of the error vector magnitude, complete the following steps:
 - Press the EVM RMS soft key.
 - **b** Toggle the **Test Limits** soft key between **On** and **Off** to enable or disable the limit.
 - c Press the **High Limit** soft key, and then enter a value for the upper threshold.
 - d Press the Enter soft key.
- **3** To set the limit for frequency error, complete the following steps:
 - a Press the Frequency Error soft key.
 - **b** Toggle the **Test Limits** soft key between **On** and **Off** to enable or disable the limit.
 - c Press the **High Limit** soft key, and then enter a value for the upper threshold.
 - d Press the ppm soft key.
 - e Press the Low Limit soft key, and then enter a value for the lower threshold.
 - f Press the ppm soft key.
- 4 Optional. You can enable alarm sound that goes off if the measurement falls outside of the limit. Toggle the Beep soft key between On and Off to enable or disable the beep sound.
- 5 Optional. Go to SAVE/LOAD > Save, and then select Limit to save the limit settings. See "Using save" on page 34 for more information.

Measurement example

Figure 252 Sync-DL ID analyzer measurement with TD-SCDMA OTA signal analyzer

Route map

The JD700B Series provides the Route Map function that allows you to collect data of points in an indoor or outdoor environment and track the received signals and coverage of RF transmitters by plotting data real time directly on top of a loaded floor plan or a map.

Setting measure setup

Procedure

- 1 If required, connect a GPS receiver to your JD700B series for outdoor mapping. Indoor mapping does not necessarily need a GPS antenna.
- 2 Configure test parameters as described in the "Configuring test parameters" on page 409.
- **3** To load your map file, complete the following steps:
 - Plug in your USB drive that has a floor map or .mcf file type created in JDMapCreator. If the JDMapCreator application on your computer is connected to the instrument via USB or LAN, you can send a map file with a single layer to the instrument directly by using the **Send to EQP** menu in JDMapCreator.

NOTE

The JDMapCreator converts and resizes any scanned floor plan or layout to fit onto your instrument's display. JDMapCreator 1.2.0 or later can save a multiple-layered map, providing x1, x2, and x4 views, as a sizable map file so that you can zoom in and out after loading it.

- b Press SAVE/LOAD hot key, and then select Load > Load Map. See "Using load" on page 36 for more information.
- 4 Press the **MEASURE SETUP** hot key.
- 5 Press the **Plot Point** soft key, and then select the plot point option from the following choices:

To collect data/plot points automatically as you move around in a vehicle or outside, press the **GPS** soft key and then toggle the **Screen Mode** soft key between **Map** and **Full**.

NOTE

With the **Map** setting, you can view only the collected points that can be seen within the boundary of the loaded map. If a point is off the map, the instrument displays an arrow to indicate the direction of the current location on the map and the distance from the center to the location at the top of the screen.

With the **Full** setting, you can view all the collected points of the route without the loaded map.

To collect data/plot points manually without a GPS antenna in an indoor environment, press the **Position** soft key.

- 6 Toggle the **Plot** soft key and select **Start** to start plotting.
- 7 Touch directly on the screen or press the ENTER hard key to collect data and plot points on the loaded map for the Position setting.

NOTE

For the **Position** setting, you can change the direction of the route with the arrow keys and the distance with the rotary knob.

- 8 Toggle the Plot soft key and select Stop to stop plotting.
- 9 Press the SAVE/LOAD hot key to save the result. See "Using save" on page 34 for more information.

NOTE

The instrument does not automatically save the collected data. It is recommended that you save the result. Otherwise, you will lose all the collected data.

Setting limit for route map

You can set the thresholds for each test item.

- 1 Press the *LIMIT* hot key.
- 2 Press the Excellent soft key to set its threshold.
- 3 Enter a value, and then press the **Enter** soft key. You can also use the rotary knob.
- 4 Press the Very Good soft key to set its threshold.

- **5** Enter a value, and then press the **Enter** soft key. You can also use the rotary knob.
- 6 Press the Good soft key to set its threshold.
- 7 Enter a value, and then press the **Enter** soft key. You can also use the rotary knob.
- 8 Press the Fair soft key to set its threshold.
- **9** Enter a value, and then press the **Enter** soft key. You can also use the rotary knob.
- 10 Press the Poor soft key to set its threshold.
- 11 Enter a value, and then press the **Enter** soft key. You can also use the rotary knob.
- **12** Optional. Go to **SAVE/LOAD** > **Save**, and then select **Limit** to save the limit settings. See "Using save" on page 34 for more information.

Measurement example

Figure 253 Route map measurement with TD-SCDMA OTA signal analyzer

1) Map view

2) Full view

Controlling a map

If you have loaded a sizable map that was created in JDMapCreator 1.2.0 or later, you can use the Map Control feature that enables you to zoom into the map and view a specific area of interest in detail.

Procedure

- 1 Press the TRACE/DISPLAY hard key.
- 2 Press the Map Control soft key. This key is active only when you have loaded a sizable map.
- 3 Do one of the following:

To zoom into an area of interest directly, complete the following steps:

- a Toggle the **Zoom to** soft key and select **Area**. The black rectangle appears on the map.
- **b** Press the **Zoom In** and **Zoom Out** soft keys, as you need, to decrease and increase the selected area.
- Move the rectangle by using the four arrow keys, as you need, to place it in a specific area of interest.
- **d** Press the center of the rotary knob to zoom into the selected area. You can also press the **Zoom to** soft key again to zoom into the selected area.

To zoom into the center or zoom out from the center, complete the following steps:

- a Toggle the Zoom to soft key and select Center.
- b Press the Zoom In and Zoom Out soft keys, as you need, to zoom in and zoom out.
- Move the zoomed-in area by using the four arrow keys, as you need.
- 4 To set the location mode, toggle the **Location Mode** soft key between **Auto** and **Manual** and select the one you desire.

Auto: The instrument compares the coordinates of the displayed map with recevied GPS information. If your current location goes out of the displayed area and enters into the next zoomed-in section within the base map, the map display changes automatically to the next section in which your current position is.

Manual: The map display of the zoomed-in area remains unchanged even if your current location goes out of the displayed area. You can change the displayed area manually by using the arrow keys.

Chapter 13 Using Mobile WiMAX Signal Analyzer

This chapter provides instructions for using the Mobile WiMAX Signal Analyzer function (option 026) with the Mobile WiMAX OTA Analyzer function (option 046). Topics discussed in this chapter are as follows:

Introduction	.445
Display overview	.446
Connecting a cable	.446
Selecting measurement mode	.448
Configuring test parameters	.448
Conducting spectrum measurements	.452
Conducting RF measurements	.454
Conducting power vs. time (frame) measurements	.460
Conducting modulation measurements	.462
Performing auto measurements	.469
Performing power statistics CCDF measurements	.470
Conducting Mobile WiMAX OTA measurements	.471

Introduction

The Mobile WiMAX Signal Analyzer performs power and spectrum measurements as well as modulation analysis to test the proper transmitter performance of Mobile WiMAX systems. It performs conformance testing according to the following standards providing a simple Pass/Fail indication on each test.

- IEEE 802.16e-2005
- WiBro (Korean Mobile WiMAX OFDMA Service)

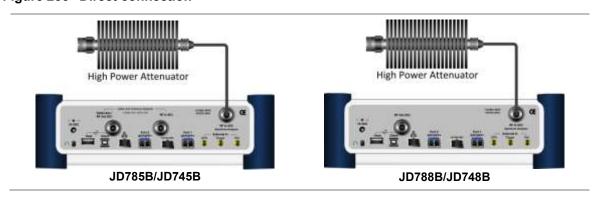
This instrument provides the following measurement tools for Mobile WiMAX system:

- Spectrum Analysis
- RF Analysis
 - Channel Power
 - Occupied Bandwidth
 - Spectrum Emission Mask
 - Spurious Emissions
- Power vs. Time (Frame)
- Modulation Analysis
 - Constellation
 - Spectral Flatness
 - EVM vs. Subcarrier
 - EVM vs. Symbol
- Auto Measure
- Power Statistics CCDF
- Over The Air (OTA)
 - Preamble Scanner
 - Multipath Profile
 - Preamble Power Trend
 - Route Map

Display overview

Figure 254 provides descriptions for each segment of the measurement screen.

Figure 254 Mobile WiMAX signal analyzer measurement screen

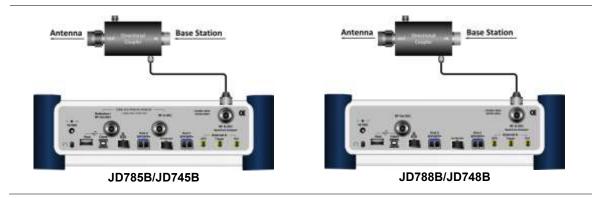

Connecting a cable

Direct connection

Procedure

1 Connect the **Spectrum Analyzer RF In** port of the JD700B series and the Power amplifier output port of BTS.

Figure 255 Direct connection

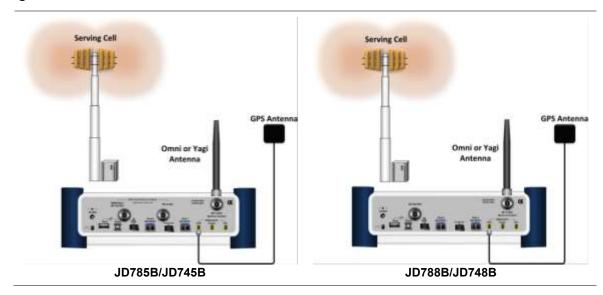


Indirect connection

Procedure

1 Connect the Spectrum Analyzer RF In port of the JD700B series and the monitor (test) port of BTS.

Figure 256 Indirect connection


CAUTION

The maximum power for the **Spectrum Analyzer RF In** port is +25 dBm (0.316 W) for JD780B series and +20 dBm (0.1 W) for JD740B series. If the level of the input signal to be measured is greater than this, use a *High Power Attenuator* to prevent damage when you directly connect the signal to the instrument or connect the signal from the coupling port of a directional coupler.

Over the air (OTA)

- 1 Connect an Omni/directional RF antenna to the Spectrum Analyzer RF In port of the JD700B series.
- 2 Connect a GPS antenna to the GPS port of the JD700B series.

Figure 257 OTA connection

CAUTION

If the input signal level to be measured is less than 0 dBm, set 0 dB attenuation or turn on the preamp to have better dynamic range for the OTA testing.

Selecting measurement mode

Procedure

- Press the MODE hard key.
- 2 Press the Signal Analyzer soft key.
- 3 Select More (1/2) > Mobile WiMAX. The Spectrum mode is set by default.
- 4 Press the MEASURE hot key, and then select the measurement mode option from the following choices:

Spectrum

RF Analysis > Channel Power, Occupied BW, Spectrum Emission Mask, or Spurious Emissions

Power vs Time (Frame)

Modulation Analysis > Constellation, Spectral Flatness, EVM vs Subcarrier, or EVM vs. Symbol

Auto Measure

Power Statistics CCDF

OTA > Preamble Scanner, Multipath Profile, Preamble Power Trend, or Route Map

Configuring test parameters

Setting frequency

You can set the frequency with either frequency or channel number. If a frequency to be set matches to the frequency corresponding to the selected channel standard, the instrument calculates its channel number and updates the screen with it automatically.

Procedure

To set the center frequency:

- Press the FREQ/DIST hard key.
- 2 Toggle the Unit soft key and select Freq.
- 3 Press the Center Frequency soft key.
- 4 Enter a value by using the numeric keys. You can also use the rotary knob.
- 5 Select the unit: GHz, MHz, kHz, or Hz.
- 6 Optional. To define the amount of frequency increment for the rotary knob, complete the following steps:
 - Press the Frequency Step soft key.
 - **b** Enter a value by using the numeric keys. You can also use the rotary knob.
 - c Press the unit: GHz. MHz. kHz. or Hz.

To set the channel number:

- Press the FREQ/DIST hard key.
- 2 Toggle the Unit soft key and select Channel.
- **3** To select the standard channel, complete the following steps:
 - Press the Channel Std soft key. The standard channel window appears.

See "Appendix C – Band, frequency & channel standard" on page 745 for more information.

- b Highlight the band to be measured by using the rotary knob, the arrow keys, or the Page Up/Page Down soft keys.
- Press the Select soft key or the rotary knob to confirm the selection.
- 4 Press the Channel Number soft key.
- **5** Enter a value by using the numeric keys. You can also use the rotary knob.
- 6 Press the Enter soft key.

The instrument automatically displays the corresponding center frequency value for the selected channel number.

- 7 Optional. To define the amount of channel increment for the rotary knob, complete the following steps:
 - a Press the Channel Step soft key.
 - Enter a value by using the numeric keys. You can also use the rotary knob.
 - c Press the Enter soft key.

NOTE

This frequency setting is not used in the Spurious Emissions mode.

Setting amplitude

Reference level and attenuation

You can set the reference and attenuation levels automatically or manually to optimize the display of the traces measured, as you desire.

Procedure

To automatically set the reference and attenuation level:

- 1 Press the AMP/SCALE hard key.
- Press the Auto Scale soft key. Each time you press this key, both of the Y-axis scale and input attenuation level change to be optimized with some margin.

To set the reference or attenuation level manually:

- 1 Press the AMP/SCALE hard kev.
- 2 To set the maximum reference value on the Y-axis manually, complete the following steps:
 - a Press the Reference Level soft key.
 - **b** Enter a value by using the numeric keys or the rotary knob with 10 dB increments.
 - Press the unit soft key or the ENTER hard key.
 This unit key name changes according to the setting in the Units menu.

NOTE

In the measurements such as **Midamble Power**, **Code Power**, and **Code Error**, you may need to select the reference option between **Relative** and **Absolute** before setting the reference level.

3 To set the attenuation option, select one from the following choices:

To set the input attenuator's level automatically, select **Attenuation > Auto**.

NOTE

It is recommended that you set the **Attenuation** to **Auto** in most situations so that the level of the input attenuator can be set automatically according to your input signal level.

To set the input attenuation manually up to 55 dB for JD780B series or 50 dB for JD740B series to optimize S/N, complete the following steps:

- a Select Attenuation > Manual.
- **b** Press the **Attenuation Value** soft key to set the level.
- Enter a value in fives by using the numeric keys.

d Press the dB soft key or the ENTER hard key.

To couple the input attenuator's level with your reference level setting, select **Attenuation > Couple**.

As you increase the reference setting, the attenuation level also increases accordingly.

Optional. To change the scale unit:

- 1 Select More (1/2) > Units.
- 2 Select the unit of the display scale: dBm, dBV, dBmV, dBμV, V, or W. The scale unit on the screen changes accordingly.

NOTE

This Units menu is available in the Spectrum and RF Analysis modes.

Scale per division

You can use the **Scale/Div** feature available for the spectrum and RF analysis. It represents the value of one division on the horizontal scale. The default setting is 10 dB per division and the maximum value can be set up to 20 dB.

Procedure

- 1 Press the AMP/SCALE hard key.
- 2 Select More (1/2) > Scale/Div.
- 3 Enter a value between 1 and 20 by using the numeric keys.
- 4 Press the dB soft key to complete the entry.

Pre-amplifier

You can turn the internal pre-amplifier on to correct and compensate for the gain of the preamp so that amplitude readings show the value at the input connector.

Procedure

- 1 Press the AMP/SCALE hard key.
- 2 Toggle the **Preamp** soft key and select **On** or **Off** as needed.

NOTE

You can turn the Preamp on when the input attenuation range is from 0 dB to 10 dB. If the attenuation value is manually set to greater than 10 dB, the instrument will automatically turn off the pre-amplifier to display low-level signal properly on the chart.

External offset

You can turn the **External Offset** on and manually set the external offset value. An offset consists of a cable loss and a user offset and the measurement result shows the value reflecting both offset values. When the external offset value is set at 40 dB in the Spectrum mode, the measurement result compensates 40 dB at both the Spectrum Analyzer and Signal Analyzer modes.

Procedure

To set the external offset:

- 1 Press the AMP/SCALE hard key.
- 2 Toggle the External Offset soft key and select On.
- **3** Enter a value by using the numeric keys.

4 Press the dB soft key to complete the entry.

To turn the external offset off:

- 1 Press the AMP/SCALE hard key.
- 2 Toggle the External Offset soft key and select Off.

Setting average

You can set the number of measurements to be averaged for the trace presentation. A maximum of 100 times of averaging can be set. When the averaging reaches to your setting, a new measurement value replaces the measurement value in sequence from the earliest.

Procedure

- 1 Press the BW/AVG hard key.
- 2 Press the Average soft key.
- 3 Enter a value between 1 and 100 as needed by using the numeric keys.
- 4 Press the Enter soft key.

Setting sweep mode

The default setting is **Continue** to sweep continuously for most on-going measurements. If you want to hold the measurement or get a single sweep, you can change the sweep mode.

Procedure

To select the single sweep mode:

- 1 Press the SWEEP hot key.
- 2 Toggle the Sweep Mode soft key and select Single. You can also use the HOLD hot key. The letter HOLD in red appears and the sweeping is paused.
- 3 Optional. Press the Sweep Once soft key to get a new measurement.

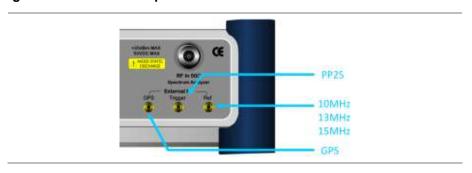
To return to the continuous sweep mode:

1 Toggle the Sweep Mode soft key and select Continue. You can also use the HOLD hot key. The letter HOLD in red disappears and the sweeping resumes.

Setting trigger source

You can set the trigger source option for your measurements.

Procedure


- 1 Press the TRIGGER hot key.
- 2 Select the trigger source option from the choices: Internal, External, and GPS.

Setting external clock

To enhance the reliability of modulation analysis measurements the JD700B series must be synchronized with a base station. When an external clock is not supplied, the instrument works with its built-in internal high-accuracy time base and some measurement results may exhibit inaccurate values. Therefore, it is highly recommended that you use the same reference clock as the signal source. You can use the

TRIGGER hot key to set the external clock.

Figure 258 Connection ports for external reference clock

Procedure

- 1 Connect an external reference or a GPS antenna to the JD700B series.
- 2 Press the SYSTEM hot key.
- 3 Press the Freq Reference soft key, and then select the reference option: Internal, External 10 MHz, External 13 MHz, External 15 MHz, or GPS.

Table 19 External reference indicators

Туре	Indicator	Description
Internal	(green)	The green INT icon indicates that the instrument uses the built-in internal time base.
External	(green)	The green EXT icon indicates that an external reference is connected and locked and that the instrument uses the same reference clock as the signal source.
External	(red)	The red EXT icon indicates that an external reference is connect but not locked.
GPS	(green)	The green GPS antenna icon indicates that a GPS antenna is connected and locked.
GPS	(yellow)	The yellow GPS antenna icon indicates that a GPS antenna is connected and locking is in progress.
GPS	(grey)	The grey GPS antenna icon indicates that a GPS antenna is not connected, failed, or unable to be locked.

Conducting spectrum measurements

Setting measure setup

After configuring test parameters as described in the "Configuring test parameters" on page 448, you can continue your measurement.

Procedure

- 1 Press the **MEASURE SETUP** hot key.
- 2 Press the **System Config** soft key, and then do the following:
 - Press the Bandwidth soft key, and then select the nominal channel bandwidth to be measured from the following choices:

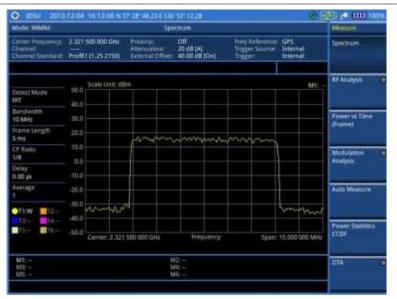
7 MHz (8/7): Sets the channel bandwidth to 7 MHz with sampling factor 8/7. In

conjunction with nominal channel bandwidth

8.75 MHz (8/7): Sets the channel bandwidth to 8.75 MHz with sampling factor 8/7

10 MHz (28/25): Sets the channel bandwidth to 10 MHz with sampling factor 28/25

- **b** Toggle the **Frame Length** soft key and select **5 ms** or **10 ms**.
- c Press the **TTG (RTG)** soft key to set the transmit/receive transition gap between the last sample of the downlink burst and the first sample of the subsequent uplink burst.
- d Enter a value by using the numeric keys, and then press the Enter soft key.
- Press the **CP Ratio** soft key, and then select the cyclic prefix ratio option: **1/4**, **1/8**, **1/16**, or **1/32**
- f Press the **DL Symbols** soft key to set the number of downlink symbols.
- g Enter a value by using the numeric keys, and then press the **Enter** soft key.
- h Press the **UL Symbols** soft key to set the number of uplink symbols.
- i Enter a value by using the numeric keys, and then press the **Enter** soft key.
- 3 Optional. To set the delay, complete the following steps:
 - Press the **Delay** soft key to set the amount of delay in μs.
 - **b** Enter a value by using the numeric keys. You can also use the rotary knob.
 - c Press the µs soft key.



NOTE

The Delay setting is used only when there is a time offset in the signals to be measured.

Your measurement result is displayed on the screen as like the following example, Figure 259.

Figure 259 Spectrum measurement screen with Mobile WiMAX signal analyzer

Setting trace

You can display up to six traces on the measurement chart simultaneously.

- 1 Press the TRACE/DISPLAY hard key.
- 2 Press the Select Trace soft key, and then select the trace number: T1, T2, T3, T4, T5, or T6. The legend shape of the selected trace changes from square to round to indicate that the trace is the active one now.
- **3** Complete one of the following:

То	Select	Trace Legend
Clear current data and display with new measurements	Clear Write	W
Display the input signal's maximum response only (unlimited or for a certain amount of time)	Max Hold	M
Display the input signal's minimum response only (unlimited or for a certain amount of time)	Min Hold	m
Capture the selected trace and compare traces	Capture	С
Load a saved trace	More (1/2) > Load	L
Hide the displayed trace	Trace View > Off	F
Remove all the traces and initialize the trace settings	More (1/2) > Trace Clear All	

NOTE

For the **Max Hold** and **Min Hold**, your instrument compares newly acquired data with the active trace and displays larger maximum values or smaller minimum values on the screen. You can set it to **Unlimited** to hold and view maximum or minimum data or specify a certain amount of time up to 60 seconds by using numeric keys or rotary knob.

- 4 Optional. Select More (1/2) > Trace Info, and then select the trace number to view the trace's parameter setting information stored at the time of the measurement or None to hide the information display.
- Optional. If you have the two traces T1 and T2, you can perform trace math. To view the power difference between the traces, press the T1 T2 -> T5 or T2 T1 -> T6 soft key. The result is overlaid on the screen along with the second Y-axis.

Conducting RF measurements

Channel power

The Channel Power measurement is a common test used in the wireless industry to measure the total transmitted power of a radio within a defined frequency channel. It acquires a number of points representing the input signal in the time domain, transforms this information into the frequency domain using Fast Fourier Transform (FFT), and then calculates the channel power. The effective resolution bandwidth of the frequency domain trace is proportional to the number of points acquired for the FFT.

The channel power measurement identifies the total RF power, power spectral density (PSD) and peak to average ratio (PAR) of the signal in the Mobile WiMAX channel bandwidth.

Setting measure setup

After configuring test parameters as described in the "Configuring test parameters" on page 448, you can continue your measurement.

Procedure

- 1 Press the **MEASURE SETUP** hot key.
- 2 Press the **System Config** soft key, and then do the following:
 - Press the Bandwidth soft key, and then select the nominal channel bandwidth to be measured from the following choices:

7 MHz (8/7): Sets the channel bandwidth to 7 MHz with sampling factor 8/7. In

conjunction with nominal channel bandwidth

8.75 MHz (8/7): Sets the channel bandwidth to 8.75 MHz with sampling factor 8/7

10 MHz (28/25): Sets the channel bandwidth to 10 MHz with sampling factor 28/25

- **b** Toggle the **Frame Length** soft key and select **5 ms** or **10 ms**.
- c Press the **TTG (RTG)** soft key to set the transmit/receive transition gap between the last sample of the downlink burst and the first sample of the subsequent uplink burst.
- d Enter a value by using the numeric keys, and then press the **Enter** soft key.
- e Press the CP Ratio soft key, and then select the cyclic prefix ratio option: 1/4, 1/8, 1/16, or 1/32.
- f Press the **DL Symbols** soft key to set the number of downlink symbols.
- g Enter a value by using the numeric keys, and then press the **Enter** soft key.
- h Press the **UL Symbols** soft key to set the number of uplink symbols.
- i Enter a value by using the numeric keys, and then press the **Enter** soft key.
- 3 Optional. To set the delay, complete the following steps:
 - Press the **Delay** soft key to set the amount of delay in μs.
 - **b** Enter a value by using the numeric keys. You can also use the rotary knob.
 - c Press the µs soft key.

NOTE

The Delay setting is used only when there is a time offset in the signals to be measured.

- **4** To set the start/stop symbols, complete the following steps:
 - a Press the Start Symbol soft key.
 - **b** Enter a value by using the numeric keys, and then press the **Enter** soft key.
 - c Press the Stop Symbol soft key.
 - d Enter a value by using the numeric keys, and then press the **Enter** soft key.

Measurement example

Figure 260 Channel power measurement with Mobile WiMAX signal analyzer

NOTE

You can use the *LIMIT* hot key to analyze your measurements with the user-definable limit and Pass/Fail indication. See "Setting limit for RF tests" on page 460 for more information.

Occupied bandwidth

The Occupied Bandwidth measures the spectrum shape of the carrier. It is defined as the bandwidth, which includes 99% of the transmitted power among total transmitted power.

Setting measure setup

After configuring test parameters as described in the "Configuring test parameters" on page 448, you can continue your measurement.

Procedure

- 1 Press the **MEASURE SETUP** hot key.
- 2 Press the System Config soft key, and then do the following:
 - Press the Bandwidth soft key, and then select the nominal channel bandwidth to be measured from the following choices:
 - **7 MHz (8/7):** Sets the channel bandwidth to 7 MHz with sampling factor 8/7. In conjunction with nominal channel bandwidth
 - 8.75 MHz (8/7): Sets the channel bandwidth to 8.75 MHz with sampling factor 8/7
 - 10 MHz (28/25): Sets the channel bandwidth to 10 MHz with sampling factor 28/25
 - **b** Toggle the **Frame Length** soft key and select **5 ms** or **10 ms**.
 - **c** Press the **TTG (RTG)** soft key to set the transmit/receive transition gap between the last sample of the downlink burst and the first sample of the subsequent uplink burst.
 - d Enter a value by using the numeric keys, and then press the **Enter** soft key.
 - e Press the CP Ratio soft key, and then select the cyclic prefix ratio option: 1/4, 1/8, 1/16, or 1/32.
 - f Press the **DL Symbols** soft key to set the number of downlink symbols.
 - g Enter a value by using the numeric keys, and then press the **Enter** soft key.
 - h Press the **UL Symbols** soft key to set the number of uplink symbols.
 - i Enter a value by using the numeric keys, and then press the **Enter** soft key.
- 3 Optional. To set the delay, complete the following steps:
 - a Press the **Delay** soft key to set the amount of delay in µs.
 - **b** Enter a value by using the numeric keys. You can also use the rotary knob.
 - c Press the µs soft key.

NOTE

The Delay setting is used only when there is a time offset in the signals to be measured.

- **4** To set the start/stop symbols, complete the following steps:
 - Press the Start Symbol soft key.
 - **b** Enter a value by using the numeric keys, and then press the **Enter** soft key.
 - Press the Stop Symbol soft key.
 - d Enter a value by using the numeric keys, and then press the **Enter** soft key.

Measurement example

Figure 261 Occupied bandwidth measurement with Mobile WiMAX signal analyzer

NOTE

You can use the *LIMIT* hot key to analyze your measurements with the user-definable limit and Pass/Fail indication. See "Setting limit for RF tests" on page 460 for more information.

Spectrum emission mask (SEM)

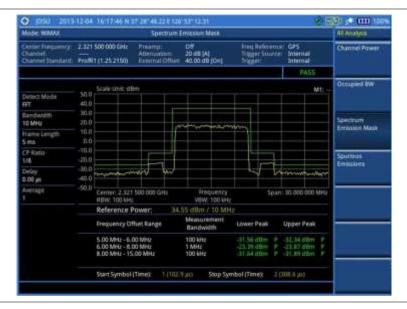
The Spectrum Emission Mask (SEM) measurement compares the total power level within the defined carrier bandwidth and the given offset channels according to the standards.

Setting measure setup

After configuring test parameters as described in the "Configuring test parameters" on page 448, you can continue your measurement.

- 1 Press the MEASURE SETUP hot key.
- 2 Press the System Config soft key, and then do the following:
 - Press the Bandwidth soft key, and then select the nominal channel bandwidth to be measured from the following choices:
 - **7 MHz (8/7):** Sets the channel bandwidth to 7 MHz with sampling factor 8/7. In conjunction with nominal channel bandwidth
 - 8.75 MHz (8/7): Sets the channel bandwidth to 8.75 MHz with sampling factor 8/7
 - 10 MHz (28/25): Sets the channel bandwidth to 10 MHz with sampling factor 28/25
 - b Toggle the Frame Length soft key and select 5 ms or 10 ms.
 - c Press the **TTG (RTG)** soft key to set the transmit/receive transition gap between the last sample of the downlink burst and the first sample of the subsequent uplink burst.
 - d Enter a value by using the numeric keys, and then press the **Enter** soft key.
 - Press the CP Ratio soft key, and then select the cyclic prefix ratio option: 1/4, 1/8, 1/16, or 1/32
 - f Press the DL Symbols soft key to set the number of downlink symbols.
 - g Enter a value by using the numeric keys, and then press the Enter soft key.

- h Press the UL Symbols soft key to set the number of uplink symbols.
- i Enter a value by using the numeric keys, and then press the Enter soft key.
- **3** Optional. To set the delay, complete the following steps:
 - Press the **Delay** soft key to set the amount of delay in μs.
 - **b** Enter a value by using the numeric keys. You can also use the rotary knob.
 - c Press the µs soft key.


NOTE

The Delay setting is used only when there is a time offset in the signals to be measured.

- **4** To set the start/stop symbols, complete the following steps:
 - Press the Start Symbol soft key.
 - **b** Enter a value by using the numeric keys, and then press the **Enter** soft key.
 - c Press the Stop Symbol soft key.
 - d Enter a value by using the numeric keys, and then press the **Enter** soft key.

Measurement example

Figure 262 SEM measurement with Mobile WiMAX signal analyzer

NOTE

You can use the *LIMIT* hot key to analyze your measurements with the user-definable limit and Pass/Fail indication. See "Setting limit for RF tests" on page 460 for more information.

Spurious emissions

Out-of-band emissions are unwanted emissions immediately outside the channel bandwidth resulting from the modulation process and non-linearity in the transmitter but excluding spurious emissions. The Spurious Emissions measurement is to identify and determine the power level of out-of-band spurious emission within the necessary channel bandwidth and modulated signal measured at the RF port of the Base Station.

Setting measure setup

After configuring test parameters as described in the "Configuring test parameters" on page 448, you can continue your measurement.

Procedure

- 1 Press the **MEASURE SETUP** hot key.
- 2 To set up the range table and parameters, press the Range Table soft key and then complete the following steps:
 - Press the Range soft key, and then select the range number between 1 and 20 to add as a new or change the existing settings.
 - **b** Do the following as desired:
 - Select **Start Frequency**, and then specify the start frequency for the selected range.
 - Select **Stop Frequency**, and then specify the stop frequency for the selected range.
 - Select Start Limit, and then specify the lower limit for Pass/Fail indication.
 - Select **Stop Limit**, and then specify the upper limit for Pass/Fail indication.
 - Select More (1/2) > Attenuation, and then specify an value in the multiple of five.
 - Select More (1/2) > RBW, and then specify a RBW value.
 - Select More (1/2) > VBW, and then specify a VBW value.
 - c Press the PREV hard key.
 - d Toggle the Range soft key and select On to display the selected range in the result table or Off to hide it from the table.
- 3 Toggle the Measure Type soft key between Examine and Full to select the measurement type.

NOTE

The **Examine** mode displays only the selected range while the **Full** mode lets the instrument automatically changes the selected range from one another.

- **4** To set the number of measurements to be averaged, complete the following steps:
 - Press the Average soft key.
 - b Enter a value between 1 and 100, and then press the Enter soft key.
- 5 To move the highlighted bar in the result table to other range, complete the following steps:
 - Press the Range soft key in the Measure Setup menu bar.
 - **b** Enter a value between **1** and **20**, and then press the **Enter** soft key.

Measurement example

Figure 263 Spurious emissions measurement with Mobile WiMAX signal analyzer

NOTE

You can use the *LIMIT* hot key to analyze your measurements with the user-definable limit and Pass/Fail indication. See "Setting limit for RF tests" on page 460 for more information.

Setting limit for RF tests

By default, test limits specified in the standard are set for you. You can change thresholds if you desire.

Procedure

- 1 Press the LIMIT hot key.
- 2 Press the RF Test Limits soft key.
- 3 Select the test item(s) and set the limit(s) depending on your selected measurement mode:

To set the limit for	Select	Set
Channel power	Channel Power	High Limit, Low Limit
Occupied bandwidth	Occupied BW	High Limit
Spectrum emission mask	Spectrum Emission Mask	(On/Off only)
Spurious emissions	Spurious Emissions	(On/Off only)

- 4 Optional. You can enable alarm sound that goes off if the measurement falls outside of the limit. Toggle the Beep soft key between On and Off to enable or disable the beep sound.
- **5** Optional. Go to **SAVE/LOAD > Save**, and then select **Limit** to save the limit settings. See "Using save" on page 34 for more information.

Conducting power vs. time (frame) measurements

The Power vs. Time (Frame) measures the modulation envelope in the time domain, showing the power of each time slot in a Mobile WiMAX signal.

Setting measure setup

After configuring test parameters as described in the "Configuring test parameters" on page 448, you can continue your measurement. The measurement settings can be saved and recalled as a file.

- 1 Press the **MEASURE SETUP** hot key.
- 2 Press the System Config soft key, and then do the following:
 - a Press the **Bandwidth** soft key, and then select the nominal channel bandwidth to be measured from the following choices:
 - **7 MHz (8/7):** Sets the channel bandwidth to 7 MHz with sampling factor 8/7. In conjunction with nominal channel bandwidth
 - 8.75 MHz (8/7): Sets the channel bandwidth to 8.75 MHz with sampling factor 8/7
 - 10 MHz (28/25): Sets the channel bandwidth to 10 MHz with sampling factor 28/25
 - b Toggle the Frame Length soft key and select 5 ms or 10 ms.
 - c Press the **TTG (RTG)** soft key to set the transmit/receive transition gap between the last sample of the downlink burst and the first sample of the subsequent uplink burst.
 - **d** Enter a value by using the numeric keys, and then press the **Enter** soft key.
 - Press the CP Ratio soft key, and then select the cyclic prefix ratio option: 1/4, 1/8, 1/16, or 1/32
 - f Press the **DL Symbols** soft key to set the number of downlink symbols.
 - g Enter a value by using the numeric keys, and then press the Enter soft key.
 - h Press the **UL Symbols** soft key to set the number of uplink symbols.
 - i Enter a value by using the numeric keys, and then press the Enter soft key.

- **3** To set the start/stop symbols, complete the following steps:
 - Press the Start Symbol soft key.
 - **b** Enter a value by using the numeric keys, and then press the **Enter** soft key.
 - Press the Stop Symbol soft key.
 - d Enter a value by using the numeric keys, and then press the **Enter** soft key.
- 4 Toggle the Preamble Index soft key and select the preamble search method: Auto or Manual.
- 5 Toggle the **Search Type** soft key and select **Full** or **Window**.
- 6 Toggle the Video Filter soft key and select On or Off to enable or disable the video filter.
- 7 Optional. Press the Miscellaneous soft key, and then do the following as needed:

To set the delay, complete the following steps:

- a Press the **Delay** soft key to set the amount of delay in μs.
- **b** Enter a value by using the numeric keys. You can also use the rotary knob.
- c Press the µs soft key.

NOTE

The Delay setting is used only when there is a time offset in the signals to be measured.

To select the detect mode, press the **Detect Mode** soft key and then select the option: **Auto**, **QPSK**, **16 QAM**, or **64 QAM**.

Setting limit for power vs. time tests

- 1 Press the LIMIT hot key.
- 2 Press the PvsT Test Limits soft key.
- 3 Select the test item(s) and set the limit(s):

To set the limit for	Select	Set
Preamble power	Preamble Power	High Limit, Low Limit
Downlink burst power	DL Burst Power	High Limit, Low Limit
Uplink burst power	UL Burst Power	High Limit, Low Limit
Frame average power	Frame Average Power	High Limit, Low Limit
Time offset	Time Offset	High Limit, Low Limit
I/Q origin offset	IQ Origin Offset	High Limit

- 4 Optional. You can enable alarm sound that goes off if the measurement falls outside of the limit. Toggle the Beep soft key between On and Off to enable or disable the beep sound.
- 5 Optional. Go to SAVE/LOAD > Save, and then select Limit to save the limit settings. See "Using save" on page 34 for more information.

Measurement example

Figure 264 Power vs. time (frame) measurement with Mobile WiMAX signal analyzer

Conducting modulation measurements

Constellation

The Constellation is used to observe some aspects of modulation accuracy and can reveal certain fault mechanisms such as I/Q amplitude imbalance or quadrature imbalance. It displays constellation diagram by modulation types.

Setting measure setup

After configuring test parameters as described in the "Configuring test parameters" on page 448, you can continue your measurement. The measurement settings can be saved and recalled as a file. You can also use JDViewer, PC application software to configure a measure setup, save as a file, and load the file on to the instrument.

- 1 Press the **MEASURE SETUP** hot key.
- 2 Press the System Config soft key, and then do the following:
 - Press the Bandwidth soft key, and then select the nominal channel bandwidth to be measured from the following choices:
 - **7 MHz (8/7):** Sets the channel bandwidth to 7 MHz with sampling factor 8/7. In conjunction with nominal channel bandwidth
 - **8.75 MHz (8/7):** Sets the channel bandwidth to 8.75 MHz with sampling factor 8/7
 - 10 MHz (28/25): Sets the channel bandwidth to 10 MHz with sampling factor 28/25
 - **b** Toggle the **Frame Length** soft key and select **5 ms** or **10 ms**.
 - **c** Press the **TTG (RTG)** soft key to set the transmit/receive transition gap between the last sample of the downlink burst and the first sample of the subsequent uplink burst.
 - d Enter a value by using the numeric keys, and then press the Enter soft key.
 - Press the CP Ratio soft key, and then select the cyclic prefix ratio option: 1/4, 1/8, 1/16, or 1/32.

- f Press the **DL Symbols** soft key to set the number of downlink symbols.
- g Enter a value by using the numeric keys, and then press the Enter soft key.
- h Press the **UL Symbols** soft key to set the number of uplink symbols.
- i Enter a value by using the numeric keys, and then press the Enter soft key.
- **3** To set the start/stop symbols, complete the following steps:
 - Press the Start/Stop Symbol soft key.
 - Enter a value by using the numeric keys, and then press the Enter soft key.
- 4 Toggle the Preamble Index soft key and select the preamble search method: Auto or Manual.
- 5 Toggle the **Search Type** soft key and select **Full** or **Window**.
- 6 Optional. Press the Miscellaneous soft key, and then do the following as needed:

To select the detect mode, press the **Detect Mode** soft key and then select the option: **Auto**, **QPSK**, **16 QAM**, or **64 QAM**.

To select the downlink zone, press the **DL Zone** soft key and then select the permutation zone option: **Auto**, **PUSC** for partial usage of subcarrier channels, **FUSC** for full usage of subcarrier channels, or **AMC2X3** for adaptive modulation and coding.

NOTE

The permutation zone that is a number of contiguous OFDMA symbols in downlink that use the same permutation. The DL subframe may contain more than one permutation zone. The maximum number of DL zone is 8 in one DL subframe.

To set the delay, complete the following steps:

- a Press the **Delay** soft key to set the amount of delay in μs.
- **b** Enter a value by using the numeric keys. You can also use the rotary knob.
- c Press the us soft key.

NOTE

The Delay setting is used only when there is a time offset in the signals to be measured.

Measurement example

Figure 265 Constellation measurement with Mobile WiMAX signal analyzer

NOTE

You can use the *LIMIT* hot key to analyze your measurements with the user-definable limit and Pass/Fail indication. See "Setting limit for modulation tests" on page 468 for more information. The Spectral Flatness is not used in the Constellation mode.

Spectral flatness

The Spectral Flatness is used to measure the flatness energy of the constellation according to the WiMAX specification IEEE 802.16e.

Setting measure setup

After configuring test parameters as described in the "Configuring test parameters" on page 448, you can continue your measurement. The measurement settings can be saved and recalled as a file. You can also use JDViewer, PC application software to configure a measure setup, save as a file, and load the file on to the instrument.

Procedure

- 1 Press the MEASURE SETUP hot key.
- 2 Press the **System Config** soft key, and then do the following:
 - Press the **Bandwidth** soft key, and then select the nominal channel bandwidth to be measured from the following choices:
 - **7 MHz (8/7):** Sets the channel bandwidth to 7 MHz with sampling factor 8/7. In conjunction with nominal channel bandwidth
 - **8.75 MHz (8/7):** Sets the channel bandwidth to 8.75 MHz with sampling factor 8/7
 - 10 MHz (28/25): Sets the channel bandwidth to 10 MHz with sampling factor 28/25
 - **b** Toggle the **Frame Length** soft key and select **5 ms** or **10 ms**.
 - c Press the **TTG (RTG)** soft key to set the transmit/receive transition gap between the last sample of the downlink burst and the first sample of the subsequent uplink burst.
 - d Enter a value by using the numeric keys, and then press the Enter soft key.
 - Press the CP Ratio soft key, and then select the cyclic prefix ratio option: 1/4, 1/8, 1/16, or 1/32.
 - **f** Press the **DL Symbols** soft key to set the number of downlink symbols.
 - g Enter a value by using the numeric keys, and then press the Enter soft key.
 - h Press the UL Symbols soft key to set the number of uplink symbols.
 - i Enter a value by using the numeric keys, and then press the **Enter** soft key.
- **3** To set the start/stop symbols, complete the following steps:
 - Press the Start Symbol soft key.
 - **b** Enter a value by using the numeric keys, and then press the **Enter** soft key.
 - c Press the Stop Symbol soft key.
 - d Enter a value by using the numeric keys, and then press the **Enter** soft key.
- 4 Toggle the Preamble Index soft key and select the preamble search method: Auto or Manual.
- 5 Toggle the Search Type soft key and select Full or Window.
- 6 Optional. Press the Miscellaneous soft key, and then do the following as needed:

To select the detect mode, press the **Detect Mode** soft key and then select the option: **Auto, QPSK, 16 QAM**, or **64 QAM**.

To select the downlink zone, press the **DL Zone** soft key and then select the permutation zone option: **Auto**, **PUSC** for partial usage of subcarrier channels, **FUSC** for full usage of subcarrier channels, or **AMC2X3** for adaptive modulation and coding.

NOTE

The permutation zone, which is a number of contiguous OFDMA, symbols in downlink that use the same permutation. The DL subframe may contain more than one permutation zone. The maximum number of DL zone is 8 in one DL subframe.

To set the delay, complete the following steps:

- a Press the **Delay** soft key to set the amount of delay in µs.
- **b** Enter a value by using the numeric keys. You can also use the rotary knob.
- Press the µs soft key.

NOTE

The Delay setting is used only when there is a time offset in the signals to be measured.

Measurement example

Figure 266 Spectral flatness measurement with Mobile WiMAX signal analyzer

NOTE

You can use the *LIMIT* hot key to analyze your measurements with the user-definable limit and Pass/Fail indication for the Spectral Flatness. See "Setting limit for modulation tests" on page 468 for more information.

EVM vs. subcarrier

The EVM vs Subcarrier shows the error vector magnitude representing the average constellation error of WIMAX OFDMA subcarriers.

Setting measure setup

After configuring test parameters as described in the "Configuring test parameters" on page 448, you can continue your measurement. The measurement settings can be saved and recalled as a file. You can also use JDViewer, PC application software to configure a measure setup, save as a file, and load the file on to the instrument.

- 1 Press the **MEASURE SETUP** hot key.
- **2** Press the **System Config** soft key, and then do the following:
 - Press the Bandwidth soft key, and then select the nominal channel bandwidth to be measured from the following choices:
 - **7 MHz (8/7):** Sets the channel bandwidth to 7 MHz with sampling factor 8/7. In conjunction with nominal channel bandwidth
 - 8.75 MHz (8/7): Sets the channel bandwidth to 8.75 MHz with sampling factor 8/7
 - 10 MHz (28/25): Sets the channel bandwidth to 10 MHz with sampling factor 28/25
 - b Toggle the Frame Length soft key and select 5 ms or 10 ms.
 - c Press the TTG (RTG) soft key to set the transmit/receive transition gap between the last

sample of the downlink burst and the first sample of the subsequent uplink burst.

- d Enter a value by using the numeric keys, and then press the **Enter** soft key.
- Press the CP Ratio soft key, and then select the cyclic prefix ratio option: 1/4, 1/8, 1/16, or 1/32.
- f Press the **DL Symbols** soft key to set the number of downlink symbols.
- g Enter a value by using the numeric keys, and then press the **Enter** soft key.
- h Press the **UL Symbols** soft key to set the number of uplink symbols.
- Enter a value by using the numeric keys, and then press the **Enter** soft key.
- **3** To set the start/stop symbols, complete the following steps:
 - a Press the Start/Stop Symbol soft key.
 - **b** Enter a value by using the numeric keys, and then press the **Enter** soft key.
- 4 Toggle the Preamble Index soft key and select the preamble search method: Auto or Manual.
- 5 Toggle the **Search Type** soft key and select **Full** or **Window**.
- 6 Optional. Press the Miscellaneous soft key, and then do the following as needed:

To select the detect mode, press the **Detect Mode** soft key and then select the option: **Auto**, **QPSK**, **16 QAM**, or **64 QAM**.

To select the downlink zone, press the **DL Zone** soft key and then select the permutation zone option: **Auto**, **PUSC** for partial usage of subcarrier channels, **FUSC** for full usage of subcarrier channels, or **AMC2X3** for adaptive modulation and coding.

NOTE

The permutation zone, which is a number of contiguous OFDMA, symbols in downlink that use the same permutation. The DL subframe may contain more than one permutation zone. The maximum number of DL zone is 8 in one DL subframe.

To set the delay, complete the following steps:

- a Press the **Delay** soft key to set the amount of delay in µs.
- **b** Enter a value by using the numeric keys. You can also use the rotary knob.
- c Press the µs soft key.

NOTE

The Delay setting is used only when there is a time offset in the signals to be measured.

Measurement example

Figure 267 EVM vs. subcarrier measurement with Mobile WiMAX signal analyzer

NOTE

You can use the *LIMIT* hot key to analyze your measurements with the user-definable limit and Pass/Fail indication. See "Setting limit for modulation tests" on page 468 for more information. The Spectral Flatness and Frequency Error are not used in the EVM vs. Subcarrier mode.

EVM vs. symbol

The EVM vs Symbol is used to show the error vector magnitude representing the average constellation error of WiMAX OFDMA symbols.

Setting measure setup

After configuring test parameters as described in the "Configuring test parameters" on page 448, you can continue your measurement. The measurement settings can be saved and recalled as a file. You can also use JDViewer, PC application software to configure a measure setup, save as a file, and load the file on to the instrument.

Procedure

- 1 Press the MEASURE SETUP hot key.
- 2 Press the **System Config** soft key, and then do the following:
 - Press the Bandwidth soft key, and then select the nominal channel bandwidth to be measured from the following choices:
 - **7 MHz** (8/7): Sets the channel bandwidth to 7 MHz with sampling factor 8/7. In conjunction with nominal channel bandwidth
 - 8.75 MHz (8/7): Sets the channel bandwidth to 8.75 MHz with sampling factor 8/7
 - 10 MHz (28/25): Sets the channel bandwidth to 10 MHz with sampling factor 28/25
 - **b** Toggle the **Frame Length** soft key and select **5 ms** or **10 ms**.
 - **c** Press the **TTG (RTG)** soft key to set the transmit/receive transition gap between the last sample of the downlink burst and the first sample of the subsequent uplink burst.
 - d Enter a value by using the numeric keys, and then press the **Enter** soft key.
 - e Press the CP Ratio soft key, and then select the cyclic prefix ratio option: 1/4, 1/8, 1/16, or 1/32.
 - f Press the **DL Symbols** soft key to set the number of downlink symbols.
 - g Enter a value by using the numeric keys, and then press the **Enter** soft key.
 - h Press the **UL Symbols** soft key to set the number of uplink symbols.
 - i Enter a value by using the numeric keys, and then press the **Enter** soft key.
- **3** To set the start/stop symbols, complete the following steps:
 - Press the Start/Stop Symbol soft key.
 - **b** Enter a value by using the numeric keys, and then press the **Enter** soft key.
- 4 Toggle the **Preamble Index** soft key and select the preamble search method: **Auto** or **Manual**.
- 5 Toggle the Search Type soft key and select Full or Window.
- 6 Optional. Press the Miscellaneous soft key, and then do the following as needed:

To select the detect mode, press the **Detect Mode** soft key and then select the option: **Auto, QPSK, 16 QAM**, or **64 QAM**.

To select the downlink zone, press the **DL Zone** soft key and then select the permutation zone option: **Auto**, **PUSC** for partial usage of subcarrier channels, **FUSC** for full usage of subcarrier channels, or **AMC2X3** for adaptive modulation and coding.

NOTE

The permutation zone, which is a number of contiguous OFDMA, symbols in downlink that use the same permutation. The DL subframe may contain more than one permutation zone. The maximum number of DL zone is 8 in one DL subframe.

To set the delay, complete the following steps:

- a Press the **Delay** soft key to set the amount of delay in µs.
- **b** Enter a value by using the numeric keys. You can also use the rotary knob.
- c Press the µs soft key.

NOTE

The Delay setting is used only when there is a time offset in the signals to be measured.

Measurement example

Figure 268 EVM vs. symbol measurement with Mobile WiMAX signal analyzer

NOTE

You can use the *LIMIT* hot key to analyze your measurements with the user-definable limit and Pass/Fail indication. See "Setting limit for modulation tests" on page 468 for more information. The Spectral Flatness and Frequency Error are not used in the EVM vs. Subcarrier mode.

Setting limit for modulation tests

Procedure

- 1 Press the *LIMIT* hot key.
- 2 Press the Modulation Test Limits soft key to set the limits.
- 3 Select the test item(s) and set the limit(s) depending on your selected measurement mode:

To set the limit for	Select	Set
Spectral flatness	Spectral Flatness	On/Off
Frequency error	Frequency Error	High Limit, Low Limit
RMS for RCE	RCE RMS	High Limit
Peak for RCE	RCE Peak	High Limit
RMS for error vector magnitude	EVM RMS	High Limit
Peak for error vector magnitude	EVM Peak	High Limit

4 Optional. You can enable alarm sound that goes off if the measurement falls outside of the limit. Toggle the Beep soft key between On and Off to enable or disable the beep sound. 5 Optional. Go to SAVE/LOAD > Save, and then select Limit to save the limit settings. See "Using save" on page 34 for more information.

Performing auto measurements

The Auto Measure function of the JD700B series allows a complete signal profiling covering RF characterization and modulation quality parameters of up to 10 different carriers, particularly useful on an overlay architecture where base stations are transmitting in different frequencies.

The Auto Measure can be easily executed either by selecting a menu in the instrument or by running a programmed scenario in the PC-based application so that the instrument automatically configure and perform tests on every aspect of all the carriers.

Setting limit

You can set test limits for test item(s) in the auto measurement.

Procedure

- 1 Press the *LIMIT* hot key.
- 2 Press the RF Test Limits soft key, and then enable test limits as desired.
- 3 Press the PvsT Test Limits soft key, and then enable test limits as desired.
- 4 Press the Modulation Test Limits soft key, and then enable test limits as desired.
- 5 Optional. You can enable alarm sound that goes off if the measurement falls outside of the limit. Toggle the Beep soft key between On and Off to enable or disable the beep sound.
- 6 Optional. Go to SAVE/LOAD > Save, and then select Limit to save the limit settings. See "Using save" on page 34 for more information.

Setting measure setup

After configuring test parameters as described in the "Configuring test parameters" on page 448, you can continue your measurement. The measurement settings can be saved and recalled as a file. You can also use JDViewer, PC application software to configure a measure setup, save as a file, and load the file on to the instrument.

Procedure

- 1 Press the **MEASURE SETUP** hot key.
- 2 Toggle the **Configuration** soft key and select the configuration option:

Current: Lets the instrument use current frequency (single carrier) and determine pass or fail based on the instrument's limit settings in Auto Measure.

Scenario: Runs a test with a programmed scenario in JDViewer.

The Scenario menu becomes activated.

- 3 To load a scenario, press the **Scenario** soft key, and then select a scenario file to load.
- 4 Toggle the **Test Time** soft key and select the test time option:

Now: Lets the instrument run a test only once.

Schedule: Lets the instrument repeat tests as defined in the Set Timing.

The Set Timing menu becomes activated.

- 5 To define a schedule for an auto measurement, complete the following steps:
 - Press the **Set Timing** soft key.
 - b Press the Start Time (HH:MM) soft key.

- **c** Enter the time in the HH:MM format, and then press the **Enter** soft key.
- d Press the Stop Time (HH:MM) soft key.
- Enter the time in the HH:MM format, and then press the Enter soft key.
- f Press the Time Interval soft key.
- g Enter the amount of time in minutes, and then press the Enter soft key.
- **6** Press the **Settings** soft key, and then set the following:
 - a Press the Start Symbol soft key.
 - **b** Enter a value by using the numeric keys, and then press the **Enter** soft key.
 - c Press the Stop Symbol soft key.
 - d Enter a value by using the numeric keys, and then press the **Enter** soft key.
 - e Toggle the External Offset soft key and select On or Off.
 - **f** Enter a value by using the numeric keys, and then press the **dB** soft key.
- 7 To save your settings and results, go to SAVE/LOAD > Save and then perform functions as you desire. See "Using save" on page 34 for more information.
- 8 Press the Run Test soft key to start to run a test. The Auto Measure Results window appears at the end of the test.
- **9** To stop running the test, press the **Abort** soft key.
- **10** To change the view on the screen during the test, press the **Display** and then select the view option from the following choices:

Screen: You can view each measurement screen as the test progresses.

Results: You can view a measurement result table as the test progresses.

Settings: You can view a measurement setting table as the test progresses.

Setting display

After completion of the auto measurement, the screen menu changes to Trace/Display so that you can view the results in different forms.

Procedure

1 Toggle the **Display** soft key and select the display option:

Result: You can view the result table.

The Display Result menu becomes activated.

Settings: You can view the measurement settings for the auto measurement.

2 Toggle the **Display Result** soft key and select the display result option:

Full: You can view detailed measurement readings with the pass/fail indication.

Quick: You can view only the Pass/Fail results.

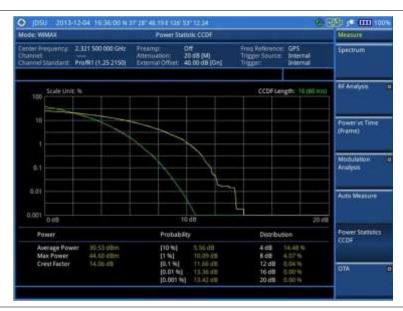
3 To view the measurement results for a different carrier, press the View Carrier soft key and then select the carrier number to view.

Performing power statistics CCDF measurements

The Power Statistics Complementary Cumulative Distribution Function (CCDF) measurement characterizes the power statistics of the input signal. It provides PAR (Peak to Average power Ratio) versus different probabilities.

Setting measure setup

After configuring test parameters as described in the "Configuring test parameters" on page 448, you can continue your measurement. The measurement settings can be saved and recalled as a file. You can also use JDViewer, PC application software to configure a measure setup, save as a file, and load the file on to


the instrument.

Procedure

- 1 Press the **MEASURE SETUP** hot key.
- 2 Press the CCDF Length soft key to set the length of the CCDF.
- 3 Enter a value between 1 and 100 by using the numeric keys. You can also use the rotary knob.
- 4 Press the Enter soft key.

Measurement example

Figure 269 CCDF measurement with Mobile WiMAX signal analyzer

Conducting Mobile WiMAX OTA measurements

This Over The Air (OTA) measurement has preamble scanner, multipath profile, and preamble power trend screens. Preamble scanner displays six preambles and relative powers to inform neighbor cells existence. The multipath profile graph helps the user to determine testing area's RF environmental condition. The preamble power trend shows power variations of selected preamble over time along with relative power trend for strongest preamble.

Preamble scanner

The OTA Preamble Scanner displays the six strongest preambles to inform neighbor cells existence of testing area. Preamble Index, Relative Power, Cell ID, and Sector ID are listed in for each preamble signal with Time Offset in us. Positioning information, latitude, and longitude will be displayed if a GPS antenna is supplied and locked to the GPS satellites on the bottom of the screen.

Setting measure setup

After configuring test parameters as described in the "Configuring test parameters" on page 448, you can continue your measurement.

Procedure

- 1 Press the **MEASURE SETUP** hot key.
- 2 Press the System Config soft key, and then do the following:
 - Press the Bandwidth soft key, and then select the nominal channel bandwidth to be measured from the following choices:
 - **7 MHz (8/7):** Sets the channel bandwidth to 7 MHz with sampling factor 8/7. In conjunction with nominal channel bandwidth
 - 8.75 MHz (8/7): Sets the channel bandwidth to 8.75 MHz with sampling factor 8/7
 - 10 MHz (28/25): Sets the channel bandwidth to 10 MHz with sampling factor 28/25
 - **b** Toggle the **Frame Length** soft key and select **5 ms** or **10 ms**.
 - c Press the **TTG (RTG)** soft key to set the transmit/receive transition gap between the last sample of the downlink burst and the first sample of the subsequent uplink burst.
 - d Enter a value by using the numeric keys, and then press the Enter soft key.
 - Press the CP Ratio soft key, and then select the cyclic prefix ratio option: 1/4, 1/8, 1/16, or 1/32
 - f Press the **DL Symbols** soft key to set the number of downlink symbols.
 - g Enter a value by using the numeric keys, and then press the Enter soft key.
 - h Press the **UL Symbols** soft key to set the number of uplink symbols.
 - Enter a value by using the numeric keys, and then press the **Enter** soft key.
- 3 Optional. Press the **Miscellaneous** soft key, and then do the following steps:
 - Press the **Delay** soft key to set the amount of delay in µs.
 - **b** Enter a value by using the numeric keys. You can also use the rotary knob.
 - c Press the µs soft key.

NOTE

The Delay setting is used only when there is a time offset in the signals to be measured.

4 Optional. Go to SAVE/LOAD > Save, and then select the save option from the choices available for your measurement mode. See "Using save" on page 34 for more information.

Measurement example

Figure 270 Preamble scanner measurement with Mobile WiMAX OTA signal analyzer

Multipath profile

The Multipath Profile enables the user to determine RF environmental conditions of testing area. It indicates the multipath power with time delay in us up to six.

The multipath profile is the result of portions of the original broadcast signal arriving at the receiving antenna out of phase. This can be caused by the signal being reflected off objects such as buildings, or being refracted through the atmosphere differently from the main signal.

Setting measure setup

After configuring test parameters as described in the "Configuring test parameters" on page 448, you can continue your measurement.

Procedure

- 1 Press the **MEASURE SETUP** hot key.
- 2 Press the System Config soft key, and then do the following:
 - Press the Bandwidth soft key, and then select the nominal channel bandwidth to be measured from the following choices:
 - **7 MHz (8/7):** Sets the channel bandwidth to 7 MHz with sampling factor 8/7. In conjunction with nominal channel bandwidth
 - 8.75 MHz (8/7): Sets the channel bandwidth to 8.75 MHz with sampling factor 8/7
 - 10 MHz (28/25): Sets the channel bandwidth to 10 MHz with sampling factor 28/25
 - **b** Toggle the **Frame Length** soft key and select **5 ms** or **10 ms**.
 - c Press the **TTG (RTG)** soft key to set the transmit/receive transition gap between the last sample of the downlink burst and the first sample of the subsequent uplink burst.
 - d Enter a value by using the numeric keys, and then press the **Enter** soft key.
 - Press the CP Ratio soft key, and then select the cyclic prefix ratio option: 1/4, 1/8, 1/16, or 1/32.
 - f Press the **DL Symbols** soft key to set the number of downlink symbols.
 - g Enter a value by using the numeric keys, and then press the Enter soft key.
 - h Press the **UL Symbols** soft key to set the number of uplink symbols.
 - i Enter a value by using the numeric keys, and then press the **Enter** soft key.
- 3 Optional. Press the Miscellaneous soft key, and then do the following steps:
 - a Press the **Delay** soft key to set the amount of delay in μs.
 - **b** Enter a value by using the numeric keys. You can also use the rotary knob.
 - c Press the µs soft key.

NOTE

The Delay setting is used only when there is a time offset in the signals to be measured.

4 Optional. Go to SAVE/LOAD > Save, and then select the save option from the choices available for your measurement mode. See "Using save" on page 34 for more information.

Measurement example

Figure 271 Multipath profile measurement with Mobile WiMAX OTA signal analyzer

Preamble power trend

The Preamble Power Trend shows power variations of a strongest preamble signal over time along with the relative power trend compare to total preamble power. Searching preamble index can be set auto to detect strongest or manual to search specific preamble. Positioning information, latitude, and longitude will be displayed if a GPS antenna is supplied and locked to the GPS satellites on the bottom of the screen.

Setting measure setup

After configuring test parameters as described in the "Configuring test parameters" on page 448, you can continue your measurement.

- 1 Press the **MEASURE SETUP** hot key.
- 2 Press the System Config soft key, and then do the following:
 - Press the Bandwidth soft key, and then select the nominal channel bandwidth to be measured from the following choices:
 - **7 MHz (8/7):** Sets the channel bandwidth to 7 MHz with sampling factor 8/7. In conjunction with nominal channel bandwidth
 - 8.75 MHz (8/7): Sets the channel bandwidth to 8.75 MHz with sampling factor 8/7
 - 10 MHz (28/25): Sets the channel bandwidth to 10 MHz with sampling factor 28/25
 - b Toggle the Frame Length soft key and select 5 ms or 10 ms.
 - **c** Press the **TTG (RTG)** soft key to set the transmit/receive transition gap between the last sample of the downlink burst and the first sample of the subsequent uplink burst.
 - d Enter a value by using the numeric keys, and then press the **Enter** soft key.
 - Press the CP Ratio soft key, and then select the cyclic prefix ratio option: 1/4, 1/8, 1/16, or 1/32.
 - f Press the DL Symbols soft key to set the number of downlink symbols.
 - g Enter a value by using the numeric keys, and then press the **Enter** soft key.
 - h Press the **UL Symbols** soft key to set the number of uplink symbols.
 - Enter a value by using the numeric keys, and then press the **Enter** soft key.

- 3 Toggle the Preamble Index soft key and select the preamble search method: Auto or Manual.
- 4 Optional. Press the Miscellaneous soft key, and then do the following steps:
 - a Press the **Delay** soft key to set the amount of delay in μs.
 - **b** Enter a value by using the numeric keys. You can also use the rotary knob.
 - c Press the µs soft key.

NOTE

The Delay setting is used only when there is a time offset in the signals to be measured.

5 Optional. Go to SAVE/LOAD > Save, and then select the save option from the choices available for your measurement mode. See "Using save" on page 34 for more information.

Measurement example

Figure 272 Preamble power trend with Mobile WiMAX OTA signal analyzer

Route map

The JD700B Series provides the Route Map function that allows you to collect data of points in an indoor or outdoor environment and track the received signals and coverage of RF transmitters by plotting data real time directly on top of a loaded floor plan or a map.

Setting measure setup

Procedure

- 1 If required, connect a GPS receiver to your JD700B series for outdoor mapping. Indoor mapping does not necessarily need a GPS antenna.
- 2 Configure test parameters as described in the "Configuring test parameters" on page 448.
- **3** To load your map file, complete the following steps:
 - a Plug in your USB drive that has a floor map or .mcf file type created in JDMapCreator. If the JDMapCreator application on your computer is connected to the instrument via USB or LAN, you can send a map file with a single layer to the instrument directly by using the Send to EQP menu in JDMapCreator.

NOTE

The JDMapCreator converts and resizes any scanned floor plan or layout to fit onto your instrument's display. JDMapCreator 1.2.0 or later can save a multiple-layered map, providing **x1**, **x2**, and **x4** views, as a sizable map file so that you can zoom in and out after loading it.

- b Press SAVE/LOAD hot key, and then select Load > Load Map. See "Using load" on page 36 for more information.
- 4 Press the **MEASURE SETUP** hot key.
- 5 Press the **Plot Point** soft key, and then select the plot point option from the following choices:

To collect data/plot points automatically as you move around in a vehicle or outside, press the **GPS** soft key and then toggle the **Screen Mode** soft key between **Map** and **Full**.

NOTE

With the **Map** setting, you can view only the collected points that can be seen within the boundary of the loaded map. If a point is off the map, the instrument displays an arrow to indicate the direction of the current location on the map and the distance from the center to the location at the top of the screen.

With the **Full** setting, you can view all the collected points of the route without the loaded map.

To collect data/plot points manually without a GPS antenna in an indoor environment, press the **Position** soft key.

- 6 Toggle the Plot soft key and select Start to start plotting.
- 7 Touch directly on the screen or press the ENTER hard key to collect data and plot points on the loaded map for the Position setting.

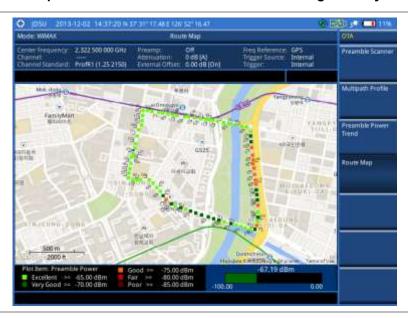
NOTE

For the **Position** setting, you can change the direction of the route with the arrow keys and the distance with the rotary knob.

- 8 Toggle the Plot soft key and select Stop to stop plotting.
- 9 Press the SAVE/LOAD hot key to save the result. See "Using save" on page 34 for more information.

NOTE

The instrument does not automatically save the collected data. It is recommended that you save the result. Otherwise, you will lose all the collected data.


Setting limit for route map

You can set the thresholds for each test item.

- 1 Press the *LIMIT* hot key.
- 2 Press the Excellent soft key to set its threshold.
- 3 Enter a value, and then press the **Enter** soft key. You can also use the rotary knob.
- 4 Press the Very Good soft key to set its threshold.
- **5** Enter a value, and then press the **Enter** soft key. You can also use the rotary knob.
- 6 Press the **Good** soft key to set its threshold.
- 7 Enter a value, and then press the **Enter** soft key. You can also use the rotary knob.
- 8 Press the Fair soft key to set its threshold.
- **9** Enter a value, and then press the **Enter** soft key. You can also use the rotary knob.
- 10 Press the Poor soft key to set its threshold.
- 11 Enter a value, and then press the **Enter** soft key. You can also use the rotary knob.
- **12** Optional. Go to **SAVE/LOAD** > **Save**, and then select **Limit** to save the limit settings. See "Using save" on page 34 for more information.

Measurement example

Figure 273 Route map measurement with Mobile WiMAX OTA signal analyzer

Controlling a map

If you have loaded a sizable map that was created in JDMapCreator 1.2.0 or later, you can use the Map Control feature that enables you to zoom into the map and view a specific area of interest in detail.

Procedure

- 1 Press the TRACE/DISPLAY hard key.
- 2 Press the Map Control soft key. This key is active only when you have loaded a sizable map.
- **3** Do one of the following:

To zoom into an area of interest directly, complete the following steps:

- a Toggle the **Zoom to** soft key and select **Area**. The black rectangle appears on the map.
- **b** Press the **Zoom In** and **Zoom Out** soft keys, as you need, to decrease and increase the selected area.
- Move the rectangle by using the four arrow keys, as you need, to place it in a specific area of interest.
- d Press the center of the rotary knob to zoom into the selected area. You can also press the **Zoom to** soft key again to zoom into the selected area.

To zoom into the center or zoom out from the center, complete the following steps:

- a Toggle the **Zoom to** soft key and select **Center**.
- b Press the Zoom In and Zoom Out soft keys, as you need, to zoom in and zoom out.
- c Move the zoomed-in area by using the four arrow keys, as you need.
- 4 To set the location mode, toggle the **Location Mode** soft key between **Auto** and **Manual** and select the one you desire.

Auto: The instrument compares the coordinates of the displayed map with recevied GPS information. If your current location goes out of the displayed area and enters into the next zoomed-in section within the base map, the map display changes automatically to the next section in which your current position is.

Manual: The map display of the zoomed-in area remains unchanged even if your current location goes out of the displayed area. You can change the displayed area manually by using the arrow keys.

Chapter 14 Using NB-IoT Signal Analyzer

This chapter provides instructions for using the NB-IoT Signal Analyzer with the NB-IoT Analyzer function (option 034). Topics discussed in this chapter are as follows:

	Introduction	.479
-	Connecting a cable	.480
-	Selecting measurement mode	.481
-	Configuring test parameters	.482
-	Conducting NB-IoT in band spectrum measurement	.486
-	Conducting NB-IoT in band modulation analysis	.487
-	Conducting NB-IoT guard band spectrum measurement	.489
-	Conducting NB-IoT guard band spectrum emission mask (SEM)	.490
-	Conducting NB-IoT guard band modulation analysis	.491
-	Conducting NB-IoT standalone RF measurements	.492
	Conducting NB-IoT standalone modulation analysis	.497

Introduction

The JD700B series provide features to analyze the NB-IoT signal running with in band, guard band, and standalone. By implementing demodulation capability for NB-IoT, the JD700B series can be a 4.5G solution being deployed on top of the existing LTE network.

The NB-IoT Signal Analyzer consists of the following operation modes:

- In Band mode
- Guard Band mode
- Standalone mode

This instrument provides the following measurement tools for the NB-IoT:

- Spectrum Analysis for In Band and Guard Band
- Modulation Analysis
- RF Analysis for Standalone
 - Channel Power
 - Occupied Bandwidth
 - Spectrum Emission Mask
 - ACLR
 - Spurious Emissions

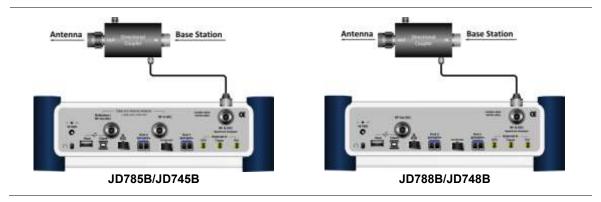
Connecting a cable

Direct connection

Procedure

1 Connect the Spectrum Analyzer RF In port of the JD700B series and the Power amplifier output port of BTS.

Figure 274 Direct connection



Indirect connection

Procedure

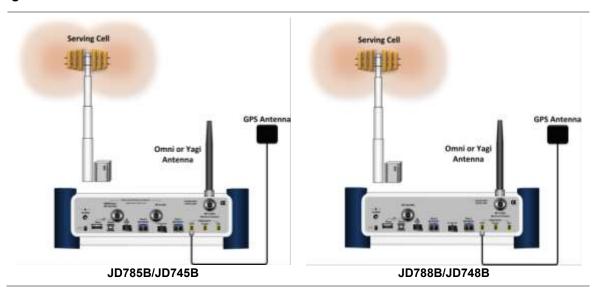
1 Connect the Spectrum Analyzer RF In port of the JD700B series and the monitor (test) port of BTS.

Figure 275 Indirect connection

CAUTION

The maximum power for the **Spectrum Analyzer RF In** port is +25 dBm (0.316 W) for JD780B series and +20 dBm (0.1 W) for JD740B series. If the level of the input signal to be measured is greater than this, use a *High Power Attenuator* to prevent damage when you directly connect the signal to the instrument or connect the signal from the coupling port of a directional coupler.

Over the air (OTA)


Procedure

1 Connect an Omni/directional RF antenna to the Spectrum Analyzer RF In port of the JD700B

series.

2 Connect a GPS antenna to the GPS port of the JD700B series.

Figure 276 OTA connection

CAUTION

If the input signal level to be measured is less than 0 dBm, set 0 dB attenuation or turn on the preamp to have better dynamic range for the OTA testing.

Selecting measurement mode

Procedure

- 1 Press the MODE hard key.
- 2 Press the Signal Analyzer soft key.
- 3 Select More (1/2) > NB-IoT. The Spectrum mode is set by default.
- 4 Select between In Band, Guide Band and Standalone mode.
- 5 Press the MEASURE hot key for In Band mode, and then select the measurement mode option from the following choices:

Spectrum

Modulation Analysis

6 Press the MEASURE hot key for Guard Band mode, and then select the measurement mode option from the following choices:

Spectrum

Spectrum Emission Mask

Modulation Analysis

7 Press the MEASURE hot key for Standalone mode, and then select the measurement mode option from the following choices:

Spectrum (Only shows spectrum, not available to use *Measure Setup* hot key)

RF Analysis > Channel Power > Occupied BW > Spectrum Emission Mask > ACLR > Spurious Emissions

Modulation Analysis

Configuring test parameters

Setting frequency

You can set the frequency with either frequency or channel number. If a frequency to be set matches to the frequency corresponding to the selected channel standard, the instrument calculates its channel number and updates the screen with it automatically.

Procedure

To set the center frequency:

- 1 Press the FREQ/DIST hard key.
- 2 Toggle the **Unit** soft key and select **Freq**.
- 3 Press the Center Frequency soft key.
- 4 Enter a value by using the numeric keys. You can also use the rotary knob.
- 5 Select the unit: GHz, MHz, kHz, or Hz.
- 6 Optional. To define the amount of frequency increment for the rotary knob, complete the following steps:
 - a Press the Frequency Step soft key.
 - **b** Enter a value by using the numeric keys. You can also use the rotary knob.
 - c Press the unit: GHz, MHz, kHz, or Hz.

To set the channel number:

- 1 Press the FREQ/DIST hard key.
- 2 Toggle the Unit soft key and select Channel.
- **3** To select the standard channel, complete the following steps:
 - Press the **Channel Std** soft key. The standard channel window appears. See "Appendix C – Band, frequency & channel standard" on page 745 for more information.
 - b Highlight the band to be measured by using the rotary knob, the arrow keys, or the Page Up/Page Down soft keys.
 - c Press the **Select** soft key or the rotary knob to confirm the selection.
- 4 Press the Channel Number soft key.
- **5** Enter a value by using the numeric keys. You can also use the rotary knob.
- 6 Press the Enter soft key.
 - The instrument automatically displays the corresponding center frequency value for the selected channel number.
- 7 Optional. To define the amount of channel increment for the rotary knob, complete the following steps:
 - a Press the Channel Step soft key.
 - Enter a value by using the numeric keys. You can also use the rotary knob.
 - c Press the Enter soft key.

NOTE

This frequency setting is not used in the Spurious Emissions mode.

Setting amplitude

Reference level and attenuation

You can set the reference and attenuation levels automatically or manually to optimize the display of the traces measured, as you desire.

Procedure

To automatically set the reference and attenuation level:

- 1 Press the AMP/SCALE hard key.
- 2 Press the Auto Scale soft key. Each time you press this key, both of the Y-axis scale and input attenuation level change to be optimized with some margin.

To set the reference or attenuation level manually:

- 1 Press the AMP/SCALE hard key.
- 2 To set the maximum reference value on the Y-axis manually, complete the following steps:
 - a Press the Reference Level soft key.
 - **b** Enter a value by using the numeric keys or the rotary knob with 10 dB increments.
 - c Press the unit soft key or the ENTER hard key.
 This unit key name changes according to the setting in the Units menu.

NOTE

In the measurements such as **Midamble Power**, **Code Power**, and **Code Error**, you may need to select the reference option between **Relative** and **Absolute** before setting the reference level.

3 To set the attenuation option, select one from the following choices:

To set the input attenuator's level automatically, select **Attenuation > Auto**.

NOTE

It is recommended that you set the **Attenuation** to **Auto** in most situations so that the level of the input attenuator can be set automatically according to your input signal level.

To set the input attenuation manually up to 55 dB for JD780B series or 50 dB for JD740B series to optimize S/N, complete the following steps:

- a Select Attenuation > Manual.
- b Press the Attenuation Value soft key to set the level
- c Enter a value in fives by using the numeric keys.
- d Press the dB soft key or the ENTER hard key.

To couple the input attenuator's level with your reference level setting, select **Attenuation > Couple**.

As you increase the reference setting, the attenuation level also increases accordingly.

Optional. To change the scale unit:

- 1 Select More (1/2) > Units.
- 2 Select the unit of the display scale: dBm, dBV, dBmV, dBμV, V, or W. The scale unit on the screen changes accordingly.

NOTE

This Units menu is available in the Spectrum and RF Analysis modes.

Scale per division

You can use the **Scale/Div** feature available for the spectrum and RF analysis. It represents the value of one division on the horizontal scale. The default setting is 10 dB per division and the maximum value can be set up to 20 dB.

- 1 Press the AMP/SCALE hard key.
- 2 Select More (1/2) > Scale/Div.
- 3 Enter a value between 1 and 20 by using the numeric keys.
- 4 Press the dB soft key to complete the entry.

Pre-amplifier

You can turn the internal pre-amplifier on to correct and compensate for the gain of the preamp so that amplitude readings show the value at the input connector.

Procedure

- 1 Press the AMP/SCALE hard key.
- 2 Toggle the **Preamp** soft key and select **On** or **Off** as needed.

NOTE

You can turn the Preamp on when the input attenuation range is from 0 dB to 10 dB. If the attenuation value is manually set to greater than 10 dB, the instrument will automatically turn off the pre-amplifier to display low-level signal properly on the chart.

External offset

You can turn the **External Offset** on and manually set the external offset value. An offset consists of a cable loss and a user offset and the measurement result shows the value reflecting both offset values. When the external offset value is set at 40 dB in the Spectrum mode, the measurement result compensates 40 dB at both the Spectrum Analyzer and Signal Analyzer modes.

Procedure

To set the external offset:

- 1 Press the AMP/SCALE hard key.
- 2 Toggle the External Offset soft key and select On.
- 3 Enter a value by using the numeric keys.
- 4 Press the dB soft key to complete the entry.

To turn the external offset off:

- 1 Press the AMP/SCALE hard key.
- 2 Toggle the External Offset soft key and select Off.

Setting average

You can set the number of measurements to be averaged for the trace presentation. A maximum of 100 times of averaging can be set. When the averaging reaches to your setting, a new measurement value replaces the measurement value in sequence from the earliest.

Procedure

- 1 Press the BW/AVG hard key.
- 2 Press the Average soft key.
- 3 Enter a value between 1 and 100 as needed by using the numeric keys.
- 4 Press the Enter soft key.

Setting sweep mode

The default setting is **Continue** to sweep continuously for most on-going measurements. If you want to hold the measurement or get a single sweep, you can change the sweep mode.

Procedure

To select the single sweep mode:

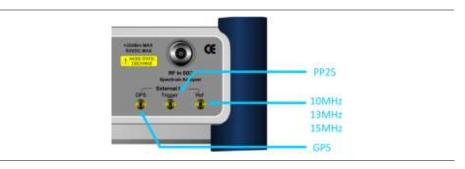
- 1 Press the **SWEEP** hot key.
- 2 Toggle the Sweep Mode soft key and select Single. You can also use the HOLD hot key. The letter HOLD in red appears and the sweeping is paused.
- 3 Optional. Press the Sweep Once soft key to get a new measurement.

To return to the continuous sweep mode:

1 Toggle the Sweep Mode soft key and select Continue. You can also use the HOLD hot key. The letter HOLD in red disappears and the sweeping resumes.

Setting trigger source

You can set the trigger source option for your measurements.


Procedure

- 1 Press the TRIGGER hot key.
- 2 Select the trigger source option from the choices: Internal, External, and GPS.

Setting external clock

To enhance the reliability of modulation analysis measurements the JD700B series must be synchronized with a base station. When an external clock is not supplied, the instrument works with its built-in internal high-accuracy time base and some measurement results may exhibit inaccurate values. Therefore, it is highly recommended that you use the same reference clock as the signal source. You can use the *TRIGGER* hot key to set the external clock.

Figure 277 Connection ports for external reference clock

- 1 Connect an external reference or a GPS antenna to the JD700B series.
- 2 Press the SYSTEM hot key.
- 3 Press the Freq Reference soft key, and then select the reference option: Internal, External 10 MHz, External 13 MHz, External 15 MHz, or GPS.

Table 20 External reference indicators

Туре	Indicator	Description
Internal	(green)	The green INT icon indicates that the instrument uses the built-in internal time base.

External	(green)	The green EXT icon indicates that an external reference is connected and locked and that the instrument uses the same reference clock as the signal source.
External	(red)	The red EXT icon indicates that an external reference is connect but not locked.
GPS	(green)	The green GPS antenna icon indicates that a GPS antenna is connected and locked.
GPS	(yellow)	The yellow GPS antenna icon indicates that a GPS antenna is connected and locking is in progress.
GPS	(grey)	The grey GPS antenna icon indicates that a GPS antenna is not connected, failed, or unable to be locked.

Conducting NB-IoT in band spectrum measurement

Setting measure setup

After configuring test parameters as described in the "Configuring test parameters" on page 482, you can continue your measurement. You can just check the spectrum based on the bandwidth you chose.

Procedure

- 1 Press the **MEASURE SETUP** hot key
- 2 To set the nominal channel bandwidth to be measured, complete the following steps:
 - Press the Bandwidth soft key.
 - Select the bandwidth option from the choices: 1.4 MHz, 3 MHz, 5 MHz, 10 MHz, 15 MHz, or 20 MHz.

Setting trace

You can display up to six traces on the measurement chart simultaneously.

- 1 Press the TRACE/DISPLAY hard key.
- 2 Press the Select Trace soft key, and then select the trace number: T1, T2, T3, T4, T5, or T6. The legend shape of the selected trace changes from square to round to indicate that the trace is the active one now.
- 3 Complete one of the following:

То	Select	Trace Legend
Clear current data and display with new measurements	Clear Write	W
Display the input signal's maximum response only (unlimited or for a certain amount of time)	Max Hold	M
Display the input signal's minimum response only (unlimited or for a certain amount of time)	Min Hold	m
Capture the selected trace and compare traces	Capture	С
Load a saved trace	More (1/2) > Load	L
Hide the displayed trace	Trace View > Off	F

Remove all the traces and initialize the trace settings

More (1/2) > Trace
Clear All

NOTE

For the **Max Hold** and **Min Hold**, your instrument compares newly acquired data with the active trace and displays larger maximum values or smaller minimum values on the screen. You can set it to **Unlimited** to hold and view maximum or minimum data or specify a certain amount of time up to 60 seconds by using numeric keys or rotary knob.

4 To select the detection option, select **More (1/2) > Detectors**, and then complete one of the followings:

To display	Select
Random noise better than the peak without missing signals	Normal
The highest value in each data point	Peak
The root mean squared average power across the spectrum	RMS
The lowest value in each data point	Negative Peak
The center value in each data point	Sample

- 5 Optional. Select More (1/2) > Trace Info, and then select the trace number to view the trace's parameter setting information stored at the time of the measurement or None to hide the information display.
- Optional. If you have the two traces T1 and T2, you can perform trace math. To view the power difference between the traces, press the T1 T2 -> T5 or T2 T1 -> T6 soft key. The result is overlaid on the screen along with the second Y-axis.

Conducting NB-IoT in band modulation analysis

Setting measure setup

After configuring test parameters as described in the "Configuring test parameters" on page 482, you can continue your measurement.

Procedure

- 1 Press the **MEASURE SETUP** hot key.
- 2 To set the nominal channel bandwidth to be measured, complete the following steps:
 - Press the Bandwidth soft key.
 - b Select the bandwidth option from the choices: 1.4 MHz, 3 MHz, 5 MHz, 10 MHz, 15 MHz, or 20 MHz.
- 3 To select the subframe number to be measured, complete the following steps:
 - Press the Subframe No soft key.
 - **b** Enter a value from 0 to 9 by using the numeric keys. You can also use the rotary knob.
 - c Press the Enter soft key.

NOTE

You can use **Subframe No** soft key only if you toggle the **Measure Type** soft key and select **Subframe**.

- 4 Press the NB-IoT PRB Index soft key.
- **5** Enter a value from 0 to 49 by using the numeric keys. You can also use the rotary knob. The following is a table which defines PRB number values based on 3GPP standard. You can refer to the setting value.

LTE System Bandwidth	3 MHz	5 MHz	10 MHz	15 MHz	20 MHz
LTE PRB Indices for NB- IoT Syncronization	2, 12	2, 7, 17, 22	4, 9, 14, 19, 30, 35, 40, 45	2, 7, 17, 22, 27, 32, 42, 47, 52, 57, 62, 67, 72	4, 9, 14, 19, 24, 29, 34, 39, 44, 55, 60, 65, 70, 75, 80, 85, 90, 95

- 5 To measure the I-Q diagram by each channel shown on the screen, complete the following steps:
 - Press the MARKER hard key.
 - **b** Toggle the **Marker View** soft key and select **On**.
 - c Press the **Channel** and then turn the rotary knob.

Your measurement result is displayed on the screen as like the following examples. Note that the example measurement screens in this chapter consist of outdoor mode images or images with inverted colors for better visuality.

Figure 278 NB-IoT In Band Modualtion Analysis measurement screen (Frame)

VIAVE 2017-07-20 14: COR 82% NB-InT Modulation Analysis Mode: NB-InT In Band Center Frequency: 889,000 000 MHz Channel 2600 PWD Channel Standard: Band Global ChannelSummary Cell ID: 175 FOD 10 MHz NB-IoT Mode In band Mess Z-Cho NG-IoT PRB Index MPBCH OPSK NPDSCH QP5K I-Q Diagram Frequency Error: 0.001 ppvn -03.39 0.78% (3.52%) 2.10% (17.18%) EVM Peak

Figure 279 NB-IoT In Band Modualtion Analysis measurement screen (Subframe 5- NPSS)

Conducting NB-IoT guard band spectrum measurement

Setting measure setup

After configuring test parameters as described in the "Configuring test parameters" on page 482, you can continue your measurement. You can just check the spectrum based on the bandwidth you chose.

Procedure

- 1 Press the **MEASURE SETUP** hot key
- 2 To set the nominal channel bandwidth to be measured, complete the following steps:
 - Press the Bandwidth soft key.
 - b Select the bandwidth option from the choices: 5 MHz, 10 MHz, 15 MHz, or 20 MHz.

Setting trace

You can display up to six traces on the measurement chart simultaneously.

- 3 Press the TRACE/DISPLAY hard key.
- 4 Press the **Select Trace** soft key, and then select the trace number: **T1**, **T2**, **T3**, **T4**, **T5**, or **T6**. The legend shape of the selected trace changes from square to round to indicate that the trace is the active one now.
- 5 Complete one of the following:

То	Select	Trace Legend
Clear current data and display with new measurements	Clear Write	W
Display the input signal's maximum response only (unlimited or for a certain amount of time)	Max Hold	М

Display the input signal's minimum response only (unlimited or for a certain amount of time)	Min Hold	m
Capture the selected trace and compare traces	Capture	С
Load a saved trace	More (1/2) > Load	L
Hide the displayed trace	Trace View > Off	F
Remove all the traces and initialize the trace settings	More (1/2) > Trace Clear All	

NOTE

For the **Max Hold** and **Min Hold**, your instrument compares newly acquired data with the active trace and displays larger maximum values or smaller minimum values on the screen. You can set it to **Unlimited** to hold and view maximum or minimum data or specify a certain amount of time up to 60 seconds by using numeric keys or rotary knob.

6 To select the detection option, select More (1/2) > Detectors, and then complete one of the followings:

To display	Select
Random noise better than the peak without missing signals	Normal
The highest value in each data point	Peak
The root mean squared average power across the spectrum	RMS
The lowest value in each data point	Negative Peak
The center value in each data point	Sample

- 7 Optional. Select More (1/2) > Trace Info, and then select the trace number to view the trace's parameter setting information stored at the time of the measurement or None to hide the information display.
- Optional. If you have the two traces T1 and T2, you can perform trace math. To view the power difference between the traces, press the T1 T2 -> T5 or T2 T1 -> T6 soft key. The result is overlaid on the screen along with the second Y-axis.

Conducting NB-IoT guard band spectrum emission mask (SEM)

Setting measure setup

After configuring test parameters as described in the "Configuring test parameters" on page 482, you can continue your measurement.

Procedure

- 1 Press the **MEASURE SETUP** hot key.
- 2 To set the nominal channel bandwidth to be measured, complete the following steps:
 - a Press the Bandwidth soft key.
 - b Select the bandwidth option from the choices: 5 MHz, 10 MHz, 15 MHz, and 20 MHz.
- 3 To select the mask type, complete the following steps:
 - Press the Mask Type soft key.
 - **b** Select the mask type option, from the following choices:

Wide Area BS Category A

Wide Area BS Category B

Local Area BS

Your measurement result is displayed on the screen as like the following example.

Reference Power:

Frequency Offset Bange

0,05 MHz - 5.05 MHz 5.05 MHz - 10.05 MHz 10.05 MHz - 20.00 MHz

| Mode: NB-IoT Good Band | Spettrum Emission Mass | Mode: NB-IoT Good Band | Spettrum Emission Mass | Mode: NB-IoT Good Band | Spettrum Emission Mass | Mode: NB-IoT Good Band Global | Presing: Off President Emission | Internal I

45.81 dBm

Lower Peak

Figure 280 Spectrum Emission Mask measurement screen

Conducting NB-IoT guard band modulation analysis

Setting measure setup

After configuring test parameters as described in the "Configuring test parameters" on page 482, you can continue your measurement.

Procedure

1 Press the **MEASURE SETUP** hot key.

TO MHz

- 2 To set the nominal channel bandwidth to be measured, complete the following steps:
 - a Press the Bandwidth soft key.
 - Select the bandwidth option from the choices: 5 MHz, 10 MHz, 15 MHz, or 20 MHz.
- 3 To select the subframe number to be measured, complete the following steps:
 - Press the Subframe No soft key.
 - **b** Enter a value from 0 to 9 by using the numeric keys. You can also use the rotary knob.
 - c Press the Enter soft key.

NOTE

You can use **Subframe No** soft key only if you toggle the **Measure Type** soft key and select **Subframe**.

- 4 Press the NB-IoT Center Frequency soft key.
- **5** Enter a value using the numeric keys or rotate the rotary knob clockwise or counter clockwise.
- 6 To measure the I-Q diagram by each channel shown on the screen, complete the following steps:
 - Press the MARKER hard key.
 - **b** Toggle the **Marker View** soft key and select **On**.
 - c Press the Channel and then turn the rotary knob.

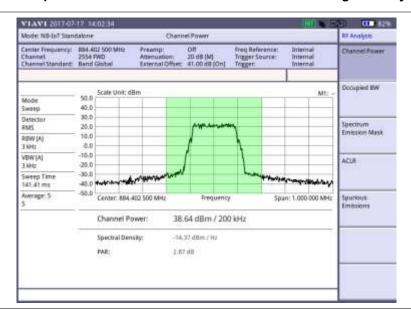
Your measurement result is displayed on the screen as like the following examples.

VIAVE 2017-07-25 13:4 Mode: NB-InT Guard Band NB-IsT Modulation Analysis Measure Setup Center Frequency: ChannelSummary 12,82 (0) Cell ID: 175 FOD 10 MHz NE-IoT Mode Guard band Ness Z-Cho NE-INT CE 884,402500 MHz MPBCH 26.43 OPSK Frame QPSK 0.83 28,30 NRST I-O Diagram NPOSCH Frequency Error: 1.82 HJ 0.000 ppm 46.16 0.82% (0.83%) EVM HIVS: EVM Peak 2.63% (2.63%)

Figure 281 NB-IoT Guard Band Modualtion Analysis measurement screen (Frame)

Figure 282 NB-IoT Guard Band Modualtion Analysis measurement screen (Subframe 0- NPBCH)

Conducting NB-IoT standalone RF measurements


Channel power

The Channel Power measurement is a common test used in the wireless industry to measure the total transmitted power of a radio within a defined frequency channel. It acquires a number of points representing the input signal in the time domain, transforms this information into the frequency domain using Fast Fourier Transform (FFT), and then calculates the channel power. The effective resolution bandwidth of the frequency domain trace is proportional to the number of points acquired for the FFT.

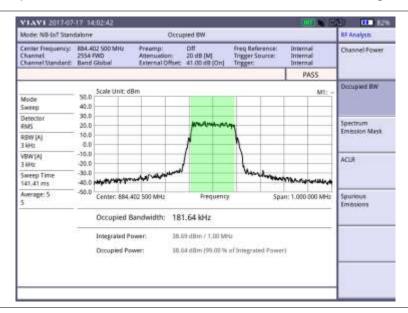
The channel power measurement identifies the total RF power, power spectral density (PSD) and peak to average ratio (PAR) of the signal in the NB-IoT channel bandwidth.

Measurement example

Figure 283 Channel power measurement with NB-IoT Standalone signal analyzer

>

NOTE


You can use the *LIMIT* hot key to analyze your measurements with the user-definable limit and Pass/Fail indication. See "Setting limit for RF tests" on page 496 for more information.

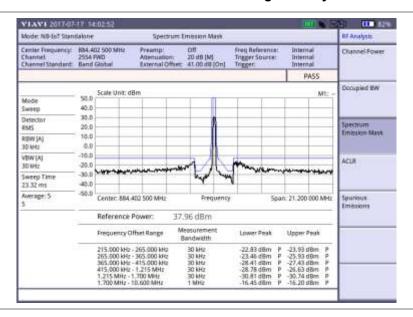
Occupied bandwidth

The Occupied Bandwidth measures the spectrum shape of the carrier. It is defined as the bandwidth, which includes 99% of the transmitted power among total transmitted power.

Measurement example

Figure 284 Occupied bandwidth measurement with NB-loT Standalone signal analyzer

NOTE


You can use the *LIMIT* hot key to analyze your measurements with the user-definable limit and Pass/Fail indication. See "Setting limit for RF tests" on page 496 for more information.

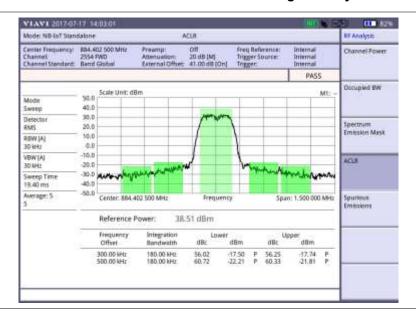
Spectrum emission mask (SEM)

The Spectrum Emission Mask (SEM) measurement compares the total power level within the defined carrier bandwidth and the given offset channels according to the standards.

Measurement example

Figure 285 SEM measurement with NB-loT Standalone signal analyzer

NOTE


You can use the *LIMIT* hot key to analyze your measurements with the user-definable limit and Pass/Fail indication. See "Setting limit for RF tests" on page 496 for more information.

ACLR

The Adjacent Channel Leakage power Ratio (ACLR) measures the amount of interference or power in an adjacent frequency channel according to the standards.

Measurement example

Figure 286 ACLR measurement with NB-IoT Standalond signal analyzer

NOTE

You can use the *LIMIT* hot key to analyze your measurements with the user-definable limit and Pass/Fail indication. See "Setting limit for RF tests" on page 496 for more information.

Spurious emissions

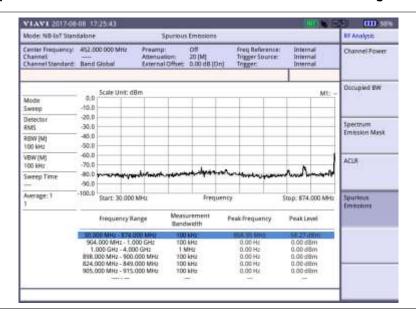
Out-of-band emissions are unwanted emissions immediately outside the channel bandwidth resulting from the modulation process and non-linearity in the transmitter but excluding spurious emissions. The Spurious Emissions measurement is to identify and determine the power level of out-of-band spurious emission within the necessary channel bandwidth and modulated signal measured at the RF port of the Base Station.

Setting measure setup

After configuring test parameters as described in the "Configuring test parameters" on page 482, you can continue your measurement.

- 1 Press the MEASURE SETUP hot key.
- 2 To set up the range table and parameters, press the Range Table soft key and then complete the following steps:
 - a Press the Range soft key, and then select the range number between 1 and 20 to add as a new or change the existing settings.
 - b Do the following as desired:
 - Select **Start Frequency**, and then specify the start frequency for the selected range.
 - Select Stop Frequency, and then specify the stop frequency for the selected range.
 - Select **Start Limit**, and then specify the lower limit for Pass/Fail indication.
 - Select Stop Limit, and then specify the upper limit for Pass/Fail indication.
 - Select More (1/2) > Attenuation, and then specify an value in the multiple of five.
 - Select More (1/2) > RBW, and then specify a RBW value.
 - Select More (1/2) > VBW, and then specify a VBW value.

- c Press the PREV hard key.
- d Toggle the Range soft key and select On to display the selected range in the result table or Off to hide it from the table.
- 3 Toggle the Measure Type soft key between Examine and Full to select the measurement type.


NOTE

The **Examine** mode displays only the selected range while the **Full** mode lets the instrument automatically changes the selected range from one another.

- **4** To set the number of measurements to be averaged, complete the following steps:
 - Press the Average soft key.
 - b Enter a value between 1 and 100, and then press the Enter soft key.
- 5 To move the highlighted bar in the result table to other range, complete the following steps:
 - Press the Range soft key in the Measure Setup menu bar.
 - **b** Enter a value between **1** and **20**, and then press the **Enter** soft key.

Measurement example

Figure 287 Spurious emissions measurement with NB-loT Standalone signal analyzer

NOTE

You can use the *LIMIT* hot key to analyze your measurements with the user-definable limit and Pass/Fail indication. See "Setting limit for RF tests" on page 496 for more information.

Setting limit for RF tests

By default, test limits specified in the standard are set for you. You can change thresholds if you desire.

- 1 Press the *LIMIT* hot key.
- 2 Press the RF Test Limits soft key.
- 3 Select the test item(s) and set the limit(s) depending on your selected measurement mode:

To set the limit for	Select	Set
Channel power	Channel Power	High Limit, Low Limit

Occupied bandwidth	Occupied BW	High Limit
Spectrum emission mask	Spectrum Emission Mask	(On/Off only)
Spurious emissions	Spurious Emissions	(On/Off only)

- 4 Optional. You can enable alarm sound that goes off if the measurement falls outside of the limit. Toggle the Beep soft key between On and Off to enable or disable the beep sound.
- 5 Optional. Go to **SAVE/LOAD** > **Save**, and then select **Limit** to save the limit settings. See "Using save" on page 34 for more information.

Conducting NB-IoT standalone modulation analysis

Setting measure setup

After configuring test parameters as described in the "Configuring test parameters" on page 482, you can continue your measurement.

Procedure

- 1 Press the MEASURE SETUP hot key.
- 2 Toggle the **Measure Type** soft key and select **Frame** or **Subframe**.

NOTE

You can use ${f Subframe\ No}$ soft key only if you toggle the ${f Measure\ Type}$ soft key and select ${f Subframe}$.

- 3 To select **Subframe No** do the following steps:
 - a Press the Subframe No soft key.
 - **b** Enter a value from 0 to 9 by using the numeric keys. You can also use the rotary knob.
 - c Press the Enter soft key.
- 4 To measure the I-Q diagram by each channel shown on the screen, complete the following steps:
 - a Press the MARKER hard key.
 - **b** Toggle the **Marker View** soft key and select **On**.
 - Press the Channel and then turn the rotary knob.

Your measurement result is displayed on the screen as like the following examples.

Measurement example

Figure 288 NB-IoT Standalone Modualtion Analysis measurement screen (Frame)

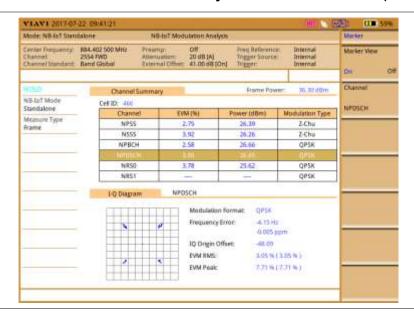


Figure 289 NB-IoT Standalone Modualtion Analysis measurement screen (Subframe 0- NPBCH)

Chapter 15 Using Cable and Antenna Analyzer

This chapter provides instructions for using the Cable and Antenna Analyzer function, which is available for the JD785B/JD745B Base Station Analyzer and the JD786B/JD746B RF Analyzer. Topics discussed in this chapter are as follows:

Introduction	.500
Display overview	.500
Selecting measurement mode	.501
Configuring test parameters	.501
Performing calibration	.503
Connecting a cable	.508
Performing reflection measurements	. 511
Performing DTF measurements	.512
Performing reflection-DTF measurements	.515
Performing cable loss (1 port) measurements	.516
Performing 1-port phase measurements	.518
Performing Smith chart measurements	.519
Performing 2-port vector measurements	.520
Performing 2-port scalar measurements	.522
Analyzing measurements	.523

Introduction

The Cable and Antenna Analyzer is a diagnostic tool needed to accurately detect operational problems by performing cable and antenna measurements to verify the base station's infrastructure, including feed lines, connectors, antennas, cables, jumpers, amplifiers, and filters. The JD785B/JD745B Base Station Analyzer and the JD786B/JD746B RF Analyzer have all of the measurement functions necessary to verify cable and antenna systems from Voltage Standing Wave Ratio (VSWR) to power measurements. In addition, the JD785B/JD745B and the JD786B/JD746B make distance-to-fault measurements to pinpoint a faulty location accurately.

To get maximum power into a load it is required that the load impedance match the generator impedance. Any difference in impedance or mismatching would not produce maximum power transfer. An impedance mismatch at the antenna system produces a reflective 'traveling wave', which goes in the opposite direction from the incident wave. As the two traveling waves cross each other in opposite direction, it is produce an interference pattern called a "standing wave". VSWR is the ratio between the power sent forward to the cable and/or antenna and the amount of power that is reflected back to the transmitter.

Some of the consequences of having a high VSWR condition in cellular services include dropped calls, poor reception, and an overall unacceptable performance in the cell (or section of cell) covered by the base station antenna. Therefore, the VSWR of the antenna system including the feed line is one of the most critical factors in the service and maintenance of the RF transmitter systems.

This Cable and Antenna Analyzer function performs following measurements:

- Reflection: VSWR and Return Loss
- Distance to Fault (DTF): VSWR and Return Loss
- Reflection-DTF (dual measurement)
- 2 Port Measurements: Vector and Scalar (Optional)
- Cable Loss (1 Port)
- 1 Port Phase
- Smith Chart

Display overview

Figure 290 provides descriptions for each segment of the measurement screen.

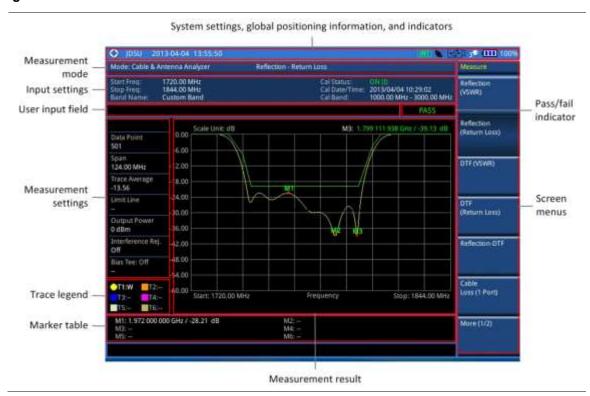


Figure 290 Reflection measurement screen

Selecting measurement mode

Procedure

- 1 Press the MODE hard key.
- 2 Press the Cable & Antenna Analyzer soft key. The Reflection (VSWR) mode is selected by default
- 3 To change the mode, press the **MEASURE** hot key and then select the measurement mode:

Reflection (Return Loss)

DTF (VSWR)

DTF (Return Loss)

Reflection-DTF

Cable Loss (1 Port)

1 Port Phase, Smith Chart

2 Port Measurement (Vector/Scalar)

Configuring test parameters

Setting frequency

You can set frequencies manually using the Start Frequency/Stop Frequency or Center Frequency/Span. You can also select from the band list stored in the instrument. It is recommended to set the frequency to a value that covers the normal range of the measurement with enough margins.

Procedure

To set the start and stop frequencies:

- Press the FREQ/DIST hard key.
- 2 Press the Start Frequency soft key.
- 3 Enter a value by using the numeric keys. You can also use the rotary knob or the arrow keys.
- 4 Select the unit: GHz, MHz, kHz, or Hz.
- 5 Press the Stop Frequency soft key.
- 6 Enter a value by using the numeric keys. You can also use the rotary knob or the arrow keys.
- 7 Select the unit: GHz, MHz, kHz, or Hz.

To set the center frequency and span:

- 1 Press the FREQ/DIST hard key.
- 2 Press the Center Frequency soft key.
- 3 Enter a value by using the numeric keys. You can also use the rotary knob or the arrow keys.
- 4 Select the unit: GHz, MHz, kHz, or Hz.
- 5 Press the **Span** soft key.
- 6 Enter a value by using the numeric keys. You can also use the rotary knob or the arrow keys.
- 7 Select the unit: GHz, MHz, kHz, or Hz.

To select the band from the band list:

- 1 Press the FREQ/DIST hard key.
- 2 Press the Band List soft key, and then select Standard Band or Custom Band. The band list window appears.
- 3 Select a frequency band from the list, and then press the **Select** soft key. The start and stop frequency information on the screen changes according to your choice.

Setting distance

In the DTF measurement mode, you need to set the start and stop distances. The maximum measurable distance is displayed on the left side of the screen depending on the frequency setting. You can set any distance within the maximum measurable distance. Optimum resolution is achieved when the user setting distance is the same as the maximum measurable distance.

Procedure

- 1 Press the FREQ/DIST hard key.
- 2 Press the Start Distance soft key.
- 3 Enter a value by using the numeric keys. You can also use the rotary knob or the arrow keys.
- 4 Select the Enter soft key.
- 5 Press the Stop Frequency soft key.
- 6 Enter a value by using the numeric keys. You can also use the rotary knob or the arrow keys.
- 7 Select the Enter soft key.

Adjusting scale

You can adjust the Y-axis scale to optimize the display of measurement trace(s). Adjusting scale does not affect the calibration state.

Procedure

- 1 Press the AMP/SCALE hard key.
- 2 Do one of the following choices:

Press the **Auto Scale** to optimize the display of the measured trace by letting the instrument set the minimum and maximum values for the Y-axis automatically. Each time this key is pressed, the top and bottom scales are set to the minimum and maximum values with margin on the Y-axis of the chart.

Press the **Full Scale** to restore the insturment's default amplitude range for the Y-scale automatically.

To set the minimum and maximum values for the Y-axis manually, complete the following steps:

- Press the Maximum (Top) soft key.
- **b** Enter a value by using the numeric keys.
- c Press the Enter soft key.
- d Press the Minimum (Top) soft key.
- e Enter a value by using the numeric keys.
- f Press the Enter soft key.

NOTE

This setting option is not available in the Smith Chart measurement mode.

Setting sweep mode

The default setting is **Continue** to sweep continuously for most on-going measurements. If you want to hold the measurement or get a single sweep, you can change the sweep mode.

Procedure

To select the single sweep mode:

- 1 Press the SWEEP hot key.
- 2 Toggle the Sweep Mode soft key and select Single. You can also use the HOLD hot key. The letter HOLD in red appears and the sweeping is paused.
- 3 Optional. Press the Sweep Once soft key to get a new measurement.

To return to the continuous sweep mode:

1 Toggle the Sweep Mode soft key and select Continue. You can also use the HOLD hot key. The letter HOLD in red disappears and the sweeping resumes.

Performing calibration

To get reliable and accurate measurement results, you must perform a calibration on your instrument after setting frequencies and prior to making a measurement. To perform the calibration, you need to have the following ready:

- Calibration accessories (optional)
- Mechanical Y-Cal kit or electronic EZ-Cal kit
- Phase-stabilized test cable

1-port calibration

Measurement modes that need the 1-port calibration are Reflection, DTF, Cable Loss, 1 Port Phase, and Smith Chart.

It is recommended that you perform an O-S-L calibration right at the Reflection/RF Out port of the instrument without using an extension cable in order to minimize a measurement error. If using an extension cable is inevitable, you need to use a phase stable cable and perform the O-S-L calibration at the open end of the extension cable.

NOTE

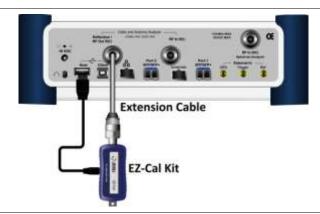
If the O-S-L calibration is done at the end of the port extension cable for DTF measurement, the length of the port extension cable is compensated automatically and is not included in the distance to the point of discontinuity.

Bending or moving the extension cable while making a measurement may cause errors in the measurement.

O-S-L calibration using mechanical Y-Cal kit

Figure 291 illustrates the connection when a port extension cable is used for calibration.

Figure 291 1-port calibration connection with mechanical Y-Cal kit


- 1 Press the MEASURE SETUP hot key.
- 2 Press the **Calibrate** soft key.
 The on-screen instruction for the calibration appears.
- 3 Connect the OPEN connector of the CAL Kit directly to the Reflection/RF Out port or at the end of the connected extension cable.
- 4 Press the **Continue** soft key to start calibration. The calibration progress bar appears.
- 5 Connect the SHORT connector of the CAL Kit directly to the Reflection/RF Out port or at the end of the connected extension cable.
- **6** Press the **Continue** soft key to continue calibration. The calibration progress bar appears.
- 7 Connect the LOAD connector of the CAL Kit directly to the Reflection/RF Out port or at the end of the connected extension cable.
- 8 Press the Continue soft key to continue calibration. The calibration progress bar appears. After completion, the calibration status on the screen changes to ON.

O-S-L calibration using electronic EZ-Cal kit

The e-Calibration is an Open-Short-Load calibration using the electronic EZ-Cal kit, which lets you perform the O-S-L calibration easy and fast with only one connection of the kit to the instrument.

The O-S-L calibration must be performed after setting the frequencies and connecting an extension cable as like any mechanical calibration. Figure 292 illustrates the connection when a port extension cable is used for calibration.

Figure 292 1-port calibration connection with electronic EZ-Cal kit

Procedure

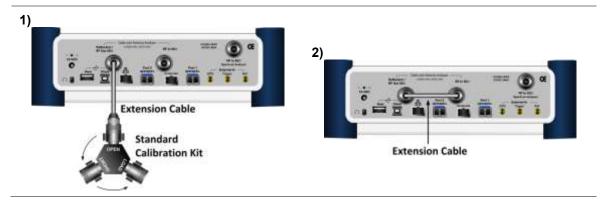
- 1 Connect an extension cable, if necessary, to the Reflection/RF Out port of the instrument.
- 2 Connect your EZ-Cal to the other open end of the extension cable or to your instrument's Reflection/RF Out port directly.
- 3 Connect the USB cable to the side of the EZ-Cal and then to the USB Host port to power the e-calibration kit.
 - The instrument detects the EZ-Cal automatically and displays the EZ-Cal icon.
- 4 Press the **MEASURE SETUP** hot key.
- 5 Press the Calibrate soft key. The on-screen instruction appears to guide you through the e-calibration.
- 6 Press the Continue soft key to continue calibration. The calibration progress bar appears. After completion, the calibration status on the screen changes to ON (E).
- 7 Make sure to disconnect the EZ-Cal kit including its USB connection.

Quick calibration in DTF

The Quick calibration that is available only in the DTF measurement mode is useful when you want to measure the cable length only, without having to perform a full O-S-L calibration with a mechanical Y-Cal kit.

Procedure

- 1 Press the **MEASURE SETUP** hot key.
- 2 Press the Calibrate soft key.
- 3 Connect the OPEN connector of your mechanical Y-Cal kit directly to the Reflection/RF Out port or at the end of the connected extension cable.
- Press the Quick Cal. soft key to start the quick calibration. The calibration status on the screen appears. After completion, the calibration status on the screen changes to ON (Q).

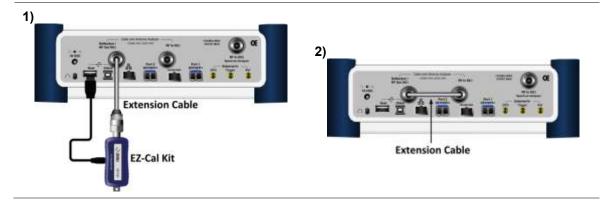

2-port calibration

Measurement modes that need the 2-port calibration are 2 Port Vector and Scalar measurements and 2 Port Phase. You must perform 2-port calibration before making a measurement.

O-S-L-Thru calibration using mechanical Y-Cal kit for vector measurements

Figure 293 illustrates the connection using the Y-Cal kit for calibration in Vector measurements.

Figure 293 2-port calibration connection with Y-Cal in vector measurements

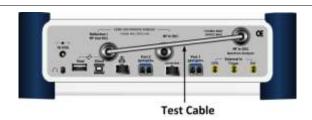

Procedure

- 1 Press the **MEASURE SETUP** hot key.
- 2 Press the Calibrate soft key.
 The on-screen instruction for the calibration appears.
- 3 Connect the **OPEN** connector of the CAL Kit directly to the **Reflection/RF Out** port or at the end of the connected test cable as illustrated in **Figure 293-1**.
- 4 Press the Continue soft key to start calibration. The calibration progress bar appears.
- 5 Connect the SHORT connector of the CAL Kit directly to the Reflection/RF Out port or at the end of the connected test cable.
- **6** Press the **Continue** soft key to continue calibration. The calibration progress bar appears.
- 7 Connect the LOAD connector of the CAL Kit directly to the Reflection/RF Out port or at the end of the connected test cable.
- **8** Press the **Continue** soft key to continue calibration. The calibration progress bar appears.
- 9 Connect the **Reflection/RF Out** port and the **RF In** port for the Cable and Antenna Analyzer with the test cable and the proper adapter as illustrated in **Figure 293-2**.
- 10 Press the Continue soft key to continue calibration. The calibration progress bar appears. After completion, the calibration status on the screen changes to ON.

O-S-L-Thru calibration using electronic EZ-Cal kit for vector measurements

Figure 294 illustrates the connection using the EZ-Cal kit for calibration in Vector measurements.

Figure 294 2-port calibration connection with EZ-Cal in vector measurements


Procedure

- 1 Connect an extension cable, if necessary, to the Reflection/RF Out port of the instrument.
- 2 Connect your EZ-Cal to the other open end of the extension cable or to your instrument's Reflection/RF Out port directly.
- 3 Connect the USB cable to the side of the EZ-Cal and then to the USB Host port to power the e-calibration kit as illustrated in Figure 294-1.
 The instrument detects the EZ-Cal automatically and displays the EZ-Cal icon.
- 4 Press the **MEASURE SETUP** hot key.
- 5 Press the Calibrate soft key. The on-screen instruction appears to guide you through the e-calibration.
- 6 When the O-S-L calibration is done, make sure to disconnect the EZ-Cal kit including its USB connection.
- 7 Connect the **Reflection/RF Out** port and the **RF In** port for the Cable and Antenna Analyzer with the test cable and the proper adapter as illustrated in Figure 294-2.
- 8 Press the Continue soft key to continue calibration. The calibration progress bar appears. After completion, the calibration status on the screen changes to ON.

Scalar measurement

Figure 295 illustrates the connection for calibration in Scalar measurements.

Figure 295 2-port calibration connection in Scalar measurements

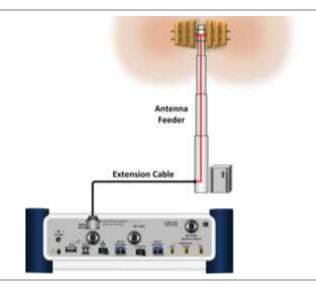
Procedure

- 1 Press the MEASURE SETUP hot key.
- 2 Press the Calibrate soft key. The on-screen instruction for the calibration appears.
- 3 Connect the Cable and Antenna Analyzer Reflection/RF Out port and the Spectrum Analyzer RF In port with a test cable as illustrated in Figure 295.
- 4 Press the **Continue** soft key to continue calibration. The calibration progress bar appears.

After completion, the calibration status on the screen changes to **ON**.

Calibration status indicators

The instrument displays calibration status that is an important indicator to get reliable and accurate measurement results from CAA testing. The calibration status includes **ON**, **ON** (**E**), **ON** (**I**), **ON** (**Q**), **OFF** (**T**), and **OFF**.


Table 21 Calibration status indicators

Indicator(s)	Description
ON	Indicates that a mechanical O-S-L calibration is performed using a Y-Cal kit and the instrument is ready to make a measurement.
ON (E)	Indicates that an electronic O-S-L calibration or e-calibration is performed using Viavi's EZ-Cal kit and the instrument is ready to make a measurement.
ON (I)	Indicates that the frequency setting is changed within the frequency range registered for the O-S-L calibration and so the calibration is still valid. When the calibration status changes from ON to ON (I), re-calibration is not necessarily required.
ON (Q)	Indicates that quick calibration (Quick Cal) is performed. It is useful only if cable length measurement is needed.
OFF (T)	Indicates that the temperature registered during the calibration is changed by $\pm 10^{\circ}$ C or greater. It is recommended that you perform a new O-S-L calibration to obtain accurate measurement results. When the temperature comes back within the registered range, the status may be changed to ON.
OFF	Indicates that the frequency setting is changed off the frequency range registered for the calibration. The calibration is no longer valid.

Connecting a cable

Connecting a cable for reflection, DTF, 1-port phase, and Smith Chart measurements

Figure 296 Connection for reflection measurement

Procedure

- 1 Connect the one end of the port extension cable to the Cable and Antenna Analyzer Reflection/RF Out port of the instrument.
- 2 Connect the other end of the port extension cable to an antenna or feed line as illustrated in Figure 296. Measurement result is displayed on the screen.

NOTE

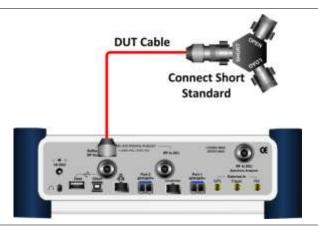
After calibration, do not change the connection of the port extension cable or the frequency setting. It may cause a measurement error.

Changing any frequency settings will automatically turn the calibration status to OFF on the display screen, which requires re-calibration to proceed next measurement.

CAUTION

The maximum input power for the **Cable and Antenna Analyzer Reflection/RF Out** port is +25 dBm. Do not connect this port directly to the output port of the system to prevent degraded performance or malfunctioning.

WARNING

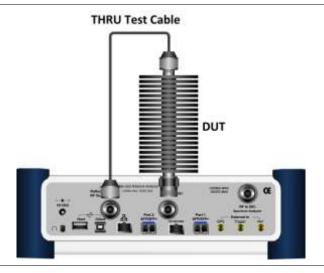

Do not attempt to connect the instrument to the antenna when there is a risk of lightning. Electric shock may cause malfunction of or damage to the instrument.

Connecting a cable for cable loss (1 port) measurements

Procedure

- 1 Connect the one end of the cable under test to the Cable and Antenna Analyzer Reflection/RF Out port of the instrument.
- 2 Connect the SHORT standard of the Cal Kit to the other end of the cable under test as illustrated in Figure 297. Measurement result is displayed on the screen.

Figure 297 Connection for cable loss (1 port) measurement



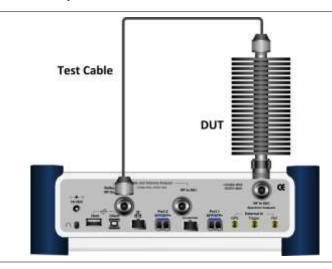
Connecting a cable for 2-port vector measurements

Procedure

- 1 Connect the one end of the Thru test cable to the Cable and Antenna Analyzer Reflection/RF Out port of the instrument and the other end of the cable to DUT.
- 2 Connect the DUT to the **Cable and Antenna Analyzer RF In** port of the instrument as illustrated in **Figure 298**. Measurement result is displayed on the screen.

Figure 298 Connection for 2-port vector measurement

CAUTION


The maximum input power for the **Cable and Antenna Analyzer RF In** port is +25 dBm. However, a proper level of input to the **Cable and Antenna Analyzer RF In** port is 0 dBm. When the input power is expected to be greater than 0 dBm, you must adjust the output power for the RF Out.

Connecting a cable for 2-port scalar measurements

Procedure

- 1 Connect the one end of the Thru test cable to the Cable and Antenna Analyzer Reflection/RF Out port of the instrument and the other end of the cable to DUT.
- 2 Connect the DUT to the **Spectrum Analyzer RF In** port of the instrument as illustrated in **Figure 299**. Measurement result is displayed on the screen.

Figure 299 Connection for 2-port scalar measurement

CAUTION

The maximum input power for the **Spectrum Analyzer RF In** port is +25 dBm for JD780B series and +20 dBm for JD740B series.

Performing reflection measurements

The Reflection measurement can be used to characterize cable and antenna system to ensure transmission line impedance performance and signal reflection characteristics of cell-site across a specific frequency range in voltage standing-wave ration (VSWR) or return loss.

Making a measurement

Procedure

- 1 Make a proper cable connection as described in "Connecting a cable for reflection, DTF, 1-port phase, and Smith Chart measurements" on page 508.
- 2 Press the MEASURE SETUP hot key.
- 3 Press the Data Points soft key to change the resolution of your measurement, and then select the data point option: 126, 251, 501, 1001, and 2001. Changing the data point does not affect current calibration.

NOTE

The larger number you choose, the higher resolution you get and the longer the instrument takes to sweep and display results. Selecting the data point larger than what you need for a measurement will result in unnecessarily long sweep time. It is recommended that you select high resolution data points only for an instance of measuring wide frequency bands or requiring precise measurement data.

- **4** Optional. To turn the bias tee on, complete the following steps:
 - Toggle the Bias Tee soft key and select On.
 - **b** Enter a value between 12 and 32 with 0.1 V step, and then press the **V** soft key.

NOTE

The instrument's built-in bias tee function (option 002) supplies 12-32 VDC bias to active devices through the **RF In** port, eliminating the need of an external power supply.

5 Optional. To select the output power, toggle the Output Power soft key between 0 dBm and -30 dBm.

NOTE

When an amplifier's reflection is measured, it is recommended that you change this output power level to -30 dBm and then re-calibrate. Changing to -30 dBm may result in reduced measurement dynamic range.

6 Optional. To turn the interference rejection on, toggle the Interference Rej soft key between On and Off to enable or disable the feature.

NOTE

It is recommended that you use this feature only when you suspect interfering signals in the area as turning this on slows down the measurement.

Measurement example

Figure 300 Reflection measurement in return loss scale

NOTE

You can use the *LIMIT* hot key to analyze your measurements with the user-definable limit and Pass/Fail indication. See "Setting limit for cable and antenna analyzer" on page 524 for more information.

NOTE

You can go to **MEASURE SETUP** > **Zoom** to view your measurements in detail with the user-definable zoom zones. See "Setting zoom zones" on page 523 for more information.

Performing DTF measurements

The Distance-To-Fault (DTF) measurement can be used to accurately identify fault locations in the cell-site transmission (cable and feed line) system, indicating signal discontinuities in VSWR or return loss over distance in meter or foot. This measurement precisely pinpoints the location of such things as damaged or degraded antennas, connectors, amplifiers, filters, and duplexers.

Making a measurement

Procedure

- 1 Make a proper cable connection as described in "Connecting a cable for reflection, DTF, 1-port phase, and Smith Chart measurements" on page 508.
- 2 Press the **MEASURE SETUP** hot key.
- 3 Press the Data Points soft key to change the resolution of your measurement, and then select the data point option: 126, 251, 501, 1001, and 2001. Changing the data point does not affect current calibration.

NOTE

The larger number you choose, the higher resolution you get and the longer the instrument takes to sweep and display results. Selecting the data point larger than what you need for a measurement will result in unnecessarily long sweep time. It is recommended that you select high resolution data points only for an instance of measuring wide frequency bands or requiring precise measurement data.

4 Press the **DTF Settings** soft key, and then do the following:

To select a cable from the list, complete the following steps:

- a Press the Cable List soft key, and then select Standard Cable or Custom Cable. The cable list window appears.
- **b** Select a cable by using the rotary knob or the **Page Up/Page Down** soft keys.
- c Press the Select soft key.
- d Optional. In the standard cable list window, press the Add to Custom soft key to add the selected cable to the custom list.

To define a new cable, complete the following steps:

- Press the Prop Velocity soft key to define the cable's relative propagation delay.
- **b** Enter a value by using the numeric keys. You can also use the rotary knob.
- c Press the Enter soft key.
- d Press the Cable Loss soft key to define the cable's cable loss.
- **e** Enter a value by using the numeric keys. You can also use the rotary knob.
- f Press the Enter soft key.

NOTE

The propagation velocity affects the calculation of the distance and the cable loss does the peak level of the discontinuity in a DTF measurement.

Toggle the **Metrics** soft key and select the unit option for the X-axis: **Meter** or **Foot**.

Press the Windowing soft key, and then select the video filtering option: **Rectangular**, **Blackman**, **Nominal Side Lobe**, **Low Side Lobe**, or **Minimum Side Lobe**.

- **5** Optional. To turn the bias tee on, complete the following steps:
 - a Toggle the Bias Tee soft key and select On.
 - **b** Enter a value between 12 and 32 with 0.1 V step, and then press the **V** soft key.

NOTE

The instrument's built-in bias tee function (option 002) supplies 12-32 VDC bias to active devices through the **RF In** port, eliminating the need of an external power supply.

6 Optional. To select the output power, toggle the Output Power soft key between 0 dBm and -30 dBm.

NOTE

When an amplifier's reflection is measured, it is recommended that you change this output power level to -30 dBm and then re-calibrate. Changing to -30 dBm may result in reduced measurement dynamic range.

7 Optional. To turn the interference rejection on, toggle the Interference Rej soft key between On and Off to enable or disable the feature.

NOTE

It is recommended that you use this feature only when you suspect interfering signals in the area as turning this on slows down the measurement.

Measurement example

Figure 301 DTF measurement

NOTE

You can use the *LIMIT* hot key to analyze your measurements with the user-definable limit and Pass/Fail indication. See "Setting limit for cable and antenna analyzer" on page 524 for more information.

Figure 302 DTF measurement with the alternate sweep on

NOTE

You can go to **MEASURE SETUP > Alternate Sweep Settings** to scale down a specific sub-band. See "Setting alternate sweep" on page 524 for more information.

Performing reflection-DTF measurements

You can view two measurement results simultaneously on the screen as you configure each measurement setting.

Making a measurement

Procedure

- 1 Make a proper cable connection as described in "Connecting a cable for reflection, DTF, 1-port phase, and Smith Chart measurements" on page 508.
- 2 Press the MEASURE SETUP hot key.
- 3 Toggle the Active Window soft key between Top and Bottom and select the window to be active for setting.
- 4 Press the **Dual Config** soft key, and then select the dual configuration option:

To select the measurement mode for the top window, press the **Top** soft key, and then select **Reflection (VSWR)** or **Reflection (Return Loss)**.

To select the measurement mode for the bottom window, press the **Bottom** soft key, and then select **DTF (VSWR)** or **DTF (Return Loss)**.

To configure DTF settings for the bottom window, select **Bottom > DTF Settings**. See "Performing DTF measurements" on page 512 for more information.

To set the alternate sweep settings for the bottom window, select **Bottom > Alternate Sweep Settings**. See "Setting alternate sweep" on page 524 for more information.

NOTE

See "Performing reflection measurements" and "Performing DTF measurements" for more information on how to set other measurement setup parameters for the Reflection-DTF measurement.

Measurement example

Figure 303 Reflection-DTF dual measurement

1) Alternate sweep off:

2) Alternate sweep on:

>

NOTE

You can use the *LIMIT* hot key to analyze your measurements with the user-definable limit and Pass/Fail indication. See "Setting limit for cable and antenna analyzer" on page 524 for more information.

Performing cable loss (1 port) measurements

The Cable Loss (1 Port) measurement quantifies signal loss through a cable or other device over a defined frequency range by range by connecting one end of the cable to the instrument measurement port and terminating the other end of the cable with a short, or leaving it open altogether. This measurement can be particularly useful in measuring the loss of feed line connected to the antenna.

Making a measurement

Procedure

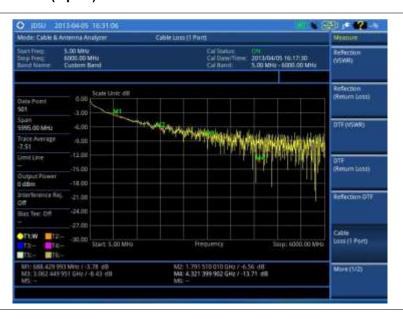
- 1 Make a proper cable connection as described in "Connecting a cable for cable loss (1 port) measurements" on page 509.
- 2 Press the **MEASURE SETUP** hot key.
- 3 Press the Data Points soft key to change the resolution of your measurement, and then select the data point option: 126, 251, 501, 1001, and 2001. Changing the data point does not affect current calibration.

NOTE

The larger number you choose, the higher resolution you get and the longer the instrument takes to sweep and display results. Selecting the data point larger than what you need for a measurement will result in unnecessarily long sweep time. It is recommended that you select high resolution data points only for an instance of measuring wide frequency bands or requiring precise measurement data.

- **4** Optional. To turn the bias tee on, complete the following steps:
 - Toggle the Bias Tee soft key and select On.
 - **b** Enter a value between 12 and 32 with 0.1 V step, and then press the **V** soft key.

NOTE


The instrument's built-in bias tee function (option 002) supplies 12-32 VDC bias to active devices through the **RF In** port, eliminating the need of an external power supply.

See "Performing reflection measurements" for more information on how to set other measurement setup parameters for the Cable Loss (1 Port) measurement.

Measurement example

Figure 304 Cable loss (1 port) measurement

NOTE

You can use the *LIMIT* hot key to analyze your measurements with the user-definable limit and Pass/Fail indication. See "Setting limit for cable and antenna analyzer" on page 524 for more information.

Figure 305 Cable loss (1 port) measurement with the zone enabled

NOTE

You can go to **MEASURE SETUP > Zoom** to view your measurements in detail with the user-definable zoom zones. See "Setting zoom zones" on page 523 for more information.

Performing 1-port phase measurements

The 1-port Phase measurement is used to measure S₁₁ phase to tune antennas and to phase-match cables.

Making a measurement

Procedure

- 1 Make a proper cable connection as described in "Connecting a cable for reflection, DTF, 1-port phase, and Smith Chart measurements" on page 508.
- 2 Press the **MEASURE SETUP** hot key.
- 3 Press the Data Points soft key to change the resolution of your measurement, and then select the data point option: 126, 251, 501, 1001, and 2001. Changing the data point does not affect current calibration.

NOTE

The larger number you choose, the higher resolution you get and the longer the instrument takes to sweep and display results. Selecting the data point larger than what you need for a measurement will result in unnecessarily long sweep time. It is recommended that you select high resolution data points only for an instance of measuring wide frequency bands or requiring precise measurement data.

- 4 Optional. To turn the bias tee on, complete the following steps:
 - Toggle the **Bias Tee** soft key and select **On**.
 - **b** Enter a value between 12 and 32 with 0.1 V step, and then press the **V** soft key.

NOTE

The instrument's built-in bias tee function (option 002) supplies 12-32 VDC bias to active devices through the **RF In** port, eliminating the need of an external power supply.

NOTE

See "Performing reflection measurements" on page 511 for more information on how to set other measurement setup parameters for the Cable Loss (1 Port) measurement.

Measurement example

Figure 306 Cable loss (1 port) measurement



Figure 307 Cable loss (1 port) measurement with zoom

You can use the *LIMIT* hot key to analyze your measurements with the user-definable limit and Pass/Fail indication. See "Setting limit for cable and antenna analyzer" on page 524 for more information.

NOTE

You can go to **MEASURE SETUP > Zoom** to view your measurements in detail with the user-definable zoom zones. See "Setting zoom zones" on page 523 for more information.

Performing Smith chart measurements

The Smith Chart measurement is used to measure DUTs' impedance and phase to properly tune RF devices. Smith chart also displays impedance-matching characteristics in cable and antenna systems or filter and duplexer devices.

Making a measurement

Procedure

- 1 Make a proper cable connection as described in "Connecting a cable for reflection, DTF, 1-port phase, and Smith Chart measurements" on page 508.
- 2 Press the **MEASURE SETUP** hot key.
- 3 Press the Data Points soft key to change the resolution of your measurement, and then select the data point option: 126, 251, 501, 1001, and 2001. Changing the data point does not affect current calibration.

NOTE

The larger number you choose, the higher resolution you get and the longer the instrument takes to sweep and display results. Selecting the data point larger than what you need for a measurement will result in unnecessarily long sweep time. It is recommended that you select high resolution data points only for an instance of measuring wide frequency bands or requiring precise measurement data.

- **4** Optional. To turn the bias tee on, complete the following steps:
 - Toggle the Bias Tee soft key and select On.
 - **b** Enter a value between 12 and 32 with 0.1 V step, and then press the **V** soft key.

The instrument's built-in bias tee function (option 002) supplies 12-32 VDC bias to active devices through the **RF In** port, eliminating the need of an external power supply.

NOTE

See "Performing reflection measurements" on page 511 for more information on how to set other measurement setup parameters for the Smith Chart measurement.

Measurement example

Figure 308 Smith chart measurement

Performing 2-port vector measurements

The Vector measurement is used to perform faster and more accurate measurement with around 80 dB dynamic range. It also provides antenna isolation measurement. You can determine DUT's S_{21} phase characteristic by selecting the measurement display type as Phase.

Making a measurement

Procedure

- 1 Make a proper cable connection as described in "Connecting a cable for 2-port vector measurements" on page 509.
- 2 Press the **MEASURE SETUP** hot key.
- Press the **Data Points** soft key to change the resolution of your measurement, and then select the data point option: **126**, **251**, **501**, **1001**, and **2001**. Changing the data point does not affect current calibration.

NOTE

The larger number you choose, the higher resolution you get and the longer the instrument takes to sweep and display results. Selecting the data point larger than what you need for a measurement will result in unnecessarily long sweep time. It is recommended that you select high resolution data points only for an instance of measuring wide frequency bands or requiring precise measurement data.

4 Toggle the Display soft key and select Magnitude to view measurements in dB or Phase in degree.

- **5** Optional. To turn the bias tee on, complete the following steps:
 - Toggle the Bias Tee soft key and select On.
 - **b** Enter a value between 12 and 32 with 0.1 V step, and then press the **V** soft key.

The instrument's built-in bias tee function (option 002) supplies 12-32 VDC bias to active devices through the **RF In** port, eliminating the need of an external power supply.

- **6** Optional. To set the level of the output power to be inserted, complete the following steps:
 - a Press the Output Power soft key.
 - **b** Enter the following value by rotating the knob or using the numeric keys:
 - **0 dBm:** To test a passive RF device's loss such as a cable or a filter.
 - **-30 dBm:** To test an active RF device's gain such as an amplifier with JD740B series.
 - **-50 -30 dBm:** To test an active RF device's gain such as an amplifier with JD780B series. You need to enter a value with an increment of 5 dBm.

NOTE

Changing the output power to a value between -50 dBm and -30 dBm may result in reduced measurement dynamic range and re-calibration is required.

- 7 Optional. To set the number of measurements to be averaged, press the **Average** soft key and then adjust the number between one and five by using the rotary knob.
- 8 Optional. To turn the interference rejection on, toggle the Interference Rej soft key between On and Off to enable or disable the feature.

NOTE

It is recommended that you use this feature only when you suspect interfering signals in the area as turning this on slows down the measurement.

Measurement example

Figure 309 2-port vector measurement

Performing 2-port scalar measurements

The Scalar measurement enables full characterization of DUT with dynamics over 100 dB.

Making a measurement

Procedure

- 1 Make a proper cable connection as described in "Connecting a cable for 2-port scalar measurements" on page 510.
- 2 Press the **MEASURE SETUP** hot key.
- 3 Press the Data Points soft key to change the resolution of your measurement, and then select the data point option: 126, 251, 501, 1001, and 2001. Changing the data point does not affect current calibration.

NOTE

The larger number you choose, the higher resolution you get and the longer the instrument takes to sweep and display results. Selecting the data point larger than what you need for a measurement will result in unnecessarily long sweep time. It is recommended that you select high resolution data points only for an instance of measuring wide frequency bands or requiring precise measurement data.

- 4 Optional. To set the level of the output power to be inserted, complete the following steps:
 - Press the Output Power soft key.
 - **b** Enter the following value by rotating the knob or using the numeric keys:
 - **0 dBm:** To test a passive RF device's loss such as a cable or a filter.
 - -30 dBm: To test an active RF device's gain such as an amplifier with JD740B series.
 - **-50 -30 dBm:** To test an active RF device's gain such as an amplifier with JD780B series. You need to enter a value with an increment of 5 dBm.

NOTE

Changing the output power to a value between -50 dBm and -30 dBm may result in reduced measurement dynamic range and re-calibration is required.

Measurement example

Figure 310 2-port scalar measurement

Analyzing measurements

Setting trace and display

You can display up to six traces on the measurement chart simultaneously.

Procedure

- 1 Press the TRACE/DISPLAY hard key.
- Press the Select Trace soft key, and then select the trace number: T1, T2, T3, T4, T5, or T6. The legend shape of the selected trace changes from square to round to indicate that the trace is the active one now.
- 3 Do one of the following:

То	Select	Trace Legend
Clear current data and display with new measurements	Clear Write	W
Capture the selected trace and compare traces	Capture	С
Load a saved trace	Load	L
Hide the selected trace	Trace View > Off	F
Remove all the traces and initialize the trace settings	Trace Clear All	

- **4** Optional. If you have at least two traces (T1 and T2), you can perform trace math:
 - Press the Trace Math soft key.
 - b Press the T1 T2 -> T5 or T2 T1 -> T6 soft key.

NOTE

The trace to be loaded must be in the same measurement mode and has the same frequency setting as the current measurement.

Setting zoom zones

You can define up to three zoom-in zones so that you can view uplink and downlink frequencies in detail on a single measurement window for compliance verification.

Procedure

- 1 Press the **MEASURE SETUP** hot key.
- 2 Press the Zoom soft key.
- **3** To view a zoom zone in a separate chart, complete the following steps:
 - Press the Zoom soft key, and then select the zone number to zoom in: Zone 1, Zone 2, or Zone 3.
 - b Toggle the Zoom soft key and select On.
 The zoom-in chart for the selected zone appears under the measurement result.
- **4** To define a zone range, complete the following steps:
 - a Press the Zone [1|2|3] soft key.
 - **b** Toggle the **Zone** [1|2|3] soft key between **On** and **Off** to view or dismiss the zone.
 - c Press the Start Frequency soft key.
 - d Enter a value by using the numeric keys. You can also use the rotary knob.
 - e Select the unit: GHz, MHz, kHz, or Hz.
 - f Press the Stop Frequency soft key.
 - g Enter a value by using the numeric keys. You can also use the rotary knob.

- h Select the unit: GHz, MHz, kHz, or Hz.
- 5 To clear all the zones, press the Clear All soft key.

Setting alternate sweep

You can use the Alternate Sweep in DTF measurements to scale down a specific sub-band without a need of an additional calibration.

Procedure

- 1 Press the **MEASURE SETUP** hot key.
- 2 Press the Alternate Sweep Settings soft key.
- 3 Toggle the Alternate Sweep soft key and select On or Off to enable or disable the alternate sweep feature.
- **4** To set the start and stop distances for the alternate sweep, complete the following steps:
 - Press the Start Distance soft key.
 - **b** Enter a value by using the numeric keys. You can also use the rotary knob or the arrow keys.
 - c Select the Enter soft key.
 - d Press the Stop Frequency soft key.
 - Enter a value by using the numeric keys. You can also use the rotary knob or the arrow keys.
 - f Select the Enter soft key.
- 5 To set the start and stop frequencies for the alternate sweep, complete the following steps:
 - Press the Alternate Start Frequency soft key.
 - **b** Enter a value by using the numeric keys. You can also use the rotary knob or the arrow keys.
 - c Select the unit: GHz, MHz, kHz, or Hz.
 - d Press the Alternate Stop Frequency soft key.
 - e Enter a value by using the numeric keys. You can also use the rotary knob or the arrow keys.
 - f Select the unit: GHz, MHz, kHz, or Hz.
- 6 To set the center and span frequencies for the alternate sweep, complete the following steps:
 - Press the Alternate Center Frequency soft key.
 - **b** Enter a value by using the numeric keys. You can also use the rotary knob or the arrow keys.
 - c Select the unit: GHz, MHz, kHz, or Hz.
 - d Press the Alternate Span Frequency soft key.
 - e Enter a value by using the numeric keys. You can also use the rotary knob or the arrow keys.
 - f Select the unit: GHz, MHz, kHz, or Hz.

Setting limit for cable and antenna analyzer

Procedure

- 1 Press the *LIMIT* hot key.
- 2 Press the Multi Segment Line soft key for Pass/Fail indication.
- 3 Toggle the Limit soft key between Upper and Lower to select the one to be displayed.
- 4 Set the number of segments for the selected upper or lower limit line, up to 50 segments.
 - Press the # of Line soft key.
 - **b** Enter a value between 1 and 50 by using the numeric keys.
 - c Press the Enter soft key.

- 5 Press the Autoset soft key to let the instrument set the limit for each segment and display the line.
- 6 Optional. To move the limit line, complete the following steps:
 - a Select Limit Up/Down or Limit Left/Right.
 - **b** Turn the rotary knob to move the line as desired. You can also manually enter a value.
- **7** Optional. To edit the segment properties, complete the following steps:
 - a Press the Edit Limit soft key.
 - **b** Press the **Move** soft key and then turn the rotary knob to select the segment to edit.
 - c Select the menu option, from the following choices:

To hide the line for the selected segment, toggle the Line soft key and select Off.

To add a new point, press the **Add Point** soft key.

To delete the selected point, press the **Delete Point** soft key.

To change the position, press the **Frequency** or **Amplitude** soft key, and then turn the rotary knob to change the value as desired.

8 Optional. Go to **SAVE/LOAD > Save**, and then select **Limit** to save the limit settings. See "Using save" on page 34 for more information.

Chapter 16 Performing RFoCPRI Testing

This chapter provides instructions for using the RFoCPRI function that requires. Topics discussed in this chapter are as follows:

Introduction	.527
Display overview	.528
Selecting measurement mode	.529
Performing layer 2 monitoring	.529
Performing layer 2 term testing	.532
Performing interference analysis	.535
Performing PIM detection (single and multiple carriers)	.562
Performing LTE-FDD downlink signal analysis	.566
Performing LTE-TDD downlink signal analysis	.593
Using signal generator	.617
Emulating a BBU	.619

Introduction

Cell sites today have a distributed architecture of the radio that consists of the radio equipment control (REC) or base band unit (BBU) installed at the bottom of the tower and the radio equipment (RE) or remote radio head (RRH) installed at the top of the tower. These two elements communicate with each other via the Common Public Radio Interference (CPRI) protocol over fiber links.

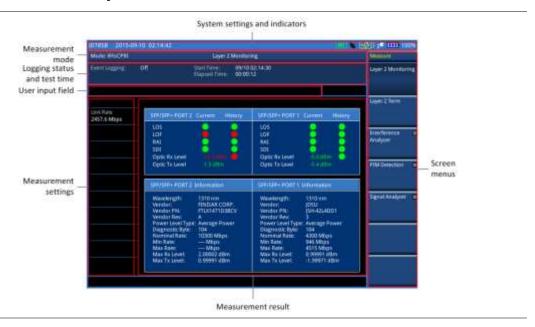
This distributed architecture provides the benefit of replacing coax-based feeders with fiber- based feeders, significantly reducing the problems of signal loss and reflections. However, since all the RF interfaces reside on the RRH, any RF maintenance or troubleshooting requires climbing to the top of the tower to access the RRH, increasing operational cost and unnecessary safety issues.

JD700B series analyzers provide the option of RFoCPRI that allows you to perform RF maintenance and troubleshooting activities on the ground via the fiber interfaces at the BBU, significantly reducing maintenance time and operational expenses. Thanks to the RFoCPRI technology, you can verify the CPRI control signals and extracts the IQ data transmitted between the BBU and RRH to monitor and analyze the uplink interferences and the downlink signals.

The RFoCPRI testing provides following measurements and analysis:

- Layer 2 monitoring of link maintenance alarms and optical power
 - o Loss of Signal (LOS) Code violation or low optical power
 - o Loss of Frame (LOF) Frame synchronization or alignment
 - Remote Alarm Indication (RAI) Any error including LOS and LOF
 - SAP Defect Indication (SDI) Link not to be used for service access points
 - Optical Rx and Tx power levels
- Layer 2 terminate testing
- Interference analysis
 - Spectrum
 - Spectrogram
 - Received Signal Strength Indicator (RSSI)
 - Spectrum replayer
 - Dual Spectrum
 - Dual Spectrogram
 - Quad Spectrum
- PIM detection of single or multiple carrier(s)
- LTE-FDD downlink signal analysis over CPRI
 - Spectrum
 - o RF analysis Channel Power and Occupied Bandwidth
 - o Power vs. Time (Frame)
 - Modulation analysis Constellation, Data Channel, Control Channel, Subframe, Frame,
 Time Alignment Error, and Data Allocation Map
 - Power Statistics CCDF
- LTE-TDD downlink signal analysis over CPRI
 - o Spectrum
 - o RF analysis Channel Power and Occupied Bandwidth
 - Power vs. Time (Frame)

- Modulation analysis Constellation, Data Channel, Control Channel, Subframe,
 Time Alignment Error, and Data Allocation Map
- Power Statistics CCDF
- Alcatel-Lucent BBU emulation
 - o Profiling
 - o Configuration verification Carrier Information, CPRI & Active SW, and SFP Information
 - o Spectrum clearance Spectrum, Spectrogram, RSSI, Dual Spectrum, and Dual Spectrum
 - Coverage range
 - PIM analysis
 - o RET-Information


Full function of RFoCPRI testing requires the following options installed on your CellAdvisor. For more information on available options for your instrument, see "Appendix I – Ordering information" on page 756.

- Optical Hardware (option 008)
- RFoCPRI Interference Analyzer (options 060 065)
- RFoCPRI GSM Interference Analyzer (option 068)
- RFoCPRI LTE-FDD Signal Generator (option 081)
- RFoCPRI LTE-TDD Signal Generator (option 082)
- RFoCPRI LTE-FDD Multi Carrier Signal Generator (option 083)
- RFoCPRI LTE-TDD Multi Carrier Signal Generator (option 084)
- RFoCPRI LTE-FDD Signal Analyzer (option 091)
- RFoCPRI LTE-TDD Signal Analyzer (option 092)
- RFoCPRI Alcatel-Lucent BBU Emulation (option 101)

Display overview

Figure 311 provides descriptions for each segment of the measurement screen.

Figure 311 RFoCPRI analysis screen

Selecting measurement mode

Procedure

- 1 Press the MODE hard key.
- 2 Select RFoFiber > RFoCPRI. The Layer 2 Monitoring mode is set by default.
- 3 Press the **MEASURE** hot key, and then select the measurement mode as desired:

Layer 2 Monitoring

Layer 2 Term

Interference Analyzer > Spectrum, Spectrogram, RSSI, Spectrum Replayer, Dual Spectrum, Dual Spectrogram, or Quad spectrum

PIM Detection > PIM Detection Single Carrier, PIM Detection Multiple Carriers, or Calculated PIM

Signal Analyzer > LTE-FDD > Spectrum, RF Analysis, P vs T (Frame), Modulation Analysis, or Power Statistics CCDF

Signal Analyzer > LTE-TDD > Spectrum, RF Analysis, P vs T (Frame), Modulation Analysis, or Power Statistics CCDF

BBU Emulation > Alcatel-Lucent > Profiling, Configuration Verification, Spectrum Clearance, Coverage Range, PIM Analysis, or RET-Information

Performing layer 2 monitoring

The in-service Layer 2 Monitoring is used to monitor link maintenance alarms of the physical layer (Layer 1) that is delivered on the L1 in-band protocol, which resides on the layer 2 of CPRI. It also verifies proper optical power level of the received signal.

Connecting cables

The monitoring mode lets you perform in-service testing by using coupler(s) or nTap(s). You can connect cables with a tap or without a tap as illustrated in Figure 312. If you have connected cables directly from

RRH and BBU without using the nTap, you must turn on the through mode (Thru) in the CPRI parameter settings.

A SFP/SFP+ transceiver that is connected to your JD700B series must be compatible with your DUT and you must have your module information such as line rate, wavelength, and mode (MM or SM) handy.

Figure 312 Connection diagram for Layer-2 monitoring mode

Selecting measurement mode

Procedure

- 1 Press the **MEASURE** hot key.
- 2 Select Layer 2 Monitoring.

Selecting port

JD700B series supports two antenna ports for signal transmission, and each port can generate up to four different waveforms selectively and simultaneously. User can select the port to use for the measurement in any measurement modes of RFoCPRI mode.

Procedure

- 1 In any measurement mode, press the **MEASURE SETUP** hot key.
- 2 Toggle the Select Port soft key between Port 1 and Port 2 to select the desired port.

Setting measure setup

Procedure

- 1 Press the **MEASURE SETUP** hot key
- 2 To set the CPRI line bit rate of the fronthaul under test, complete the following steps:
 - a Press the Link Rate soft key.
 - b Select the CPRI link rate option from: 614.4 Mbps, 1228.8 Mbps, 2457.6 Mbps, 3072.0 Mbps, 4915.2 Mbps, 6144.0 Mbps, or 9830.4 Mbps.

NOTE

It is important that you set the link rate correctly to avoid any misleading LOS and LOF alarms displayed on the screen.

Setting Rx optic limit

A RRH has a finite dynamic range for input optic power and it can cause an abnormal behavior of the RRH if the optical power is weaker than certain level. To differentiate intermittent low optic power issues from any RSSI, interference and signal quality issues, it is important for you to monitor the input optic power level during the monitoring of the spectrum and the signal quality. Using this Rx optic limit feature, you can set lower and upper limits and monitor the Rx optic level with Pass/Fail indication in green and red colors.

Procedure

- 1 Press the LIMIT hot key.
- 2 Press the Rx Optic Level soft key.
- 3 Set a threshold for High Limit and Low Limit.
- To enable the Rx optic limit, toggle the Test Limits soft key to On. If the optic power level falls out of the specified thresholds, the color of the power reading or indicator turns red.
- 5 To disable the Rx optic limit, toggle the **Test Limits** soft key to **Off.**

Conducting layer 2 monitoring

After you have configured test parameters, you can monitor the alarms of the Layer 1 as you desire.

Procedure

1 Monitor the following alarm indicators and the optical signal level. Green dots indicate no occurrence of an alarm while red ones mean occurrence(s).

LOS: Loss of Signal (code violation or low optical power)

LOF: Loss of Frame (frame synchronization or alignment)

RAI: Remote Alarm Indication (any errors including LOS and LOF)

SDI: SAP Defect Indication (link not to be used for serivce access points)

Optic Rx Level: If the optical signal level is lower than the threshold, the CPRI link may not work properly and the RRH may not be in service mode.

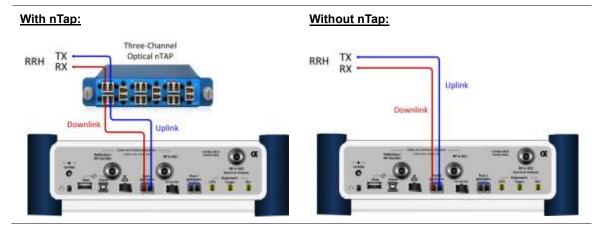
- 2 Optional. You can use the **Save Logging Data** soft key to record the event logging in .csv file format. See "Using save" on page 34 for more information.
- 3 To clear the previous event history and start a new monitoring, press the MEASURE SETUP hot key and then the Clear History soft key.

Measurement example

Figure 313 CPRI layer 2 monitoring

Performing layer 2 term testing

The out-of-service Layer 2 Term is to test CPRI fronthaul in the terminated state and it is used to monitor link maintenance alarms of the physical layer (Layer 1) that is delivered on the L1 in-band protocol, which resides on the layer 2 of CPRI. It also monitors the received optical power level.


In addition, CellAdvisor JD700B series can emulate the Base Band Unit (BBU) without C&M messages. Once the RRH enters the operation state, JD700B series can generate an alarm or error and send it to the RRH so that you can verify the optical cabling and proper RRH operation at the ground.

Connecting cables

In the terminate mode, you can perform the out-of-service testing. Before starting the test, you need to connect cables with a tap or without a tap as illustrated in Figure 314.

A SFP/SFP+ transceiver that is connected to your JD700B series must be compatible with your DUT and you must have your module information such as line rate, wavelength, and mode (MM or SM) handy.

Figure 314 Connection diagram for Layer-2 term testing mode

Selecting measurement mode

Procedure

- 1 Press the **MEASURE** hot key.
- 2 Select Layer 2 Term.

Selecting port

JD700B series supports two antenna ports for signal transmission, and each port can generate up to four different waveforms selectively and simultaneously. User can select the port to use for the measurement in any measurement modes of RFoCPRI mode.

Procedure

- 1 In any measurement mode, press the **MEASURE SETUP** hot key.
- 2 Toggle the Select Port soft key between Port 1 and Port 2 to select the desired port.

Setting measure setup

You need to set the measure setup before staring the measurement.

Procedure

- 1 Press the **MEASURE SETUP** hot key.
- 2 To set the CPRI line bit rate of the fronthaul under test, complete the following steps:
 - a Press the Link Rate soft key.
 - b Select the CPRI link rate option from: 614.4 Mbps, 1228.8 Mbps, 2457.6 Mbps, 3072.0 Mbps, 4915.2 Mbps, 6144.0 Mbps, or 9830.4 Mbps.

NOTE

It is important that you set the link rate correctly to avoid any misleading LOS and LOF alarms displayed on the screen.

Setting Rx optic limit

A RRH has a finite dynamic range for input optic power and it can cause an abnormal behavior of the RRH if the optical power is weaker than certain level. To differentiate intermittent low optic power issues from any RSSI, interference and signal quality issues, it is important for you to monitor the input optic power level during the monitoring of the spectrum and the signal quality. Using this Rx optic limit feature, you can set lower and upper limits and monitor the Rx optic level with Pass/Fail indication in green and red colors.

Procedure

- 1 Press the *LIMIT* hot key.
- 2 Press the Rx Optic Level soft key.
- 3 Set a threshold for **High Limit** and **Low Limit**.
- 4 To enable the Rx optic limit, toggle the Test Limits soft key to On. If the optic power level falls out of the specified thresholds, the color of the power reading or indicator turns red.
- 5 To disable the Rx optic limit, toggle the **Test Limits** soft key to **Off.**

Conducting layer 2 term test

Procedure

- 1 Press the MEASURE SETUP hot key.
- 2 Activate the transmission by toggling the **Laser** soft key to **On**.
- 3 To configure BBU emulation parameters, select More (1/2) > BBU Emulation and then complete one of the following:

To negotiate with RRH to support the start-up process, toggle the **Start-up Sequence** soft key to **Normal**.

To force the RRH to configure the predefined parameters, complete the following steps:

- Toggle the Start-up Sequence soft key to Bypass. Setting it to Bypass will activate the additional soft keys.
- **b** Press the **Protocol Version** soft key.
- Enter a value between 1 and 10 by using the rotary knob. You can also use the numeric keys and then press the Enter soft key.
- d Press the HDLC Rate soft key.
- Select the High level Data Link Control (HDLC) rate option from: No HDLC, 240, 480, 960, 1920, or 2400.
- f Toggle the Eth Channel soft key between Enable and Disable. Enabling the Ethernet Channel activates the Eth Subchannel Number menu.
- g Press the Eth Subchannel Number soft key.
- h Enter a value between 20 and 63 by using the rotary knob. You can also use the numeric keys and then press the **Enter** soft key.

NOTE

This BBU emulation capability in the Layer-2 Term Testing does not include capturing C&M (Control and Management) messages.

- 4 Return to the Measure Setup menu by pressing the **PREV** hard key.
- 5 To insert an alarm signal, complete the following steps:
 - a Press the Alarm/Error soft key.
 - **b** Press the **Alarm Type** soft key.
 - **c** Select the alarm type option from: **R-LOS**, **R-LOF**, **RAI**, or **SDI**.
 - d Start the insertion by toggling the **Alarm Insertion** soft key to **On**.
 - e To stop inserting the alarm, toggle the Alarm Insertion soft key to Off.
- **6** To insert a code error signal, complete the following steps:
 - a Toggle the Error Type soft key to Code.
 - b Toggle the Insert Type soft key between Single and Rate, and then select the insert type option you want.

Single: It inserts an error once and then turns off the error insertion.

Rate: It inserts an error according to the set error rate in the Error Rate menu.

- c If you have selected **Rate** in step **b**, press the **Error Rate** and then select the error rate option from: **1E-3**, **1E-4**, **1E-5**, **1E-6**, **1E-7**, **1E-8**, or **1E-9**.
- d Start the insertion by toggling the **Error Insertion** soft key to **On**.
- **e** To start inserting the error, toggle the **Error Insertion** soft key to **On**.
- f To stop inserting the error, toggle the **Error Insertion** soft key to **Off**.
- 7 To insert a K30.7 error signal, complete the following steps:
 - Toggle the Error Type soft key to K30.7.
 - b Start the insertion by toggling the Error Insertion soft key to On. The K30.7 error signal is one time insertion. This setting changes back to Off after the insertion.
- **8** To insert a bit error signal, complete the following steps:
 - a Toggle the Error Type soft key to Bit.
 - **b** Start the insertion by toggling the **Error Insertion** soft key to **On**.
 - To stop the insertion, toggle the Error Insertion soft key to Off.
- 9 Check the real time results on the screen.

- **10** Optional. You can use the **Save Logging Data** soft key to record the event logging in the .csv file format. See "Using save" on page 34 for more information.
- 11 To clear the previous event history and start a new testing, press the **MEASURE SETUP** hot key and then the **Clear History** soft key.

Measurement example

Figure 315 CPRI layer 2 term test

Performing interference analysis

The RF over CPRI (RFoCPRI) technology enables you to perform interference analysis without disrupting service by monitoring the CPRI signals. It covers multiple network technologies such as LTE, WCDMA, and GSM/EDGE.

After checking that the link connection is good with no errors and alarms, you can proceed to the interference analysis activities including spectrum, spectrogram, RSSI, spectrum replayer, dual spectrum, dual spectrum, and quad spectrum. You can also monitor current and history CPRI alarm status for LOS and LOF displayed on the interference measurement screen.

Connecting cables

You can connect cables with a tap or without a tap as illustrated in Figure 316. If you have connected cables directly from RRH and BBU without using the nTap, you must turn on the through mode (Thru) in the CPRI parameter settings.

A SFP/SFP+ transceiver that is connected to your JD700B series must be compatible with your DUT and you must have your module information such as line rate, wavelength, and mode (MM or SM) handy.

Figure 316 Connection diagram for interference analysis

With nTap (both Thru On/Off): RRH TX Optical nTAP BBU TX BB

Selecting measurement mode

Procedure

- 1 Press the **MEASURE** hot key.
- 2 Press the Interference Analyzer soft key.
- 3 Select the interference measurement mode from the following choices:

Spectrum

Spectrogram

RSSI

Spectrum Replayer

Dual Spectrum

Dual Spectrogram

Quad Spectrum

Selecting port

JD700B series supports two antenna ports for signal transmission, and each port can generate up to four different waveforms selectively and simultaneously. User can select the port to use for the measurement in any measurement modes of RFoCPRI mode.

Procedure

- 1 In any measurement mode, press the **MEASURE SETUP** hot key.
- 2 Toggle the **Select Port** soft key between **Port 1** and **Port 2** to select the desired port.

Configuring test parameters

Configuration of test parameters described in this section is used in the Interference Analyzer mode including spectrum measurements, spectrogram, RSSI, dual spectrum, dual spectrogram, and quad spectrum.

Setting frequency

You can set the frequency with either frequency or channel number. If a frequency to be set matches to the frequency corresponding to the selected channel standard, the instrument calculates its channel number and updates the screen with it automatically.

Procedure

To set the frequency with center frequency:

- Press the FREQ/DIST hard key.
- 2 Toggle the Unit soft key to Freq.
- 3 Press the Center Frequency soft key.
- **4** Enter a value by using the numeric keys or the rotary knob.
- 5 Select a unit from: GHz, MHz, kHz, or Hz.
- 6 Optional. To define the amount of increment for rotary operation, complete the following steps:
 - a Press the Frequency Step soft key.
 - **b** Enter a value by using the numeric keys or the rotary knob.
 - c Press a unit from: GHz, MHz, kHz, or Hz.

To set the frequency with channel number:

- Press the FREQ/DIST hard key.
- 2 Toggle the Unit soft key to Channel.
- 3 To select the standard channel, complete the following steps:
 - Press the **Channel Std** soft key.

 The standard channel window appears. See "Appendix C Band, frequency & channel standard" on page 745 for more information.
 - b Highlight the band to be measured by using the rotary knob, the arrow keys, or the Page Up/Page Down soft keys.
 - Press the Select soft key or the rotary knob to confirm the selection.
- 4 Select the scanning direction by toggling the Link soft key between Fwd (forward) and Rev (reverse).
- 5 Press the Channel Number soft key.
- 6 Enter a value by using the numeric keys or the rotary knob.
- 7 Press the Enter soft key.

The instrument automatically displays the corresponding center frequency value for the selected channel number.

- 8 Optional. To define the amount of increment for rotary operation, complete the following steps:
 - a Press the Channel Step soft key.
 - **b** Enter a value by using the numeric keys or the rotary knob.
 - c Press the Enter soft key.

Setting reference level

You can set the reference level automatically or manually to optimize the display of the traces measured, as you desire.

Procedure

To automatically set the reference level:

- 1 Press the AMP/SCALE hard key.
- 2 Press the Auto Scale soft key. Each time you press this key, the Y-axis scale changes to be optimized with some margin.

To set the reference level manually:

- 1 Press the AMP/SCALE hard key.
- 2 To set the maximum reference value on the Y-axis manually, complete the following steps:
 - a Press the Reference Level soft key.
 - **b** Enter a value by using the numeric keys or the rotary knob with 10 dB increments.
 - Press the unit soft key or the ENTER hard key.
 This unit key name changes according to the setting in the Units menu.

Optional. To change the scale unit:

- 1 Select More (1/2) > Units.
- 2 Select the unit of the display scale from: dBm, dBV, dBmV, $dB\mu V$, V, or W. The scale unit on the screen changes accordingly.

Setting scale per division

You can use the **Scale/Div** feature to change the scale per division, representing the value of one division on the horizontal scale. The default setting is 10 dB per division and the maximum value can be set up to 20 dB.

Procedure

- 1 Press the AMP/SCALE hard key.
- 2 Select More (1/2) > Scale/Div.
- 3 Enter a value between 1 and 20 by using the numeric keys.
- 4 Press the **dB** soft key to complete the entry.

Setting external offset

You can turn the **External Offset** on and manually set the external offset value. An offset consists of a cable loss and a user offset, and the measurement result shows the value reflecting both offset values. When the external offset value is set at 40 dB, the measurement result compensates 40 dB.

Procedure

To set the external offset:

- 1 Press the AMP/SCALE hard key.
- 2 Toggle the External Offset soft key to On.
- 3 Enter a value by using the numeric keys.
- 4 Press the dB soft key to complete the entry.

To turn the external offset off:

- 1 Press the AMP/SCALE hard key.
- 2 Toggle the External Offset soft key to Off.

Enabling auto leveling

It is normal that you see higher level of RSSI in CPRI spectrum than you have seen in RF spectrum because the digital signal has a different gain level from RF's. If you use the Auto Leveling feature and enter the Noise Figure (NF) for the system to be tested, the instrument calculates an offset that compensates the digital gain of RRH and applies it to the spectrum automatically to displace the level of spectrum to a known RSSI power even though its accuracy cannot be guaranteed. Offset calculation for Auto Leveling is based on the following:

Auto Level offset = (Noise Floor of RFoCPRI) – (Ideal Noise Floor of RRH), where (Idea Noise Floor) = N.F (RRH) + Thermal Noise + 10log (RBW)

Procedure

- 1 Press the AMP/SCALE hard key.
- 2 Press the Auto Leveling soft key.

A calculated level of offset without NF is applied as the external offset and the user input field is activated for entry of the noise figure value.

3 Enter a noise figure value by using the numeric keys.

NOTE

Having the noise figure factored in the offset calculation for Auto Leveling will enable you to view the CPRI spectrum closer to what you can view in the RF spectrum, but if you do not know the noise figure, you can skip this noise figure setting.

4 Press the dB soft key to complete the entry. New external offset value appears in the External Offset menu box.

Figure 317 Before enabling Auto Leveling

Figure 318 After enabling Auto Leveling

Setting RBW

You can set the RBW and VBW in the Spectrum, Spectrogram, and RSSI modes. The RBW range is limited as per the bandwidth of the signal under test.

Procedure

- 1 Press the BW/AVG hard key.
- 2 Press the **RBW** soft key to set the resolution bandwidth.
- **3** Enter a value in 1-3 sequence by using the numeric keys, and then select **kHz** soft key. You can also use the rotary knob.

For signal bandwidths 1.4 MHz and 3 MHz: RBW from 1 kHz to 30 kHz

For signal bandwidths 5 MHz, 10 MHz, 15 MHz, and 20 MHz: RBW from 1 kHz to 100 kHz

- 4 Press the **VBW** soft key to set the video bandwidth.
- **5** Enter a value by using the numeric keys or the rotary knob.
- 6 Select the unit option from: MHz, kHz, or Hz.

Setting average

You can set the number of measurements to be averaged for the trace presentation in the Spectrum, Spectrogram, and RSSI modes. A maximum of 100 times of averaging can be set. When the averaging reaches to your setting, a new measurement value replaces the measurement value in sequence from the earliest.

Procedure

- 1 Press the BW/AVG hard key.
- 2 Press the Average soft key.
- 3 Enter a value between 1 and 100 as needed by using the numeric keys.
- 4 Press the Enter soft key.

Setting sweep mode

In the RFoCPRI Spectrum, Spectrogram, and RRSI measure modes, various sweep settings are available for better measurement, including the sweep run mode (**Single**, **Continuous**) and the sweep speed mode (**Normal**, **Fast**).

Procedure

- 1 Press the SWEEP hot key.
- 2 Select the desired sweep run mode by toggling the Sweep Mode soft key between Single and Continuous. You can also use the HOLD hot key.

Single: In this mode, the instrument performs a single sweep and waits for further entries. The letter HOLD in red appears and the sweeping is paused.

Continuous (default): In this mode, the instrument is continuously measuring and updating result.

The letter **HOLD** in red disappears and the sweeping resumes.

3 Select the desired sweep speed mode by toggling the Sweep Mode soft key between Normal and Fast:

Normal: The signal processing and update rate is set to normal levels.

Fast (default): It speeds up the signal processing and the display update rate to increase the overall sweep time.

4 Optional. In the Single mode, press the Sweep Once soft key to get a new measurement.

Setting trace

You can display up to six traces on the measurement chart simultaneously.

Procedure

- 1 Press the TRACE/DISPLAY hard key.
- Press the Select Trace soft key, and then select the trace number: T1, T2, T3, T4, T5, or T6. The legend shape of the selected trace changes from square to round to indicate that the trace is the active one now.
- **3** Complete one of the followings:

То	Select	Trace Legend
Clear current data and display with new measurements	Clear Write	W
Display the input signal's maximum response only (unlimited or for a certain amount of time)	Max Hold	М
Display the input signal's minimum response only (unlimited or for a certain amount of time)	Min Hold	m
Capture the selected trace and compare traces	Capture	С
Load a saved trace	More (1/2) > Load	L
Hide the displayed trace	Trace View > Off	F
Remove all the traces and initialize the trace settings	More (1/2) > Trace Clear All	

NOTE

For the **Max Hold** and **Min Hold**, your instrument compares newly acquired data with the active trace and displays larger maximum values or smaller minimum values on the screen.

You can set it to **Unlimited** to hold and view maximum or minimum data or specify a certain amount of time up to 60 seconds by using numeric keys or rotary knob.

4 To select the detection option, select **More (1/2) > Detectors**, and then complete one of the followings:

To display	Select
Random noise better than the peak without missing signals	Normal
The highest value in each data point	Peak
The root mean squared average power across the spectrum	RMS
The lowest value in each data point	Negative Peak
The center value in each data point	Sample

- 5 Optional. Select More (1/2) > Trace Info, and then select the trace number to view the trace's parameter setting information stored at the time of the measurement or None to hide the information display.
- Optional. If you have the two traces T1 and T2, you can perform trace math. To view the power difference between the traces, press the T1 T2 -> T5 or T2 T1 -> T6 soft key. The result is overlaid on the screen along with the second Y-axis.

NOTE

To be able to load a trace, the trace to be overlaid must be saved in the same measurement mode and frequency setting as the current measurement.

Setting measure setup

Procedure

- 1 Press the MEASURE SETUP hot key.
- 2 To set the CPRI line bit rate of the fronthaul under test, complete the following steps:
 - a Press the Link Rate soft key.
 - Select the CPRI link rate option from: 614.4 Mbps, 1228.8 Mbps,
 2457.6 Mbps, 3072.0 Mbps, 4915.2 Mbps, 6144.0 Mbps, or 9830.4 Mbps.

NOTE

It is important that you set the link rate correctly to avoid any misleading LOS and LOF alarms displayed on the screen.

- 3 To turn on the through mode, go to More (2/3) > Thru, and then toggle the Thru soft key to On.
- 4 To set the Tx Clock, go to More (3/3) > Tx Clock, and then toggle the Tx Clock soft key to Recovered (default).
- 5 Toggle the **Port Type** soft key to **Slave** (default).
- 6 Optional. To set the Rx Parameters, see "Configuring Rx parameters" on page 546.
- 7 Optional. To use the Source menu, see "Using signal generator" on page 585.
- 8 Optional. To use the CPRI signal generator function, see "Using CPRI source" on page 590.

Using map profile list (custom)

Along with features provided for the map profile list (system), you can create new map profiles, edit the map profiles, save the map profiles as a file format and load the saved files whenever you need.

Procedure

- 1 In the Spectrum, Spectrogram, RSSI, Dual Spectrum, Dual Spectrogram, or Quad Spectrum mode, press the MEASURE SETUP hot key.
- 2 Press the Map Profile List (Custom).
 - The Map Profile window appears on the screen as shown in Figure 323.
- 3 To search the map profile databased on the list, scroll up and down the list using the rotary knob.
- 4 To search the map profile database by keyword, complete the following steps:
 - a Scroll up and down the list using the rotary knob.
 - Tap on the input box in the By Keyword row. The edit keywords window appears.
 - Enter the keywords by tapping the on-screen keyboard, and then press the Apply soft key.

NOTE

To learn how to use the on-screen keyboard, see "Appendix K – On-screen keyboard" on page 743.

- Tap the Search key.
 - The map profiles with the keywords are listed on the screen.
- d Select a desired map profile by scrolling up and down the list using the rotary knob.
- 5 To search the map profile database with the filters, complete the following steps:
 - Tap on the first (or leftmost) drop-down box in the By Field Value row. The drop-down list appears.
 - Select a desired keyword by tapping on the drop-down list.
 - **c** Tap on the second drop-down box in the **By Field Value** row. The drop-down list appears.
 - **d** Select a desired keyword by tapping on the drop-down list.
 - e Tap the Filter key.
 - The map profiles with the keywords are listed on the screen.
 - f Select a desired map profile by scrolling up and down the list using the rotary knob.

- 6 To search the map profile database using the keyword and filters, complete the following steps:
 - Enter the keyword on the input box in the By Keyword row.
 - Select the filtering keyword on the By Field Value row.
 - Tap the Search with Filter key.
 The map profiles with the keywords are listed on the screen.
 - **c** Select a desired map profile by scrolling up and down the list using the rotary knob.
- 7 To apply the selected map profile to the current measurement, tap the Apply key or press the Apply soft key.

The spectrum measurement screen with the selected test parameters appears.

- 8 Optional. To create a new map profile to the database, complete the following steps:
 - **a** Tap the **Create** key. The editing screen appears.
 - **b** Edit the test parameters as needed, and then press the **Apply** soft key.
 - The map profile is created on the map profile list.
- **9** Optional. To edit the map profiles, complete the following steps:
 - Search and select a desired map profile.
 - **b** Tap the **Edit** key. The editing screen appears.
 - c Edit the test parameters as needed.
 - d To apply the charges, press the **Apply** soft key.
- **10** Optional. To delete the map profiles, complete the following steps:
 - a Search and select a desired map profile.
 - **b** Tap the **Delete** key. A pop-up window appears.
 - Tap **OK** to delete the profile, tap **Cancel** to cancel the delete process.
- 9 Optional. To save the map profiles, complete the following steps:
 - Tap the Save key.
 - **b** Enter a file name using the on-screen keyboards.
 - c To apply the charges, press the Apply soft key.
- 10 Optional. To load the map profiles, complete the following steps:
 - Tap the Load key. The loading screen appears with the MapProfile folder highlighted.
 - **b** Select the file to load.
 - c Press the Apply soft key.

NOTE

You can press **SAVE/LOAD** > **File Manager** > **Save** folder > **MapProfile** folder and easily copy and paste the map profile files you want.

Figure 319 Example of Map Profile DB screen (custom)

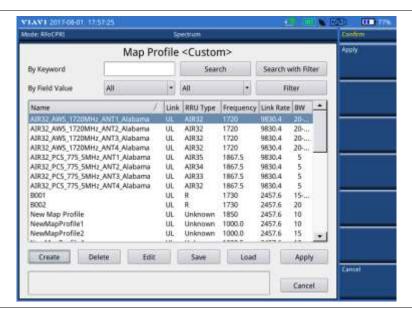
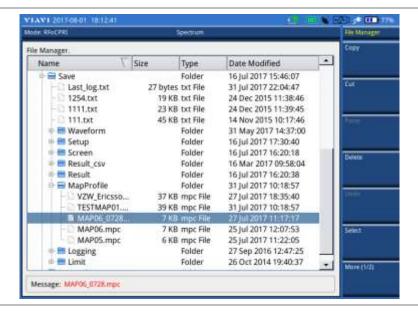



Figure 320 Example of Map Profile DB copy and paste using File Manager

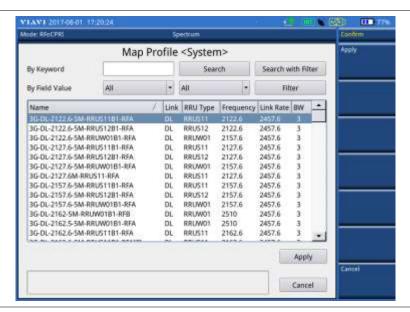
Using map profile list (system)

The JD700B series provide the map profile database with more than 160 default test parameters. In the Spectrum mode, you can search the map profile database and apply a desired test parameters to your current measurement.

Procedure

- 1 In the Spectrum, Spectrogram, RSSI, Dual Spectrum, Dual Spectrogram, or Quad Spectrum mode, press the *MEASURE SETUP* hot key.
- 2 Press More (3/3).
- 3 Press the Map Profile List (System). The Map Profile window appears on the screen as shown in Figure 325.
- 4 To search the map profile databased on the list, scroll up and down the list using the rotary knob.
- 5 To search the map profile database by keyword, complete the following steps:

- **a** Scroll up and down the list using the rotary knob.
- **b** Tap on the input box in the **By Keyword** row. The edit keywords window appears.
- c Enter the keywords by tapping the on-screen keyboard, and then press the Apply soft key.


To learn how to use the on-screen keyboard, see "Appendix K – On-screen keyboard" on page 743.

- d Tap the Search key.
 - The map profiles with the keywords are listed on the screen.
- Select a desired map profile by scrolling up and down the list using the rotary knob.
- **6** To search the map profile database with the filters, complete the following steps:
 - a Tap on the first (or leftmost) drop-down box in the By Field Value row. The drop-down list appears.
 - **b** Select a desired keyword by tapping on the drop-down list.
 - **c** Tap on the second drop-down box in the **By Field Value** row. The drop-down list appears.
 - d Select a desired keyword by tapping on the drop-down list.
 - e Tap the **Filter** key.

 The map profiles with the keywords are listed on the screen.
 - f Select a desired map profile by scrolling up and down the list using the rotary knob.
- 7 To search the map profile database using the keyword and filters, complete the following steps:
 - a Enter the keyword on the input box in the By Keyword row.
 - **b** Select the filtering keyword on the **By Field Value** row.
 - c Tap the **Search with Filter** key.
 The map profiles with the keywords are listed on the screen.
 - **d** Select a desired map profile by scrolling up and down the list using the rotary knob.
- To apply the selected map profile to the current measurement, tap the **Apply** key or press the **Apply** soft key.

The spectrum measurement screen with the selected test parameters appears.

Figure 321 Example of Map Profile DB screen (system)

Selecting network technology

Before you start performing the interference analysis, you need to choose a network technology to analyze.

Procedure

- 1 Press the MEASURE SETUP hot key.
- 1 Press Rx Parameters > Technology.
- 2 Select a desired network technology form the menu bar:

LTE (default)

WCDMA

GSM/EDGE

Depending on the network technology you selected, the settings appear on the Rx Parameter menu bar changes accordingly.

Configuring Rx parameters

Because each network technology requires different Rx parameter settings, you need to configure the Rx parameters for the network technology you selected.

Procedure

To configure Rx parameters for LTE, WCDMA, and GSM/EDGE:

- 1 Press the **MEASURE SETUP** hot key.
- 2 Press the Rx Parameters soft key.
- **3** To set the antenna per carrier group, complete the following steps:
 - a Press the AxC Group soft key.
 - **b** Enter a value by using the numeric keys or the rotary knob.
 - c Press the Enter soft key.

NOTE

Maximum number of the AxC Group is determined by the factors of link rate, sample width, oversampling, and signal bandwidth.

- **4** To set the I and Q sample widths, complete the following steps:
 - a Press the IQ Sample Width soft key
 - **b** Enter a value between 4 and 20 by using the numeric keys or the rotary knob, and then press the **Enter** soft key.

NOTE

According to the CPRI specification, the IQ sample width shall be between 4 and 20 bits for I and Q in the uplink and between 8 and 20 bits in the downlink.

- **5** To set the stuffing bit, complete the following steps:
 - a Press the Stuffing Bit soft key.
 - **b** Enter a value between 0 and 20 by using the numeric keys or the rotary knob.
- **6** To set the first bit position of each AxC Container in the IQ data block of a basic frame, complete the following steps:
 - a Press the Map Position soft key.
 - b Select the AxC Container number you want to set from: AxC 0, AxC 1, AxC 2, AxC 3, AxC 4, AxC 5, AxC 6, or AxC 7. Not all of these are activated depending on the bandwidth setting of the network technology you selected.
 - **c** Enter a value by using the numeric keys or the rotary knob.
 - d Press the Enter soft key.

NOTE

The Antenna-Carrier (AxC) is the amount of digital baseband (IQ) U-plane data necessary for either reception or transmission of one carrier at one independent antenna element. The number of required AxC Container for a basic frame are two AxCs for 5 MHz, four AxCs for 10 MHz, and eight AxCs for 20 MHz.

Following is an example of test configuration for a DUT.

DUT	
CPRI Line Rate (Mbps)	614.4
UMTS Channel (MHz)	3.84
Camers	2
AxC Positioning	Packed
IQ Sampling	15
Over Sampling	1

Tes	t Configurati	on
Link Rate	(Mbps)	614.4
Bandwidth	n (MHz)	3
NEN	d.	None
AxC Group		1-2
IQ Sample Width		15
Map Position	AxC 0	0
	AxC 1	15

For this test configuration, IQ allocation will be like this in the CPRI basic frame.

To configure Rx parameters for LTE:

- 7 To set the bandwidth of the downlink signal, complete the following steps:
 - Press the Bandwidth soft key.
 - b Select the bandwidth option from: 1.4 MHz, 3 MHz, 5 MHz, 10 MHz, 15 MHz, 15 MHz, 4 AxC), 20 MHz, or 20 MHz (6 AxC).

The RBW range changes depending on the bandwidth you selected. Required number of AxC containers may vary depending on the bandwidth you selected.

- **8** To use the pre-configured settings for a NEM, complete the following steps:
 - Press the NEM soft key.
 - **b** Select an NEM from the following choices:

None (no pre-configuration)

Ericsson > Ericsson (UL) and Ericsson (DL)

Alcatel-Lucent (UL/DL)

Samsung (UL/DL)

Huawei > Huawei (UL) and Huawei (DL)

ZTE (UL/DL)

NOTE

If you have selected a NEM, the instrument sets the Map Postion and other releated settings automatically based on the selected NEM and you cannot edit the map position setting. The pre-configured information may be subject to changes at any times by NEMs.

To configure Rx parameters for LTE:

- **9** To set the GSM sample rate, complete the following steps:
 - Press the GSM Sample Rate soft key.
 - **b** Select a desired GSM sample rates

NOTE

CellAdvisor FW3.065 supports only 960 kHz (NA1) for GSM sample rate.

Conducting spectrum measurement

After setting test parameters as described in "Configuring test parameters" on page 536, you can perform spectrum measurements with an audible indicator. You can also turn on the interference ID.

Procedure

- 1 Press the MEASURE SETUP hot key.
- 2 To set the sound indicator, complete the following steps:
 - Press the Sound Indicator soft key.
 - b Toggle the Alarm Reference soft key between Marker and Line:

Marker: Sets the active marker position as the alarm reference if you have enabled a marker on the spectrum.

Line: Makes the limit line as the alarm reference.

- **c** If you have set the alarm reference to Line, press the **Limit Line** soft key to set a threshold for an alarm.
- d Enter a value, and then press the dBm soft key.
- e Toggle the **Sound** soft key between **On** and **Off** to turn on/off the alarm sound.
- f Optional. To adjust the volume for alarm sound, press the Volume soft key, and then turn the rotary knob clockwise or counter clockwise.

NOTE

The Sound Indicator is used to identify interfering signals with alarm sound. It is especially useful for locating interferer sources with a directional antenna.

- **3** To set the interference ID, complete the following steps:
 - a Press the Interference ID.
 - **b** Press the **Threshold** soft key.
 - c Enter a value, and then press the dBm soft key.
 - d Toggle the Interference ID soft key between On and Off to turn on/off the interference ID.

NOTE

The Interference ID automatically classifies interfering signals over a designated spectrum and displays a list of possible signal types corresponding to the selected signal.

- 4 To clear current (C) and history (H) status of CPRI alarm on LOS and LOF and start a new monitoring, press the *MEASURE SETUP* hot key and then the **Clear History** soft key.
- Optional. Go to SAVE/LOAD > Save, and then select the save option from the choices available for your measurement mode. See "Using save" on page 34 for more information. If you have saved logging data, you can play them in the Spectrum Replayer mode.

NOTE

You can use the *LIMIT* hot key to analyze your measurements with the display line, multi-segment line, and channel limit. See "Setting limit for interference analysis" on page 561 for more information.

Figure 322 RFoCPRI spectrum measurement

Figure 323 RFoCPRI spectrum analysis on LTE Uplink 10 MHz, antenna 1

Figure 324 RFoCPRI spectrum analysis on LTE Uplink 10 MHz, antenna 2

Conducting dual spectrum measurement

With the Dual Spectrum feature, you can monitor two spectrums for different map positions on the same link simultaneously. If you enable the new Dual Active Trace function in the Dual Spectrum mode, the instrument displays the two sweeping traces overlaid on a single chart.

After setting test parameters as described in the "Configuring test parameters" on page 536, you can perform dual spectrum measurements.

Procedure

- 1 Press the **MEASURE SETUP** hot key.
- 2 Toggle the Active Window soft key between Top and Bottom. You can also tap the chart on the screen.
- **3** To change the AxC group and map position settings for the window you have selected, complete the following steps:
 - a Press Rx Parameters.
 - b Press the AxC Group soft key.
 - c Enter a value between 1 and 24, and then press the Enter soft key.
 - d Press the Map Position soft key, and then select the AxC Container number you want to set from: AxC 0, AxC 1, AxC 2, AxC 3, AxC 4, AxC 5, AxC 6, or AxC 7.
 - e Enter a value, and then press the Enter soft key.

NOTE

The AxC Group and Map Position settings for the top and bottom windows work independently each other while all other parameter settings change concurrently. If you have selected one of the NEMs, you cannot change the Map Position setting.

- 4 To view both traces writing currently in each window together on a single chart with overlapping, complete the following steps:
 - To enable the overlaid view, toggle the Dual Active Trace to On. Traces from the top and bottom charts appear overlapped on a single chart.

NOTE

As shown in Figure 327, there appears [Top] or [Bottom] at the top left of the chart to indicate which window is active now. Currently selected active window's trace is brought to front in its bold color while the inactive window's trace sent to back with lighter color.

b To change the selection of the active window and trace(s), toggle the **Active Window** soft key between **Top** and **Bottom**. You can also tap on the upper or lower portion of the chart

- on the screen.
- To disable the overlap view and return to the dual spectrum view, toggle the **Dual Active Trace** soft key to **Off**.
- 5 To clear current (C) and history (H) status of CPRI alarm on LOS and LOF and start a new monitoring, press the **MEASURE SETUP** hot key and then the **Clear History** soft key.
- 6 Optional. Go to SAVE/LOAD > Save, and then select a desired save option for your measurement mode. See "Using save" on page 34 for more information. If you have saved logging data, you can play them in the Spectrum Replayer mode.

Figure 325 RFoCPRI dual spectrum analysis

You can use the *LIMIT* hot key to analyze your measurements with the display line, multi-segment line, and channel limit. See "Setting limit for interference analysis" on page 561 for more information.

Figure 326 RFoCPRI dual spectrum with dual active trace off

100 mg Mode: RFoCPRI Measure Setup Dual Active Trace MI LOS / LOF -90.0 -100.0 -110.0 120.0 140.0 150.0 160.0 -170.0 Clear Histon Center: 1.000 000 000 GHz Span: 15.360 000 MH: M2: M4: M6: More (2/2)

Figure 327 RFoCPRI dual spectrum with dual active trace on

Conducting quad spectrum

In the Quad Spectrum mode, you can monitor four spectrums for different map positions on the same link simultaneously. If you enable the new Quad Active Trace function, the instrument displays the four sweeping traces overlaid on a single chart. You can also monitor the two spectrograms of the selected sweeping traces using the Dual Spectrogram function in this mode.

After setting test parameters as described in the "Configuring test parameters" on page 510, you can perform the quad spectrum measurements.

Procedure

- 1 Press the **MEASURE SETUP** hot key.
- 2 Toggle the Active Window soft key among Trace 1, Trace 2, Trace 3, and Trace 4 to select a desired chart. You can also tap the chart on the screen.
- 3 To change the AxC group and map position settings for the selected chart, complete the following steps:
 - a Press the Rx Parameters soft key.
 - b Press the AxC Group soft key.
 - c Enter a value between 1 and 24, and then press the Enter soft key.
 - d Press the Map Position soft key, and then select the AxC Container number you want to set from: AxC 0, AxC 1, AxC 2, AxC 3, AxC 4, AxC 5, AxC 6, or AxC 7.
 - Enter a value, and then press the Enter soft key.

NOTE

The AxC Group and Map Position settings for the top and bottom windows work independently each other while all other parameter settings change concurrently. If you have selected one of the NEMs, you cannot change the Map Position setting.

- 4 To view all traces overlaid on a single chart, complete the following steps:
 - a Toggle the Quad Active Trace to On. The screen displays the traces overlaid on a single chart.

NOTE

The currently active trace is brought to front of all traces and highlighted in bold. You can check the currently active trace at the top left of the chart as shown in Figure 329.

b To change the active trace, press the PREV hard key, and then toggle the Active Window soft key to desired trace number.

- c To exit the overlaid view and return to the quad spectrum view, toggle the Quad Active Trace soft key to Off.
- 5 To view the dual spectrograms of selected traces, complete the following steps:
 - a In the Quad Spectrum view, press the More (2/3) soft key.
 - b press the **Dual Spectrogram** soft key.The Dual Trace Selection window appears.
 - **c** Select two traces by tapping on the screen, and then tap **OK**.
 - d Press the More (1/3) soft key.
 - e Select the active trace by toggling the Active Window soft key between Left and Right. You can also tap the trace on the screen.
 - f Set the amount of time between each trace measurement by pressing the **Time Interval** soft key and then enter a value.
 - g Enter a value, and the press the **Sec** soft key.
- **6** To set the time cursor on a specific trace position, complete the following steps:
 - a Toggle the Time Cursor soft key to On.
 - b Press the Position soft key.
 - c Turn the rotary knob to move the time cursor. You can also enter a value and then press the Enter soft key.
- 7 To clear current (C) and history (H) status of CPRI alarm on LOS and LOF and start a new monitoring, press the **MEASURE SETUP** hot key and then the **Clear History** soft key.
- **8** Optional. Go to **SAVE/LOAD** > **Save**, and then select a desired save option for your measurement mode. See "Using save" on page 34 for more information. You can play the saved logging data in the Spectrum Replayer mode.

Figure 328 RFoCPRI quad spectrum with quad active trace off

Figure 329 RFoCPRI quad spectrum with quad active trace on

Conducting spectrogram

The Spectrogram is particularly useful when attempting to identify periodic or intermittent signals as it captures spectrum activity over time and uses various colors to differentiate spectrum power levels. When the directional antenna is used to receive the signal, you will see a change in the amplitude of the tracked signal as you change the direction of the antenna and see a change in the Spectrogram colors. The source of the signal is located in the direction that results in the highest signal strength.

After setting test parameters as described in "Configuring test parameters" on page 536, you can perform spectrogram measurements.

Procedure

- 1 Press the **MEASURE SETUP** hot key.
- 2 To set the amount of time between each trace measurement:
 - a Press More (2/3).
 - **b** Press the **Time Interval** soft key.
 - Enter a value, and then press the Sec soft key.
- **3** To set the time cursor on a specific trace position, complete the following steps:
 - a Toggle the Time Cursor soft key to On.
 - b Press the Position soft key.
 - **c** Turn the rotary knob to move the time cursor. You can also enter a value and then press the **Enter** soft key.
 - d To turn the time cursor off, toggle the Time Cursor soft key to Off.

NOTE

Enabling the time cursor puts the measurement on hold and you can make postprocessing analysis for each measurement over time using the time cursor.

- 4 To start a new measurement, press the **Reset/Restart** soft key.
- To clear current (C) and history (H) status of CPRI alarm on LOS and LOF and start a new monitoring, press the **MEASURE SETUP** hot key and then the **Clear History** soft key.
- 6 Optional. Go to **SAVE/LOAD** > **Save**, and then select the save option from the choices available for your measurement mode. See "Using save" on page 34 for more information.

The spectrogram shows a vertical line on the chart when the marker is enabled on the screen.

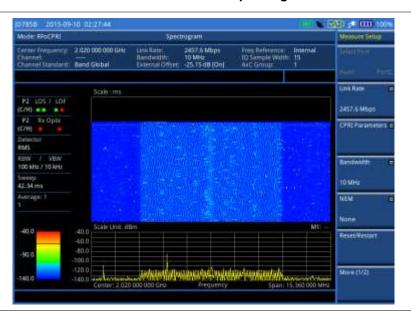


Figure 330 RFoCPRI interference measurement in spectrogram

You can use the *LIMIT* hot key to analyze your measurements with the display line, multisegment line, and channel limit. See "Setting limit for interference analysis" on page 561 for more information.

Conducting dual spectrogram

The Dual Spectrogram feature lets you observe two spectrograms for different map positions on the same link simultaneously.

After configuring test parameters as described in the "Configuring test parameters" on page 536, you can perform dual spectrogram measurements.

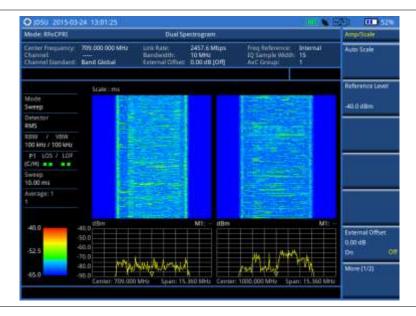
Procedure

- 1 In the Dual Spectrogram mode, press the **MEASURE SETUP** hot key.
- 2 Press the More (1/2) soft key.
- 3 Toggle the Active Window soft key and select [Left|Right]. You can also tap on the left or right chart on the screen.
- 4 To change the AxC group and map position settings for the window you have selected, complete the following steps:
 - a Press the Rx Parameters soft key.
 - b Press the AxC Group soft key.
 - c Enter a value between 1 and 24, and then press the Enter soft key.
 - d Press the Map Position soft key, and then select the AxC Container number you want to set from: AxC 0, AxC 1, AxC 2, AxC 3, AxC 4, AxC 5, AxC 6, or AxC 7.
 - e Enter a value, and then press the Enter soft key.

NOTE

The AxC Group and Map Position settings for the top and bottom windows work independently each other while all other parameter settings change concurrently.

- 5 To set the amount of time between each trace measurement, complete the following steps:
 - Press the Time Interval soft key.
 - b Enter a value, and the press the Sec soft key.
- 6 To set the time cursor on a specific trace position, complete the following steps:


- a Toggle the Time Cursor soft key to On.
- **b** Press the **Position** soft key.
- c Turn the rotary knob to move the time cursor. You can also enter a value and then press the Enter soft key.

Enabling the time cursor puts the measurement on hold and you can make post-processing analysis for each measurement over time using the time cursor.

- 7 To start a new measurement, press the Reset/Restart soft key.
- 8 To clear current (C) and history (H) status of CPRI alarm on LOS and LOF and start a new monitoring, press the **MEASURE SETUP** hot key and then the **Clear History** soft key.
- 9 Optional. Go to **SAVE/LOAD** > **Save**, and then select the save option from the choices available for your measurement mode. See "Using save" on page 34 for more information.

Figure 331 RFoCPRI dual spectrogram analysis

NOTE

You can use the **LIMIT** hot key to analyze your measurements with the display line, multisegment line, and channel limit. See "Setting limit for interference analysis" on page 561 for more information.

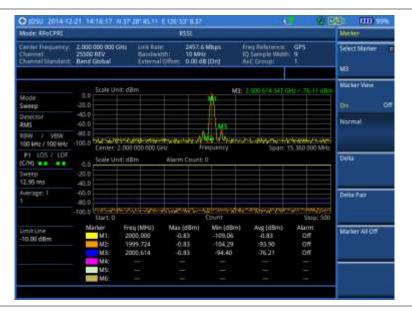
Conducting RSSI

The Received Signal Strength Indicator (RSSI) is a multi-signal tracking metric that is particularly useful for measuring power-level variations over time. The RSSI measurement lets you assign power limit line for audible alarms and increase alarm counters every time a signal exceeds a defined limit line. For long-term analysis, the spectrogram and RSSI measurements can be automatically saved into an external USB memory. Post-analysis can be performed with JDViewer application software.

After configuring test parameters as described in the "Configuring test parameters" on page 536, you can continue to proceed to the spectrogram measurement.

Procedure

- 1 Press the **MEASURE SETUP** hot key.
- **2** To set up the alarm parameters, complete the following steps:
 - a Press the Alarm soft key.


- b Press the Alarm at soft key, and then select the marker number you want to set.
- **c** Press the **Limit Line** soft key to set a threshold for the alarm.
- **d** Enter a value by using the numeric keys or the rotary knob.
- e Press the dBm soft key.
- f Toggle the Alarm soft key between On and Off to turn the alarm feature on or off.

You must set the marker(s) first by using the **MARKER** hard key as these features use the marker position to sound an alarm. See "Using marker" on page 57 for more information.

- g Optional. Press the Volume soft key to adjust the volume.
- 3 Press the **PREV** hard key to return to the Measure Setup menu bar.
- 4 To start a new measurement, press the **Reset/Restart** soft key.
- 5 To clear current (C) and history (H) status of CPRI alarm on LOS and LOF and start a new monitoring, press the **MEASURE SETUP** hot key and then the **Clear History** soft key.
- 6 Optional. Go to **SAVE/LOAD** > **Save**, and then select the save option from the choices available for your measurement mode. See "Using save" on page 34 for more information.

Figure 332 RFoCPRI interference measurement in RSSI

NOTE

You can use the *LIMIT* hot key to analyze your measurements with the display line, multi-segment line, and channel limit. See "Setting limit for interference analysis" on page 561 for more information.

Zooming into spectrum using zoom in

CPRI delivers spectrum bandwidth information based on the sampling frequency of a carrier as specified in the 3GPP specification.

Signal Bandwidth	3 MHz	5 MHz	10 MHz	15 MHz	20 MHz
Transmission Bandwidth	2.7 MHz	4.5 MHz	9 MHz	13.5 MHz	18 MHz
Sampling Frequency	3.84 MHz	7.68 MHz	15.36 MHz	23.04 MHz	30.72 MHz

Even though it limits that you can view spectrum only within the sampling frequency, the Zoom In feature in JD700B series makes it easy to view the spectrum in detail. This feature is available in RFoCPRI Spectrum,

Spectrogram, RSSI, Dual Spectrum, Dual Spectrogram, and Quad Spectrum modes.

NOTE

Make sure that the sweep mode is set to **Normal** to use the Zoom In feature.

Procedure

- 1 Press the MARKER hard key and place the marker at the frequency that you want to zoom in.
- 2 Press the MARKER or FREQ/DIST hard key.
- 3 Press the Zoom In soft key.
- 4 The display refreshes with the marker frequency centered in the current spectrum view. You will notice "Zoom-in Frequency" at the bottom of the chart.

NOTE

Turning on **Zoom In** does not affect the center frequency that you have set with the **FREQ/DIST** hard key. You can still view your original center frequency information in the input settings pane at the top.

- 5 To change the zoom-in center frequency, complete the following steps.
 - Press the Zoom-in Center Frequency soft key.
 - **b** Enter a value, and then press one of the unit soft keys that you want to select. You can also turn the rotary knob.
- **6** To change the zoom-in span, complete the following steps:
 - Press the Zoom-in Span soft key.
 - **b** Enter a value, and then press one of the unit soft keys that you want to select. You can also turn the rotary knob.

NOTE

You can have the span as low as 10 kHz. An error message appears if you change the zoom-in center frequency or span out of the range, which is automatically determined by the instrument based on the sampling frequency.

- 7 To view a different position on the original spectrum, complete the following steps:
 - Toggle the Zoom In soft key to Off. The screen goes back to the original spectrum.
 - **b** Move the marker to a new position on the spectrum.
 - c Turn the rotary knob to change the marker position.
 - d Toggle the **Zoom In** soft key to **On** again.

 The display refreshes with the new marker frequency centered in the current spectrum view. You will notice "Zoom-in Frequency" at the bottom of the chart.
- 8 To disable **Zoom In**, toggle the **Zoom In** soft key to **Off**.



Figure 333 Zoomed-in spectrum view in RFoCPRI interference analyzer

Performing spectrum replayer

The Spectrum Replayer lets you retrieve and replay recorded spectrum analyzer traces in interference analysis mode. These traces can be played back in the spectrogram or RSSI. You can configure the limit line to create failure points when signals exceed it. The failure points are clearly displayed on the trace timeline for quick access during playback.

Procedure


- 1 Press the **MEASURE** hot key.
- 2 Press the Spectrum Replayer soft key. The file manager window appears.
- 3 Select a file to be loaded, and then press the Load soft key. The Measure Setup menu appears.
- 4 Toggle the Replay Direction soft key between FWD and REV to change play direction to forward or reverse.
- 5 Press the Replay Speed soft key, and then select the speed option: X1, X2, X3, or X4.
- 6 Press the Play soft key to start playing.
- 7 Press the **Pause** soft key to pause or stop playing data.
- **8** To move to a particular failure position directly and play from there, complete the following steps:
 - Press the Jump to Fail Index soft key.
 - **b** Enter a value by using the numeric keys, and then press the **Enter** soft key.
- 9 Optional. Toggle the Time Cursor soft key between On and Off to display or dismiss the time cursor on the screen. This key becomes activated when you play logged data in the Spectrogram mode.

NOTE

If you connected a USB drive, do not remove it while playing to prevent freezing the USB port, which will require you to restart the instrument to get a USB drive recognized again.

Figure 334 RFoCPRI spectrum replay

Setting display

You can select the display option to view data in a different mode.

Procedure

- 1 Press the TRACE/DISPLAY hard key.
- 2 Select the display option from: Spectrum, Spectrogram, or RSSI.

NOTE

You can use the *LIMIT* hot key to analyze your measurements with the display line, multi-segment line, and channel limit. See "Setting limit for interference analysis" on page 561 for more information.

Setting limit for interference analysis

You can set threshold(s) and display either a single segment line or multi-segment line to analyze the result better.

Setting a single limit line

Procedure

- 1 Press the LIMIT hot key.
- 2 Press the **Display Line** soft key for a reference line.
- 3 Enter a value, and then press the dBm unit soft key.
- 4 Toggle the **Display Line** soft key between **On** and **Off** to display and hide the reference line. The straight line appears across the screen to be used as a visual reference only.
- Optional. Go to SAVE/LOAD > Save, and then select Save Limit to save the limit settings. See "Using save" on page 34 for more information.

Setting a multi-segment limit line

Procedure

- 1 Press the *LIMIT* hot key.
- 2 Press the Multi Segment Line soft key for Pass/Fail indication.
- 3 Toggle the **Limit** soft key between **Upper** and **Lower** to select the one to be displayed.
- 4 Set the number of segments for the selected upper or lower limit line, up to 50 segments.
 - Press the # of Line soft key.
 - Enter a value between 1 and 50 by using the numeric keys.
 - c Press the Enter soft key.
- 5 Press the Autoset soft key to let the instrument set the limit for each segment and display the line.
- **6** To move the limit line, complete the following steps:
 - a Select Limit Up/Down or Limit Left/Right.
 - b Turn the rotary knob to move the line as desired. You can also manually enter a value.
- 7 To edit the segment properties, complete the following steps:
 - a Press the Edit Limit soft key.
 - **b** Press the **Move** soft key and then turn the rotary knob to select the segment to edit.
 - c Select the menu option from the following choices:
 - To hide the line for the selected segment, toggle the Line soft key to Off.

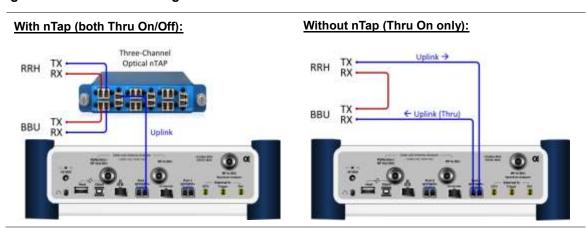
To add a new point, press the Add Point soft key.

To delete the selected point, press the **Delete Point** soft key.

To change the position, press the **Frequency** soft key or the **Amplitude** soft key, and then turn the rotary knob to change the value as desired.

8 Optional. Go to SAVE/LOAD > Save, and then select Limit to save the limit settings. See "Using save" on page 34 for more information.

Performing PIM detection (single and multiple carriers)


The Passive Intermodulation (PIM) Detection allows you to detect Uplink PIM across the full spectrum for any technology. When PIM is detected, the normal repair mode is to replace the offending cable and what you need to do is replacing the whole cable irrespective of the location of the fault.

Connecting cables

You can connect cables with a tap or without a tap as illustrated in Figure 335. If you have connected cables directly from RRH and BBU without using the nTap, you must turn on the through mode (Thru) in the CPRI parameter settings.

A SFP/SFP+ transceiver that is connected to your JD700B series must be compatible with your DUT and you must have your module information such as line rate, wavelength, and mode (MM or SM) handy.

Figure 335 Connection diagram for PIM detection

Selecting measurement mode

Procedure

- 1 Press the MEASURE hot key.
- 2 Press the PIM Detection soft key.
- 3 Select the PIM detection mode from the following choices:

PIM Detection Single Carrier

PIM Detection Multiple Carriers

Calculated PIM

Selecting port

JD700B series supports two antenna ports for signal transmission, and each port can generate up to four different waveforms selectively and simultaneously. User can select the port to use for the measurement in any measurement modes of RFoCPRI mode.

Procedure

- 1 In any measurement mode, press the **MEASURE SETUP** hot key.
- 2 Toggle the Select Port soft key between Port 1 and Port 2 to select the desired port.

Setting measure setup

Procedure

- 1 Press the **MEASURE SETUP** hot key.
- 2 To set the CPRI line bit rate of the fronthaul under test, complete the following steps:
 - a Press the Link Rate soft key.
 - b Select the CPRI link rate option from the choices: 614.4 Mbps, 1228.8 Mbps, 2457.6 Mbps, 3072.0 Mbps, 4915.2 Mbps, 6144.0 Mbps, or 9830.4 Mbps.

NOTE

It is important that you set the link rate correctly to avoid any misleading LOS and LOF alarms displayed on the screen.

- 3 Toggle the Tx Clock soft key to Recovered (default).
- 4 Toggle the Port Type soft key and select Slave (default).
- To turn on the through mode, go to **More (1/2) > Thru**, and then toggle the **Thru** soft key to **On**. To turn off, toggle to **Off**.
- **6** To configure Rx parameters, see "Configuring Rx Parameters" on page 563.
- 7 Optional. To use the RF signal generator function, see "Using RF source in RFoCPRI testing" on page 617.
- 8 Optional. To use the CPRI signal generator function, see "Using CPRI source" on page 618.

Configuring Rx Parameters

Procedure

- 1 Press the **MEASURE SETUP** hot key.
- 2 Press the Rx Parameters soft key.
- **3** To set the antenna per carrier group, complete the following steps:
 - a Press the AxC Group soft key.
 - **b** Enter a value by using the numeric keys. You can also use the rotary knob.
 - c Press the Enter soft key.

NOTE

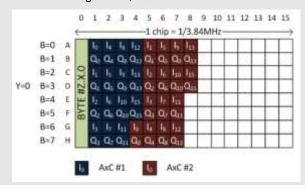
Maximum number of the AxC Group is determined by the factors of link rate, sample width, oversampling, and signal bandwidth.

- **4** To set the I and Q sample widths, complete the following steps:
 - a Press the IQ Sample Width soft key
 - **b** Enter a value between 4 and 20 by using the rotary knob. You can also use the numeric keys, and then press the **Enter** soft key.

NOTE

According to the CPRI specification, the IQ sample width shall be between 4 and 20 bits for I and Q in the uplink and between 8 and 20 bits in the downlink.

- 5 To set the first bit position of each AxC Container in the IQ data block of a basic frame, complete the following steps:
 - Press the Map Position soft key.
 - b Select the AxC Container number you want to set from: AxC 0, AxC 1, AxC 2, AxC 3, AxC 4, AxC 5, AxC 6, or AxC 7. Not all of these are activated depending on your bandwidth setting.
 - **c** Enter a value by using the numeric keys. You can also use the rotary knob.
 - d Press the Enter soft key.


The Antenna-Carrier (AxC) is the amount of digital baseband (IQ) U-plane data necessary for either reception or transmission of one carrier at one independent antenna element. The number of required AxC Container for a basic frame are two AxCs for 5 MHz, four AxCs for 10 MHz, and eight AxCs for 20 MHz.

Following is an example of test configuration for a DUT.

DUT	
CPRI Line Rate (Mbps)	614.4
UMTS Channel (MHz)	3.84
Carners	2
AxC Positioning	Packed
IQ Sampling	15
Over Sampling	1

Tes	t Configuration	on
Link Rate	(Mbps)	614.4
Bandwidt	n (MHz)	3
NE	d.	None
AxC Group		1-2
IQ Sample Width		15
Map Position	AxC 0	0
	AxC 1	15

For this test configuration, IQ allocation will be like this in the CPRI basic frame.

- 6 To set the bandwidth of the downlink signal, complete the following steps:
 - Press the Bandwidth soft key.
 - b Select the bandwidth option from: 1.4 MHz, 3 MHz, 5 MHz, 10 MHz, 15 MHz, 15 MHz, 4 AxC), 20 MHz, or 20 MHz (6 AxC).

The RBW range changes based on this bandwidth setting.

Required number of AxC containers varies depending on the selected bandwidth.

- 7 To use the pre-configured settings for a NEM, complete the following steps:
 - a Press the NEM soft key.
 - b Select an NEM from the following choices:

None (no pre-configuration)

Ericsson > Ericsson (UL) and Ericsson (DL)

Alcatel-Lucent (UL/DL)

Samsung (UL/DL)

Huawei > Huawei (UL) and Huawei (DL)

ZTE (UL/DL)

NOTE

If you have selected a NEM, the instrument sets the Map Postion and other releated settings automatically based on the selected NEM and you cannot edit the map position setting. The pre-configured information may be subject to changes at any times by NEMs.

Calculating possible PIM

The Calculated PIM is used when you want to check any possible existence of PIM before the actual measurement. The instrument displays possible PIM in red color.

Procedure

- 1 Press the MEASURE SETUP hot key.
- 2 Press the Calculated PIM soft key.
- 3 Toggle the Radio Config soft key between Single and Multi to select the mode you want to use.

Single: Sets the frequency of Radio 1.

Multi: Sets the frequency of Radio 1 and Radio 2.

4 Do one of the following:

To set the frequency and span, complete the following steps:

- Toggle the Mode soft key to Freq.
- b Press the Radio [1]2] Frequency soft key.
- Enter a value by using the numeric keys.
- d Select the unit option from: GHz, MHz, kHz, or Hz.
- Press the Radio [1|2] Span soft key.
- f Enter a value by using the numeric keys.
- g Select the unit option from: GHz, MHz, kHz, or Hz.

To set the radio band, complete the following steps:

- a Toggle the Mode soft key to Band.
- b Press the Radio [1]2] Band soft key.
- Highlight the radio band to select by using the rotary knob.
- d Press the Select soft key.

Detecting PIM (single and multiple carriers)

Procedure

- 1 Press the **MEASURE SETUP** hot key.
- 2 Connect cables as instructed on the screen.

NOTE

Make sure that the Tx of RRH is connected to the Rx port of SFP/SFP+ installed in your CellAdvisor.

3 Complete one of the followings:

To set the uplink center frequency and span to be measured, complete the following steps:

- Toggle the Unit soft key to Freq.
- b Press the Uplink Center Frequency soft key.
- **c** Enter a value by using the numeric keys or the rotary knob.
- d Select the unit from: GHz, MHz, kHz, or Hz.

To set the channel number to be measured, complete the following steps:

- Toggle the Unit soft key to Channel.
- **b** Press the **Channel Std** soft key, and then highlight a desired band.
- c Press the Select soft key.
- d Press the Channel Number soft key.
- Enter a value by using the numeric keys, and then press the Enter soft key. The instrument automatically displays the corresponding center frequency value for the selected channel number.
- 4 Press the **Continue** soft key, and then follow the instructions on the screen.
- 5 To clear current (C) and history (H) status of CPRI alarm on LOS and LOF and start a new

monitoring, press the **MEASURE SETUP** hot key and then the **Clear History** soft key.

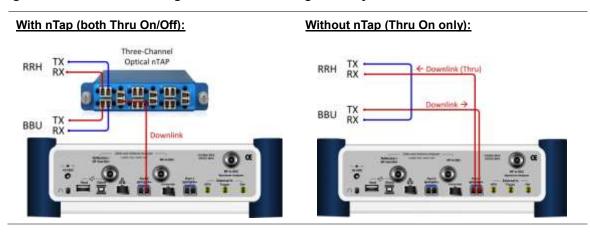
Measurement example

Figure 336 PIM detection of single radio

Performing LTE-FDD downlink signal analysis

If your JD700B series has the option 091 RFoCPRI LTE-FDD Signal Analyzer installed with a license, you can performs power and spectrum measurements as well as modulation analysis to test the proper transmitter performance of FDD LTE systems over CPRI.

This instrument provides the following measurement tools for FDD LTE system over CPRI:


- Spectrum Analysis
- RF Analysis
 - Channel Power
 - Occupied Bandwidth
- Power vs. Time (Frame)
- Modulation Analysis
 - Constellation
 - Data Channel
 - Control Channel
 - Subframe
 - Frame
 - Time Alignment Error
 - Data Allocation Map
- Power Statistics CCDF

Connecting cables

You can connect cables with a tap or without a tap as illustrated in Figure 337. If you have connected cables directly from RRH and BBU without using the nTap, you must turn on the through mode (Thru) in the CPRI parameter settings.

A SFP/SFP+ transceiver that is connected to your JD700B series must be compatible with your DUT and you must have your module information such as line rate, wavelength, and mode (MM or SM) handy.

Figure 337 Connection diagram for downlink signal analysis

Selecting measurement mode

Procedure

- 1 Press the MEASURE hot key.
- 2 Select Signal Analyzer > LTE-FDD.
- 3 Select the downlink signal analysis mode from the following choices:

Spectrum

RF Analysis > Channel Power or Occupied BW

Power vs Time (Frame)

Modulation Analysis > Constellation, Data Channel, Control Channel, Subframe,

Frame, Time Alignement Error, or Data Allocation Map

Power Statistics CCDF

Selecting port

JD700B series supports two antenna ports for signal transmission, and each port can generate up to four different waveforms selectively and simultaneously. User can select the port to use for the measurement in any measurement modes of RFoCPRI mode.

Procedure

- 1 In any measurement mode, press the **MEASURE SETUP** hot key.
- 2 Toggle the **Select Port** soft key between **Port 1** and **Port 2** to select the desired port.

Configuring test parameters

Setting frequency

You can set the frequency with either frequency or channel number. If a frequency to be set matches to the frequency corresponding to the selected channel standard, the instrument calculates its channel number and updates the screen with it automatically.

Procedure

To set the center frequency:

- 1 Press the FREQ/DIST hard key.
- 2 Toggle the Unit soft key to Freq.
- 3 Press the Center Frequency soft key.
- 4 Enter a value by using the numeric keys or the rotary knob.
- 5 Select the unit: GHz, MHz, kHz, or Hz.
- 6 Optional. To define the amount of frequency increment for the rotary knob, complete the following steps:
 - a Press the Frequency Step soft key.
 - **b** Enter a value by using the numeric keys or the rotary knob.
 - c Press the unit: GHz, MHz, kHz, or Hz.

To set the channel number:

- 1 Press the FREQ/DIST hard key.
- 2 Toggle the Unit soft to Channel.

NOTE

Selecting **Channel** sets the standard channel to **Band Global** automatically so that you can set the **Channel Number** without choosing a standard channel band from the list.

- 3 Press the Channel Number soft key.
- **4** Enter a value by using the numeric keys or the rotary knob.
- 5 Press the Enter soft key.
 - The instrument automatically displays the corresponding center frequency value for the selected channel number.
- 6 Optional. To define the amount of channel increment for the rotary knob, complete the following steps:
 - a Press the Channel Step soft key.
 - **b** Enter a value by using the numeric keys or the rotary knob.
 - c Press the Enter soft key.

Setting amplitude

You can set the reference automatically or manually to optimize the display of the trace, as you desire.

Procedure

- 1 Press the AMP/SCALE hard key.
- 2 Complete one of the followings:

To optimize the Y-axis scale automatically, press the Auto Scale soft key.

To set the maximum reference value on the Y-axis manually, complete the following steps:

- a Press the Reference Level soft key.
- **b** Enter a value by using the numeric keys or the rotary knob with 10 dB increments.
- c Press the Unit soft key or the ENTER hard key.

NOTE

In the **Control Channel**, **Subframe**, and **Frame** measurement modes, you can select a reference option between **Relative** and **Absolute** instead.

- 3 To set an external offset, complete the following steps:
 - a Toggle the External Offset soft key to On.
 - b Enter a value by using the numeric keys.
 - c Press the dB soft key to complete the entry.

The instrument displays a measurement result with the set value reflected. For example, if you set it to 40 dB, the measurement result compensates 40 dB.

- **4** To change the setting of the scale per division, complete the following steps:
 - a Select More (1/2) > Scale/Div.
 - **b** Enter a value between 1 and 20 by using the numeric keys.
 - **c** Press the **dB** soft key to complete the entry.
- 5 To change the scale unit, select More (1/2) > Units, and then select the display unit option from: dBm, dBV, dBmV, dBμV, V, or W.
 The scale unit on the screen changes accordingly.

NOTE

The Scale/Div and Units menus are available in the Spectrum and RF Analysis modes.

Setting average

In the spectrum and RF analysis, you can set the number of measurements to be averaged for the trace presentation. A maximum of 100 times of averaging can be set. When the averaging reaches to your setting, a new measurement value replaces the measurement value in sequence from the earliest.

Procedure

- 1 Press the BW/AVG hard key.
- 2 Press the Average soft key.
- 3 Enter a value between 1 and 100 as needed by using the numeric keys.
- 4 Press the Enter soft key.

Setting sweep mode

The default setting is **Continue** to sweep continuously for most on-going measurements. If you want to hold the measurement or get a single sweep, you can change the sweep mode.

Procedure

- 1 Press the SWEEP hot key.
- 2 Complete the following steps:

To select the single sweep mode, complete the following steps:

- Toggle the Sweep Mode soft key to Single or press the HOLD hot key. The letter HOLD in red appears and the sweeping is paused.
- **b** To get a new measurement, press the **Sweep Once** soft key.

To return to the continuous sweep mode, toggle the **Sweep Mode** soft key to **Continue** or press the **HOLD** hot key.

The letter HOLD in red disappears and the sweeping resumes.

Setting measure setup

Procedure

- 1 Press the MEASURE SETUP hot key.
- 2 To set the CPRI line bit rate of the fronthaul under test, complete the following steps:
 - a Press the Link Rate soft key.
 - Select the CPRI link rate option from: 614.4 Mbps, 1228.8 Mbps,
 2457.6 Mbps, 3072.0 Mbps, 4915.2 Mbps, 6144.0 Mbps, or 9830.4 Mbps.

NOTE

It is important that you set the link rate correctly to avoid any misleading LOS and LOF alarms displayed on the screen.

- 3 Press the Tx Clock soft key, and then select Recovered (default).
- 4 Toggle the Port Type soft key to Slave (default).
- 5 To turn on the through mode if you have not used a tap, go to More (1/2) > Thru, and then toggle the Thru soft key to On. To turn off, toggle to Off.
- **6** To configure Rx parameters, see "Configuring Rx Parameters" on page 570.
- 7 Optional. To use the RF signal generator function, see "Using RF source in RFoCPRI testing" on page 617.
- 8 Optional. To use the CPRI signal generator function, see "Using CPRI source" on page 618.

Configuring Rx Parameters

Procedure

- 1 Press the **MEASURE SETUP** hot key.
- 2 Press the Rx Parameters soft key.
- **3** To set the antenna per carrier group, complete the following steps:
 - a Press the AxC Group soft key.
 - **b** Enter a value by using the numeric keys or the rotary knob.
 - c Press the Enter soft key.

NOTE

Maximum number of the AxC Group is determined by the factors of link rate, sample width, oversampling, and signal bandwidth.

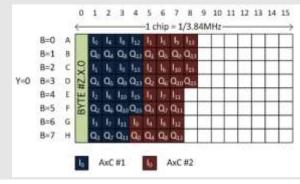
- **4** To set the I and Q sample widths, complete the following steps:
 - a Press the IQ Sample Width soft key
 - **b** Enter a value between 4 and 20 by using the rotary knob or the numeric keys, and then press the **Enter** soft key.

NOTE

According to the CPRI specification, the IQ sample width shall be between 4 and 20 bits for I and Q in the uplink and between 8 and 20 bits in the downlink.

- 5 To set the first bit position of each AxC Container in the IQ data block of a basic frame, complete the following steps:
 - a Press the Map Position soft key.
 - b Select the AxC Container number you want to set from the choices: AxC 0, AxC 1, AxC 2, AxC 3, AxC 4, AxC 5, AxC 6, or AxC 7. Not all of these are activated depending on your bandwidth setting.
 - **c** Enter a value by using the numeric keys or the rotary knob.
 - d Press the Enter soft key.

NOTE


The Antenna-Carrier (AxC) is the amount of digital baseband (IQ) U-plane data necessary for either reception or transmission of one carrier at one independent antenna element. The number of required AxC Container for a basic frame are two AxCs for 5 MHz, four AxCs for 10 MHz, and eight AxCs for 20 MHz.

Following is an example of test configuration for a DUT.

DUT	
CPRI Line Rate (Mbps)	614.4
UMTS Channel (MHz)	3.84
Carners	2
AxC Positioning	Packed
IQ Sampling	15
Over Sampling	1

Tes	t Configuration	on
Link Rate	(Mbps)	614.4
Bandwidt	n (MHz)	3
NE	d.	None
AxC Group		1-2
IQ Sample Width		15
Map Position	AxC 0	0
	AxC 1	15

For this test configuration, IQ allocation will be like this in the CPRI basic frame.

- **6** To set the bandwidth of the downlink signal, complete the following steps:
 - a Press the Bandwidth soft key.
 - Select the bandwidth option from: 1.4 MHz, 3 MHz, 5 MHz, 10 MHz, 15 MHz, 15 MHz, 15 MHz, or 20 MHz (6 AxC).
 The RBW range changes based on this bandwidth setting.
 Required number of AxC containers varies depending on the selected bandwidth.
- 7 To use the pre-configured settings for a NEM, complete the following steps:
 - Press the NEM soft key.
 - Select an NEM from the following choices:

None (no pre-configuration)

Ericsson > Ericsson (UL) and Ericsson (DL)

Alcatel-Lucent (UL/DL)

Samsung (UL/DL)

Huawei > Huawei (UL) and Huawei (DL)

ZTE (UL/DL)

NOTE

If you have selected a NEM, the instrument sets the Map Postion and other releated settings automatically based on the selected NEM and you cannot edit the map position setting. The pre-configured information may be subject to changes at any times by NEMs.

Viewing decoded MIB and SIB1/2 information

In LTE system, the System Information (SI) that is carried over transport channel BCH or by DL-SCH consists of two parts: static part called MIB (Master Information Block) and dynamic part called SIBs (System Information Blocks). MIB contains important information such as system bandwidth, System Frame Number (SFN), PHICH configuration while SIBs contain other useful information including transit power, number of antenna, and SIB scheduling information for UE to read to access a cell.

JD700B series decodes MIB, the first of SIB (SIB1), and the second of SIB (SIB2) and provides you with decoded information of several parameters. If you are not familiar with matching the system information between IQ spectrum and RF spectrum, this feature enables you to identify the uplink carrier frequency and bandwidth so that you can map AxC container to the RF carrier by combining the decoded information with

other system parameters obtained by RFoCPRI signal analysis. As not all LTE frames have transmitted SIB, it may take time for the instrument to capture frames with the system information and decode MIB and SIB1/2.

Procedure

- 1 Make sure that you have set the frequency to "Band Global" for the technology.
- 2 Press the TRACE/DISPLAY hard key.
- 3 Press the MIB & SIB1/2 Information soft key.

The MIB and SIB1/2 Information window appears with the following parameters:

SFN: System Frame Number.

p-Max: Maximum allowed UL transmit power of the cell

systemInfoValueTag: It indicates if a change has occurred in the SI messages. UEs may use this, e.g. upon return from out of coverage, to verify if the previously stored SI messages are still valid.

Freqinfo-ul-CarrierFreq: Uplink channel number

Freqinfo-ul-Bandwidth: Uplink bandwidth


timeAlignmentTimerCommon: It is used to control how long the UE should consider to be time aligned in uplink. The value is in subframes.

NOTE

Some or entire parameters may not be available depending on the system configuration or the NEM of the system. Also, this feature may not work for Ericsson RRHs.

Figure 338 Decoded MIB & SIB1/2 information in RFoCPRI LTE-FDD signal analyzer

Conducting spectrum measurement

Making a measurement

Procedure

- 1 Press the **MEASURE** hot key to select the measurement mode.
- 2 Select Signal Analyzer > LTE-FDD > Spectrum.
- 3 Configure test parameters as described in the "Configuring test parameters" on page 568.
- 4 Press the **MEASURE SETUP** hot key, and then set the following parameters:

Measurement setups as described in the "Setting measure setup" on page 570

Rx Parameters as described in the "Configuring Rx Parameters" on page 570

- **5** Check your measurement result displayed on the screen.
- 6 To clear current (C) and history (H) status of CPRI alarm on LOS and LOF and start a new monitoring, press the MEASURE SETUP hot key and then the Clear History soft key.
- 7 Optional. Go to **SAVE/LOAD** > **Save**, and then select the save option from the choices available for your measurement mode. See "Using save" on page 34 for more information.

Setting trace

You can display up to six traces on the measurement chart simultaneously.

Procedure

- 1 Press the TRACE/DISPLAY hard key.
- 2 Press the Select Trace soft key, and then select the trace number: T1, T2, T3, T4, T5, or T6. The legend shape of the selected trace changes from square to round to indicate that the trace is the active one now.
- 3 Do one of the following:

То	Select	Trace Legend
Clear current data and display with new measurements	Clear Write	W
Display the input signal's maximum response only (unlimited or for a certain amount of time)	Max Hold	M
Display the input signal's minimum response only (unlimited or for a certain amount of time)	Min Hold	m
Capture the selected trace and compare traces	Capture	С
Load a saved trace	More (1/2) > Load	L
Hide the displayed trace	Trace View > Off	F
Remove all the traces and initialize the trace settings	More (1/2) > Trace Clear All	

NOTE

For the **Max Hold** and **Min Hold**, your instrument compares newly acquired data with the active trace and displays larger maximum values or smaller minimum values on the screen. You can set it to **Unlimited** to hold and view maximum or minimum data or specify a certain amount of time up to 60 seconds by using numeric keys or rotary knob.

- 4 Optional. Select More (1/2) > Trace Info, and then select the trace number to view the trace's parameter setting information stored at the time of the measurement or None to hide the information display.
- Optional. If you have the two traces T1 and T2, you can perform trace math. To view the power difference between the traces, press the T1 T2 -> T5 or T2 T1 -> T6 soft key. The result is overlaid on the screen along with the second Y-axis.

Measurement example

Figure 339 Spectrum measurement with RFoCPRI LTE-FDD signal analyzer

Conducting channel power measurement

The Channel Power measurement is a common test used in the wireless industry to measure the total transmitted power of a radio within a defined frequency channel. It acquires a number of points representing the input signal in the time domain, transforms this information into the frequency domain using Fast Fourier Transform (FFT), and then calculates the channel power. The effective resolution bandwidth of the frequency domain trace is proportional to the number of points acquired for the FFT.

The channel power measurement identifies the total RF power and power spectral density (PSD) of the signal in the LTE channel bandwidth.

Making a measurement

Procedure

- 1 Press the **MEASURE** hot key to select the measurement mode.
- 2 Select Signal Analyzer > LTE-FDD > RF Analysis > Channel Power.
- 3 Configure test parameters as described in the "Configuring test parameters" on page 568.
- 4 Press the *MEASURE SETUP* hot key, and then set the following parameters:

 Measurement setups as described in the "Setting measure setup" on page 570
 - Rx Parameters as described in the "Configuring Rx Parameters" on page 570
- **5** Check your measurement result displayed on the screen.
- 6 To clear current (C) and history (H) status of CPRI alarm on LOS and LOF and start a new monitoring, press the **MEASURE SETUP** hot key and then the **Clear History** soft key.
- 7 Optional. Go to **SAVE/LOAD** > **Save**, and then select the save option from the choices available for your measurement mode. See "Using save" on page 34 for more information.

Measurement example

Figure 340 Channel power measurement with RFoCPRI LTE-FDD signal analyzer

NOTE

You can use the *LIMIT* hot key to analyze your measurements with the user-definable limit and Pass/Fail indication. See "Setting limit for RFoCPRI signal analysis" on page 592 for more information.

Occupied bandwidth

The Occupied Bandwidth measures the spectrum shape of the carrier. It is defined as the bandwidth, which includes 99% of the transmitted power among total transmitted power.


Making a measurement

Procedure

- 1 Press the **MEASURE** hot key to select the measurement mode.
- 2 Select Signal Analyzer > LTE-FDD > RF Analysis > Occupied BW.
- 3 Configure test parameters as described in the "Configuring test parameters" on page 568.
- 4 Press the **MEASURE SETUP** hot key, and then set the following parameters:
 - Measurement setups as described in the "Setting measure setup" on page 570
 - Rx Parameters as described in the "Configuring Rx Parameters" on page 570
- **5** Check your measurement result displayed on the screen.
- 6 To clear current (C) and history (H) status of CPRI alarm on LOS and LOF and start a new monitoring, press the *MEASURE SETUP* hot key and then the **Clear History** soft key.
- 7 Optional. Go to SAVE/LOAD > Save, and then select the save option from the choices available for your measurement mode. See "Using save" on page 34 for more information.

Measurement example

Figure 341 Occupied bandwidth measurement with RFoCPRI LTE-FDD signal analyzer

NOTE

You can use the *LIMIT* hot key to analyze your measurements with the user-definable limit and Pass/Fail indication. See "Setting limit for RFoCPRI signal analysis" on page 592 for more information.

Conducting power vs. time (frame) measurement

The Power vs. Time (Frame) measures the modulation envelope in the time domain, showing the power of each time slot in an LTE signal.

Making a measurement

Procedure

- 1 Press the **MEASURE** hot key to select the measurement mode.
- 2 Select Signal Analyzer > LTE-FDD > P vs T (Frame).
- 3 Configure test parameters as described in the "Configuring test parameters" on page 568.
- 4 Press the **MEASURE SETUP** hot key, and then set the following parameters:

Measurement setups as described in the "Setting measure setup" on page 570

Rx Parameters as described in the "Configuring Rx Parameters" on page 570

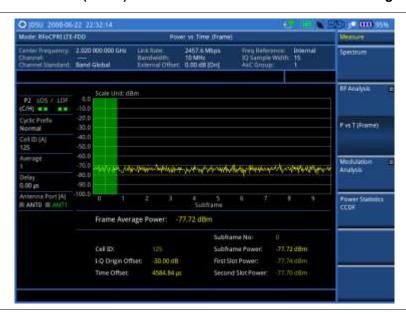
- 5 To select the subframe number to be measured, complete the following steps:
 - a Press the Subframe No soft key.
 - **b** Enter a value by using the numeric keys or the rotary knob.
 - c Press the Enter soft key.
- 6 Toggle the Cell ID soft key to Auto or Manual as desired:

Auto: Makes the instrument detect the Cell ID for the LTE signal automatically.

Manual: Sets a specific Cell ID for the LTE signal manually in order to speed up the synchronization.

- 7 Depending on your selected NEM, you may need to turn on or off the inversion of the I and Q order by toggling the IQ Swap soft key to On or Off.
- 8 Optional. Press the Miscellaneous soft key, and then do the following as needed:

To assign a antenna port number automatically or manually, press the Antenna Port soft


key and select the option: Auto, 0, and 1.

To select the cyclic prefix, toggle the **Cyclic Prefix** soft key to **Normal** or **Extended**. See "Appendix E – Cyclic prefix table" on page 749 for OFDM parameter details by different bandwidth.

- **9** Check your measurement result displayed on the screen.
- 10 To clear current (C) and history (H) status of CPRI alarm on LOS and LOF and start a new monitoring, press the MEASURE SETUP hot key and then the Clear History soft key.
- 11 Optional. Go to **SAVE/LOAD** > **Save**, and then select the save option from the choices available for your measurement mode. See "Using save" on page 34 for more information.

Measurement example

Figure 342 Power vs. time (frame) measurement with RFoCPRI LTE-FDD signal analyzer

Conducting constellation measurement

The Constellation is used to observe some aspects of modulation accuracy and can reveal certain fault mechanisms such as I/Q amplitude imbalance or quadrature imbalance. It displays constellation diagram by modulation types.

Making a measurement

Procedure

- 1 Press the **MEASURE** hot key to select the measurement mode.
- 2 Select Signal Analyzer > LTE-FDD > Modulation Analysis > Constellation.
- 3 Configure test parameters as described in the "Configuring test parameters" on page 568.
- 4 Press the **MEASURE SETUP** hot key, and then set the following parameters:

Measurement setups as described in the "Setting measure setup" on page 570

Rx Parameters as described in the "Configuring Rx Parameters" on page 570

- 5 To select the subframe number to be measured, complete the following steps:
 - Press the Subframe No soft key.
 - **b** Enter a value by using the numeric keys or the rotary knob.

NOTE

For MBMS testing, this subframe number must be neither 0 nor 5 as these subframes 0

and 5 are not available for MBMS and it must be set to the MBMS transmitted channel's subframe number.

- c Press the Enter soft key.
- 6 Toggle the Cell ID soft key between Auto and Manual:

Auto: Makes the instrument detect the Cell ID for the LTE signal automatically.

Manual: Sets a specific Cell ID for the LTE signal manually in order to speed up the synchronization.

- 7 Depending on your selected NEM, you may need to turn on or off the inversion of the I and Q order by toggling the IQ Swap soft key to On or Off.
- 8 Optional. Press the **Miscellaneous** soft key, and then set other miscellaneous setups as described in the following section.
- **9** Check your measurement result displayed on the screen.
- **10** To clear current (C) and history (H) status of CPRI alarm on LOS and LOF and start a new monitoring, press the **MEASURE SETUP** hot key and then the **Clear History** soft key.
- 11 Optional. Go to **SAVE/LOAD** > **Save**, and then select the save option from the choices available for your measurement mode. See "Using save" on page 34 for more information.

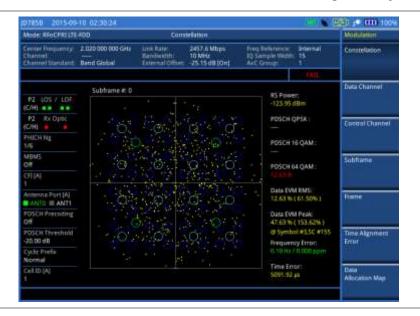
Setting other miscellaneous setups

Procedure

- 1 To assign a antenna port number automatically or manually, press the **Antenna Port** soft key and select the option from: **Auto**, **0**, or **1**.
- To select the cyclic prefix, toggle the Cyclic Prefix soft key to Normal or Extended. See "Appendix E Cyclic prefix table" on page 749 for OFDM parameter details by different bandwidth.
- 3 To turn on or off the Multimedia Broadcast Multicast Service (MBMS) feature, toggle the MBMS soft key to On or Off. For proper MBMS testing, you need to set Subframe No with the same PMCH subframe number. If this setting is on, either PMCH or PDSCH appears on the screen depending on the detected channel.
- 4 To set the Multicast Broadcast Single Frequency Network (MBSFN) detection automatically or manually for MBMS testing, toggle the MBSFN soft key to Auto or Manual. An automatically detected or manually entered MBSFN ID appears on the screen.
- To select the PDSCH modulation type, press the PDSCH Modulation Type soft key and then select an option from: Auto, QPSK, 16 QAM, 64 QAM, E-TM3.3, E-TM3.2, E-TM3.1, E-TM2, E-TM1.2, or E-TM1.1.

NOTE

If two or more modulation types are used in a frame, select **Auto**. If the PDSCH uses the same modulation type in a frame or in a subframe, select a specific modulation type to get more accurate EVM.


- 6 To set the threshold for PDSCH, complete the following steps:
 - Press the PDSCH Threshold soft key.
 - **b** Enter a value by using the numeric keys.
 - c Press the Enter soft key.
- 7 To enable or disable the PDSCH precoding, toggle the PDSCH Precoding soft key to On or Off.
- 8 To set the Control Format Indicator, toggle the CFI soft key to Auto or Manual:

Auto: Makes the instrument set the number of OFDM symbols used for transmitting PDCCHs in a subframe.

Manual: Sets the number of OFDM symbols manually.

9 To select the number of PHICH groups (Ng), press the PHICH Ng soft key and then select an option: 1/6, 1/2, 1, 2, E-1/6, E-1/2, E-1, or E-2.

Figure 343 Constellation measurement with RFoCPRI LTE-FDD signal analyzer

NOTE

You can use the *LIMIT* hot key to analyze your measurements with the user-definable limit and Pass/Fail indication. See "Setting limit for RFoCPRI signal analysis" on page 592 for more information.

Conducting data channel measurement

The Data Channel measures the constellation for the specified resource block as well as the modulation accuracy of each PDSCH at the specified subframe.

Making a measurement

Procedure

- 1 Press the **MEASURE** hot key to select the measurement mode.
- 2 Select Signal Analyzer > LTE-FDD > Modulation Analysis > Data Channel.
- 3 Configure test parameters as described in the "Configuring test parameters" on page 568.
- 4 Press the **MEASURE SETUP** hot key, and then set the following parameters:

Measurement setups as described in the "Setting measure setup" on page 570

Rx Parameters as described in the "Configuring Rx Parameters" on page 570

- 5 To select the subframe number to be measured, complete the following steps:
 - Press the Subframe No soft key.
 - **b** Enter a value by using the numeric keys or the rotary knob.

NOTE

For MBMS testing, this subframe number must be neither 0 nor 5 as these subframes 0 and 5 are not available for MBMS and it must be set to the MBMS transmitted channel's subframe number.

- c Press the Enter soft key.
- 6 Toggle the Cell ID soft key to Auto or Manual as desired:

Auto: Detects the Cell ID for the LTE signal automatically.

Manual: Sets a specific Cell ID for the LTE signal manually in order to speed up the synchronization.

- 7 To enable or disable the event hold feature, toggle the Event Hold soft key to On or Off. When enabled, the display line for the PDSCH threshold appears. When an event occurs, the measurement is put on hold until you press the HOLD hot key.
- 8 Depending on your selected NEM, you may need to turn on or off the inversion of the I and Q order by toggling the IQ Swap soft key to On or Off.
- 9 Optional. Press the Miscellaneous soft key, and then set other miscellaneous setups as described in the following section.
- **10** Check your measurement result displayed on the screen.
- 11 To clear current (C) and history (H) status of CPRI alarm on LOS and LOF and start a new monitoring, press the *MEASURE SETUP* hot key and then the **Clear History** soft key.
- **12** Optional. Go to **SAVE/LOAD** > **Save**, and then select the save option from the choices available for your measurement mode. See "Using save" on page 34 for more information.

Setting other miscellaneous setups

Procedure

- 1 To assign a antenna port number automatically or manually, press the **Antenna Port** soft key and select the option from: **Auto**, **0**, or **1**.
- 2 To select the cyclic prefix, toggle the Cyclic Prefix soft key to Normal or Extended. See "Appendix E Cyclic prefix table" on page 749 for OFDM parameter details by different bandwidth.
- To turn on or off the Multimedia Broadcast Multicast Service (MBMS) feature, toggle the MBMS soft key to On or Off. For proper MBMS testing, you need to set the Subframe No with the same PMCH subframe number. If this setting is on, either PMCH or PDSCH appears on the screen depending on the detected channel.
- 4 To set the Multicast Broadcast Single Frequency Network (MBSFN) detection automatically or manually for MBMS testing, toggle the MBSFN soft key to Auto or Manual. An automatically detected or manually entered MBSFN ID appears on the screen.
- To select the PDSCH modulation type, press the PDSCH Modulation Type soft key and then select the option from: Auto, QPSK, 16 QAM, 64 QAM, E-TM3.3, E-TM3.2, E-TM3.1, E-TM2, E-TM1.2. or E-TM1.1.

NOTE

If two or more modulation types are used in a frame, select **Auto**. If the PDSCH uses the same modulation type in a frame or in a subframe, select a specific modulation type to get more accurate EVM.

- 6 To set the threshold for PDSCH, complete the following steps:
 - a Press the PDSCH Threshold soft key.
 - **b** Enter a value by using the numeric keys.
 - Press the Enter soft key.
- 7 To enable or disable the PDSCH precoding, toggle the PDSCH Precoding soft key to On or Off.
- 8 To set the Control Format Indicator, toggle the CFI soft key to Auto or Manual:

Auto: Makes the instrument set the number of OFDM symbols used for transmitting PDCCHs in a subframe.

Manual: Sets the number of OFDM symbols manually.

9 To select the number of PHICH groups (Ng), press the PHICH Ng soft key and then select the option from: 1/6, 1/2, 1, 2, E-1/6, E-1/2, E-1, or E-2.

Using marker

You can use the **MARKER** hard key to place a marker on a resource block and display the IQ diagram for the selected resource block.

Procedure

- 1 Press the MARKER hard key.
- 2 Press the RB Number soft key to select the resource block to be marked.
- 3 Enter the resource block number by using the numeric keys.
- 4 Press the Enter soft key. The marker appears on the selected resource block.
- 5 Toggle the Marker View soft key between On and Off to display or hide the result of the selected resource block.

Measurement example

Figure 344 Data channel measurement with RFoCPRI LTE-FDD signal analyzer

NOTE

You can use the *LIMIT* hot key to analyze your measurements with the user-definable limit and Pass/Fail indication. See "Setting limit for RFoCPRI signal analysis" on page 592 for more information.

Conducting control channel measurement

The Control Channel measures the constellation for the specified control channel as well as modulation accuracy of the control channel at the specified subframe.

Making a measurement

- 1 Press the **MEASURE** hot key to select the measurement mode.
- 2 Select Signal Analyzer > LTE-FDD > Modulation Analysis > Control Channel.
- 3 Configure test parameters as described in the "Configuring test parameters" on page 568.
- 4 Press the **MEASURE SETUP** hot key, and then set the following parameters:
 - Measurement setups as described in the "Setting measure setup" on page 570
 - Rx Parameters as described in the "Configuring Rx Parameters" on page 570
- **5** To select the subframe number to be measured, complete the following steps:

- a Press the Subframe No soft key.
- **b** Enter a value by using the numeric keys. You can also use the rotary knob.

NOTE

For MBMS testing, this subframe number must be neither 0 nor 5 as these subframes 0 and 5 are not available for MBMS and it must be set to the MBMS transmitted channel's subframe number.

- c Press the Enter soft key.
- 6 Toggle the Cell ID soft key to Auto or Manual as desired:

Auto: Detects the Cell ID for the LTE signal automatically.

Manual: Sets a specific Cell ID for the LTE signal manually in order to speed up the synchronization.

7 Toggle the EVM Detection Mode soft key to Single or Combine as desired:

Single: Testing on one single antenna connected to your JD700B series with a cable.

Combine: Testing on multiple antennas connected to your JD700B series with a 2x1 combiner or an antenna.

- 8 Depending on your selected NEM, you may need to turn on or off the inversion of the I and Q order by toggling the IQ Swap soft key to On or Off.
- 9 Optional. Press the Miscellaneous soft key, and then set other miscellaneous setups as described in the following section.
- 10 Check your measurement result displayed on the screen.
- 11 To clear current (C) and history (H) status of CPRI alarm on LOS and LOF and start a new monitoring, press the *MEASURE SETUP* hot key and then the **Clear History** soft key.
- **12** Optional. Go to **SAVE/LOAD** > **Save**, and then select the save option from the choices available for your measurement mode. See "Using save" on page 34 for more information.

Setting other miscellaneous setups

Procedure

- 1 To assign a antenna port number automatically or manually, press the **Antenna Port** soft key and select the option from: **Auto**, **0**, or **1**.
- To select the cyclic prefix, toggle the Cyclic Prefix soft key to Normal or Extended. See "Appendix E Cyclic prefix table" on page 749 for OFDM parameter details by different bandwidth.
- To turn on or off the Multimedia Broadcast Multicast Service (MBMS) feature, toggle the MBMS soft key to On or Off. For proper MBMS testing, you need to set the Subframe No with the same PMCH subframe number. If this setting is on, either PMCH or PDSCH appears on the screen depending on the detected channel.
- 4 To set the Multicast Broadcast Single Frequency Network (MBSFN) detection automatically or manually for MBMS testing, toggle the MBSFN soft key to Auto or Manual. An automatically detected or manually entered MBSFN ID appears on the screen.
- 5 To set the threshold for PDCCH, complete the following steps:
 - Press the PDCCH Threshold soft key.
 - Enter a value by using the numeric keys.
 - c Press the Enter soft key.
- 6 Toggle the PDCCH Mode soft key between REG and Avg.

REG: Calculates EVM based on Resource Element Group

Avg: Calculates EVM after adding all the PDCCH signals from one subframe.

7 To set the Control Format Indicator, toggle the CFI soft key between Auto and Manual:

Auto: Makes the instrument set the number of OFDM symbols used for transmitting PDCCHs in a subframe.

Manual: Sets the number of OFDM symbols manually.

8 To select the number of PHICH groups (Ng), press the **PHICH Ng** soft key and then select the option from: **1/6**, **1/2**, **1**, **2**, **E-1/6**, **E-1/2**, **E-1**, or **E-2**.

Using marker

You can use the **MARKER** hard key to place a marker on a control channel and display the IQ diagram for the selected channel.

Procedure

- 1 Press the MARKER hard key.
- 2 Press the Channel soft key to select a channel to be displayed in the IQ diagram. The channel P-SS is selected by default.
- **3** Press the up/down arrow keys or turn the rotary knob to highlight a channel in the channel summary table, and then press the center of the rotary knob.
- 4 Toggle the Marker View soft key between On and Off to display or hide the result of the selected channel.

Measurement example

Figure 345 Control channel measurement with RFoCPRI LTE-FDD signal analyzer

NOTE

You can use the *LIMIT* hot key to analyze your measurements with the user-definable limit and Pass/Fail indication. See "Setting limit for RFoCPRI signal analysis" on page 592 for more information.

Conducting subframe measurement

The Subframe measures the modulation accuracy of all the data and control channels at the specified subframe (1 ms).

Making a measurement

- 1 Press the **MEASURE** hot key to select the measurement mode.
- 2 Select Signal Analyzer > LTE-FDD > Modulation Analysis > Subframe.
- 3 Configure test parameters as described in the "Configuring test parameters" on page 568.
- 4 Press the **MEASURE SETUP** hot key, and then set the following parameters:

Measurement setups as described in the "Setting measure setup" on page 570 Rx Parameters as described in the "Configuring Rx Parameters" on page 570

- **5** To select the subframe number to be measured, complete the following steps:
 - Press the Subframe No soft key.
 - **b** Enter a value by using the numeric keys or the rotary knob.

NOTE

For MBMS testing, this subframe number must be neither 0 nor 5 as these subframes 0 and 5 are not available for MBMS and it must be set to the MBMS transmitted channel's subframe number.

- c Press the Enter soft key.
- 6 Toggle the Cell ID soft key between Auto and Manual:

Auto: Detects the Cell ID for the LTE signal automatically.

Manual: Sets a specific Cell ID for the LTE signal manually in order to speed up the synchronization.

7 Toggle the EVM Detection Mode soft key between Single and Combine:

Single: Testing on one single antenna connected to your JD700B series with a cable.

Combine: Testing on multiple antennas connected to your JD700B series with a 2x1 combiner or an antenna.

- 8 Depending on your selected NEM, you may need to turn on or off the inversion of the I and Q order by toggling the IQ Swap soft key to On or Off.
- 9 Optional. Press the Miscellaneous soft key, and then set other miscellaneous setups as described in the following section.
- **10** Check your measurement result displayed on the screen.
- 11 To clear current (C) and history (H) status of CPRI alarm on LOS and LOF and start a new monitoring, press the MEASURE SETUP hot key and then the Clear History soft key.
- **12** Optional. Go to **SAVE/LOAD** > **Save**, and then select the save option from the choices available for your measurement mode. See "Using save" on page 34 for more information.

Setting other miscellaneous setups

Procedure

- 1 To assign a antenna port number automatically or manually, press the **Antenna Port** soft key and select the option from: **Auto**, **0**, or **1**.
- 2 To select the cyclic prefix, toggle the Cyclic Prefix soft key between Normal and Extended. See "Appendix E Cyclic prefix table" on page 749 for OFDM parameter details by different bandwidth.
- 3 To turn on or off the Multimedia Broadcast Multicast Service (MBMS) feature, toggle the MBMS soft key to On or Off. For proper MBMS testing, you need to set the Subframe No with the same PMCH subframe number. If this setting is on, either PMCH or PDSCH appears on the screen depending on the detected channel.
- 4 To set the Multicast Broadcast Single Frequency Network (MBSFN) detection automatically or manually for MBMS testing, toggle the MBSFN soft key to Auto or Manual. An automatically detected or manually entered MBSFN ID appears on the screen.
- To select the PDSCH modulation type, press the PDSCH Modulation Type soft key and then select the option from: Auto, QPSK, 16 QAM, 64 QAM, E-TM3.3, E-TM3.2, E-TM3.1, E-TM2, E-TM1.2, or E-TM1.1.

NOTE

If two or more modulation types are used in a frame, select **Auto**. If the PDSCH uses the same modulation type in a frame or in a subframe, select a specific modulation type to get more accurate EVM.

- **6** To set the threshold for PDSCH, complete the following steps:
 - Press the PDSCH Threshold soft key.
 - **b** Enter a value by using the numeric keys.
 - Press the Enter soft key.

- 7 To set the threshold for PDCCH, complete the following steps:
 - a Press the PDCCH Threshold soft key.
 - **b** Enter a value by using the numeric keys.
 - c Press the Enter soft key.
- 8 Toggle the PDCCH Mode soft key between REG and Avg.

REG: Calculates EVM based on Resource Element Group

Avg: Calculates EVM after adding all the PDCCH signals from one subframe.

- 9 To enable or disable the PDSCH precoding, toggle the PDSCH Precoding soft key to On or Off.
- 10 To set the Control Format Indicator, toggle the CFI soft key between Auto and Manual:

Auto: Makes the instrument set the number of OFDM symbols used for transmitting PDCCHs in a subframe.

Manual: Sets the number of OFDM symbols manually.

11 To select the number of PHICH groups (Ng), press the PHICH Ng soft key and then select the option from: 1/6, 1/2, 1, 2, E-1/6, E-1/2, E-1, or E-2.

Setting display

You can use the TRACE/DISPLAY hard key to view the RE and RS power at a specific symbol.

Procedure

- 1 Press the TRACE/DISPLAY hard key.
- 2 Toggle the Chart soft key between On and Off to display or hide the chart. If this setting is on, the MARKER hard key is activated.

Using marker

If you turn the Chart view on, you can use the MARKER hard key to place the marker at a specific symbol.

- 1 Press the MARKER hard key.
- 2 Toggle the Marker View soft key between On and Off to display or hide the marker on the chart.
- 3 Press the Symbol soft key to select the symbol number, to which the marker is placed.
- 4 Enter a value by using the numeric keys.
- 5 Press the Enter soft key.

Figure 346 Subframe measurement (regular view) with RFoCPRI LTE-FDD signal analyzer

NOTE

You can use the *LIMIT* hot key to analyze your measurements with the user-definable limit and Pass/Fail indication. See "Setting limit for RFoCPRI signal analysis" on page 592 for more information.

Conducting frame measurement

The Frame measures the modulation accuracy of all the data and control channels at the frame (10 ms).

Making a measurement

Procedure

- 1 Press the **MEASURE** hot key to select the measurement mode.
- 2 Select Signal Analyzer > LTE-FDD > Modulation Analysis > Frame.
- 3 Configure test parameters as described in the "Configuring test parameters" on page 568.
- 4 Press the **MEASURE SETUP** hot key, and then set the following parameters:

Measurement setups as described in the "Setting measure setup" on page 570

Rx Parameters as described in the "Configuring Rx Parameters" on page 570

5 Toggle the Cell ID soft key between Auto and Manual:

Auto: Detects the Cell ID for the LTE signal automatically.

Manual: Sets a specific Cell ID for the LTE signal manually in order to speed up the synchronization.

6 Toggle the EVM Detection Mode soft key between Single and Combine:

Single: Testing on one single antenna connected to your JD700B series with a cable.

Combine: Testing on multiple antennas connected to your JD700B series with a 2x1 combiner or an antenna.

- 7 Depending on your selected NEM, you may need to turn on or off the inversion of the I and Q order by toggling the IQ Swap soft key to On or Off.
- 8 Optional. Press the **Miscellaneous** soft key, and then set other miscellaneous setups as described in the following section.
- **9** Check your measurement result displayed on the screen.

- 10 To clear current (C) and history (H) status of CPRI alarm on LOS and LOF and start a new monitoring, press the MEASURE SETUP hot key and then the Clear History soft key.
- 11 Optional. Go to **SAVE/LOAD** > **Save**, and then select the save option from the choices available for your measurement mode. See "Using save" on page 34 for more information.

Setting other miscellaneous setups

Procedure

- 1 To assign a antenna port number automatically or manually, press the **Antenna Port** soft key and select the option from: **Auto**, **0**, or **1**.
- To select the cyclic prefix, toggle the Cyclic Prefix soft key to Normal or Extended. See "Appendix E Cyclic prefix table" on page 749 for OFDM parameter details by different bandwidth.
- To turn on or off the Multimedia Broadcast Multicast Service (MBMS) feature, toggle the MBMS soft key to On or Off. For proper MBMS testing, you need to set the Subframe No with the same PMCH subframe number. If this setting is on, either PMCH or PDSCH appears on the screen depending on the detected channel.
- 4 To set the Multicast Broadcast Single Frequency Network (MBSFN) detection automatically or manually for MBMS testing, toggle the MBSFN soft key to Auto or Manual. An automatically detected or manually entered MBSFN ID appears on the screen.
- To select the PDSCH modulation type, press the PDSCH Modulation Type soft key and then select the option from: Auto, QPSK, 16 QAM, 64 QAM, E-TM3.3, E-TM3.2, E-TM3.1, E-TM2, E-TM1.2, or E-TM1.1.

NOTE

If two or more modulation types are used in a frame, select **Auto**. If the PDSCH uses the same modulation type in a frame or in a subframe, select a specific modulation type to get more accurate EVM.

- **6** To set the threshold for PDSCH, complete the following steps:
 - Press the PDSCH Threshold soft key.
 - **b** Enter a value by using the numeric keys.
 - Press the Enter soft key.
- 7 To set the threshold for PDCCH, complete the following steps:
 - Press the PDCCH Threshold soft key.
 - **b** Enter a value by using the numeric keys.
 - c Press the Enter soft key.
- 8 Toggle the PDCCH Mode soft key between REG and Avg.

REG: Calculates EVM based on Resource Element Group

Avg: Calculates EVM after adding all the PDCCH signals from one subframe.

- 9 To enable or disable the PDSCH precoding, toggle the PDSCH Precoding soft key to On or Off.
- 10 To set the Control Format Indicator, toggle the CFI soft key between Auto and Manual:

Auto: Makes the instrument set the number of OFDM symbols used for transmitting PDCCHs in a subframe.

Manual: Sets the number of OFDM symbols manually.

11 To select the number of PHICH groups (Ng), press the PHICH Ng soft key and then select the option from: 1/6, 1/2, 1, 2, E-1/6, E-1/2, E-1, or E-2.

Figure 347 Frame measurement with RFoCPRI LTE-FDD signal analyzer

NOTE

You can use the *LIMIT* hot key to analyze your measurements with the user-definable limit and Pass/Fail indication. See "Setting limit for RFoCPRI signal analysis" on page 592 for more information.

Conducting time alignment error measurement

In eNode-B supporting Tx Diversity transmission, signals are transmitted from two or more antennas. These signals shall be aligned. The time alignment error in Tx diversity is specified as the delay between the signals from two antennas at the antenna ports.

Making a measurement

- 1 Press the **MEASURE** hot key to select the measurement mode.
- 2 Select Signal Analyzer > LTE-FDD > Modulation Analysis > Time Alignment Error.
- 3 Configure test parameters as described in the "Configuring test parameters" on page 568.
- 4 Press the **MEASURE SETUP** hot key, and then set the following parameters:
 - Measurement setups as described in the "Setting measure setup" on page 570
 - Rx Parameters as described in the "Configuring Rx Parameters" on page 570
- 5 Toggle the Antenna Config soft key between Ant0 and Ant1.
- 6 Toggle the Cell ID soft key between Auto and Manual:
 - Auto: Detects the Cell ID for the LTE signal automatically.
 - **Manual:** Sets a specific Cell ID for the LTE signal manually in order to speed up the synchronization.
- 7 Depending on your selected NEM, you may need to turn on or off the inversion of the I and Q order by toggling the IQ Swap soft key between On and Off.
- **8** Optional. To select the cyclic prefix, complete the following steps:
 - a Press the Miscellaneous soft key.
 - Toggle the **Cyclic Prefix** soft key to **Normal** or **Extended**. See "Appendix E Cyclic prefix table" on page 749 for OFDM parameter details by different bandwidth.

- **9** Check your measurement result displayed on the screen.
- 10 To clear current (C) and history (H) status of CPRI alarm on LOS and LOF and start a new monitoring, press the MEASURE SETUP hot key and then the Clear History soft key.
- 11 Optional. Go to **SAVE/LOAD** > **Save**, and then select the save option from the choices available for your measurement mode. See "Using save" on page 34 for more information.

Figure 348 Time alignment error measurement with RFoCPRI LTE-FDD signal analyzer

NOTE

You can use the *LIMIT* hot key to analyze your measurements with the user-definable limit and Pass/Fail indication. See "Setting limit for RFoCPRI signal analysis" on page 592 for more information.

Conducting data allocation map measurement

The Data Allocation Map function represents data allocation as a frame.

Making a measurement

Procedure

- 1 Press the **MEASURE** hot key to select the measurement mode.
- 2 Select Signal Analyzer > LTE-FDD > Modulation Analysis > Data Allocation Map.
- 3 Configure test parameters as described in the "Configuring test parameters" on page 568.
- 4 Press the **MEASURE SETUP** hot key, and then set the following parameters:
 - Measurement setups as described in the "Setting measure setup" on page 570
 - Rx Parameters as described in the "Configuring Rx Parameters" on page 570
- **5** To select the subframe number to be measured, complete the following steps:
 - Press the Subframe No soft key.
 - **b** Enter a value by using the numeric keys or the rotary knob.

NOTE

For MBMS testing, this subframe number must be neither 0 nor 5 as these subframes 0 and 5 are not available for MBMS and it must be set to the MBMS transmitted channel's subframe number.

- c Press the Enter soft key.
- 6 Toggle the Cell ID soft key between Auto and Manual:

Auto: Detects the Cell ID for the LTE signal automatically.

Manual: Sets a specific Cell ID for the LTE signal manually in order to speed up the synchronization.

- 7 To set the threshold for PDSCH, complete the following steps:
 - Press the PDSCH Threshold soft key.
 - b Enter a value by using the numeric keys.
 - Press the Enter soft key.
- 8 Depending on your selected NEM, you may need to turn on or off the inversion of the I and Q order by toggling the IQ Swap soft key to On or Off.
- 9 Optional. Press the Miscellaneous soft key, and then set other miscellaneous setups as described in the following section.
- **10** Check your measurement result displayed on the screen.
- 11 To clear current (C) and history (H) status of CPRI alarm on LOS and LOF and start a new monitoring, press the *MEASURE SETUP* hot key and then the **Clear History** soft key.
- **12** Optional. Go to **SAVE/LOAD** > **Save**, and then select the save option from the choices available for your measurement mode. See "Using save" on page 34 for more information.

Setting other miscellaneous setups

Procedure

- 1 To assign a antenna port number automatically or manually, press the **Antenna Port** soft key and select the option from: **Auto**, **0**, or **1**.
- 2 To select the cyclic prefix, toggle the Cyclic Prefix soft key to Normal or Extended. See "Appendix E Cyclic prefix table" on page 749 for OFDM parameter details by different bandwidth.
- To turn on or off the Multimedia Broadcast Multicast Service (MBMS) feature, toggle the MBMS soft key to On or Off. For proper MBMS testing, you need to set the Subframe No with the same PMCH subframe number. If this setting is on, either PMCH or PDSCH appears on the screen depending on the detected channel.
- 4 To set the Multicast Broadcast Single Frequency Network (MBSFN) detection automatically or manually for MBMS testing, toggle the MBSFN soft key to Auto or Manual. An automatically detected or manually entered MBSFN ID appears on the screen.

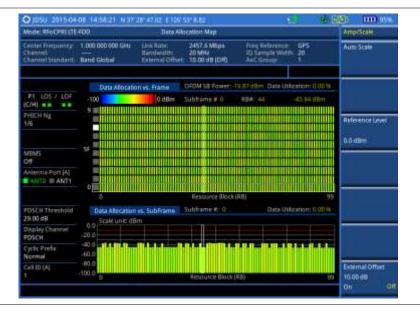
Setting display

You can use the TRACE/DISPLAY hard key to change the display mode to PDSCH, PMCH, or both.

Procedure

- 1 Press the TRACE/DISPLAY hard key.
- 2 Press the Display Channel soft key.
- 3 Select the display mode from: **PDSCH**, **PMCH**, or **Both**.

Using marker


You can use the **MARKER** hard key to place the marker at a specific resource block and subframe.

Procedure

1 Press the MARKER hard key.

- 2 Toggle the Marker View soft key between On and Off to display or hide the marker on the chart.
- 3 To select the resource block number, complete the following steps:
 - Press the RB Number soft key.
 - **b** Enter the resource block number by using the numeric keys or the rotary knob to move the marker side by side.
 - c Press the Enter soft key.
- **4** To select the subframe block number, complete the following steps:
 - Press the Subframe No soft key.
 - **b** Enter the subframe number by using the numeric keys or the rotary knob to move the marker up and down.
 - c Press the Enter soft key.

Figure 349 Data allocation map measurement with RFoCPRI LTE-FDD signal analyzer

Performing power statistics CCDF measurement

The Power Statistics Complementary Cumulative Distribution Function (CCDF) measurement characterizes the power statistics of the input signal. It provides PAR (Peak to Average power Ratio) versus different probabilities.

Making a measurement

- 1 Press the **MEASURE** hot key to select the measurement mode.
- 2 Select Signal Analyzer > LTE-FDD > Power Statistics CCDF.
- 3 Configure test parameters as described in the "Configuring test parameters" on page 568.
- 4 Press the **MEASURE SETUP** hot key, and then set the following parameters:
 - Measurement setups as described in the "Setting measure setup" on page 570 Rx Parameters as described in the "Configuring Rx Parameters" on page 570
- **5** To set the length of the CCDF, complete the following steps:
 - a Press the CCDF Length soft key.
 - **b** Enter a value between 1 and 100 by using the numeric keys or the rotary knob.

- c Press the Enter soft key.
- 6 Check your measurement result displayed on the screen.
- 7 To clear current (C) and history (H) status of CPRI alarm on LOS and LOF and start a new monitoring, press the **MEASURE SETUP** hot key and then the **Clear History** soft key.
- **8** Optional. Go to **SAVE/LOAD** > **Save**, and then select the save option from the choices available for your measurement mode. See "Using save" on page 34 for more information.

Figure 350 CCDF measurement with RFoCPRI LTE-FDD signal analyzer

Setting limit for RFoCPRI signal analysis

By default, test limits specified in the standard are set for you. You can change thresholds if you desire.

Procedure

- 1 Press the *LIMIT* hot key.
- 2 To set a limit for RF analysis tests, press the **RF Test Limits** soft key and then set limits as needed, depending on where you are in the measurement mode.

To set the limit for	Select	Set
Channel power	Channel Power	High Limit, Low Limit
Occupied bandwidth	Occupied BW	High Limit

3 To set a limit for modulation tests, press the **Modulation Test Limits** soft key and then set limits as needed, depending on where you are in the measurement mode.

To set the limit for	Select	Set
Frequency error	Frequency Error	High Limit, Low Limit
PDSCH error vector magnitude if MBMS is off	EVM > PDSCH EVM	High Limit (QPSK) High Limit (16 QAM) High Limit (64 QAM)
PMCH error vector magnitude if MBMS is on and a PMCH is	EVM > PMCH EVM	High Limit (QPSK) High Limit (16 QAM)

detected High Limit (64 QAM) RMS for data error vector magnitude EVM > Data EVM RMS High Limit Peak for data error vector magnitude EVM > Data EVM Peak High Limit RS error vector magnitude EVM > RS EVM High Limit P-SS error vector magnitude EVM > P-SS EVM High Limit S-SS error vector magnitude EVM > S-SS EVM High Limit, Low Limit Downlink RS power Power > DL RS Power High Limit, Low Limit P-SS power Power > P-SS Power High Limit, Low Limit S-SS power Power > S-SS Power High Limit, Low Limit PBCH power Power > PBCH Power High Limit, Low Limit Subframe power Power > Subframe Power High Limit, Low Limit OFDM symbol power Power > Frame Avg Power High Limit, Low Limit Frame average power Power > Frame Avg Power High Limit, Low Limit Time error Time Error High Limit, Low Limit I-Q origin offset IQ Origin Offset High Limit			
magnitude EVM> Data EVM Peak High Limit RS error vector magnitude EVM > RS EVM High Limit P-SS error vector magnitude EVM > P-SS EVM High Limit S-SS error vector magnitude EVM > S-SS EVM High Limit Downlink RS power Power > DL RS Power High Limit, Low Limit P-SS power Power > P-SS Power High Limit, Low Limit S-SS power Power > S-SS Power High Limit, Low Limit PBCH power Power > Power > Power > Power High Limit, Low Limit Subframe power Power > OFDM Symbol Power High Limit, Low Limit OFDM symbol power Power > Frame Avg Power High Limit, Low Limit Time alignment error for MIMO Time Alignment Error > MIMO High Limit, Low Limit Time error Time Error High Limit, Low Limit	detected		High Limit (64 QAM)
RS error vector magnitude		EVM > Data EVM RMS	High Limit
P-SS error vector magnitude EVM > P-SS EVM High Limit S-SS error vector magnitude EVM > S-SS EVM High Limit Downlink RS power Power > DL RS Power High Limit, Low Limit P-SS power Power > P-SS Power High Limit, Low Limit S-SS power Power > S-SS Power High Limit, Low Limit PBCH power Power > PBCH Power High Limit, Low Limit Subframe power Power > Subframe Power High Limit, Low Limit OFDM symbol power Power > OFDM Symbol Power High Limit, Low Limit Frame average power Power > Frame Avg Power High Limit, Low Limit Time alignment error for MIMO Time Alignment Error > MIMO High Limit Time error Time Error High Limit, Low Limit		EVM> Data EVM Peak	High Limit
S-SS error vector magnitude EVM > S-SS EVM High Limit Downlink RS power Power > DL RS Power High Limit, Low Limit P-SS power Power > P-SS Power High Limit, Low Limit S-SS power Power > S-SS Power High Limit, Low Limit PBCH power Power > PBCH Power High Limit, Low Limit Subframe power Power > Subframe Power High Limit, Low Limit OFDM symbol power Power > OFDM Symbol Power High Limit, Low Limit Frame average power Power > Frame Avg Power High Limit, Low Limit Time alignment error for MIMO Time Alignment Error > MIMO High Limit Time error Time Error High Limit, Low Limit	RS error vector magnitude	EVM > RS EVM	High Limit
Downlink RS powerPower > DL RS PowerHigh Limit, Low LimitP-SS powerPower > P-SS PowerHigh Limit, Low LimitS-SS powerPower > S-SS PowerHigh Limit, Low LimitPBCH powerPower > PBCH PowerHigh Limit, Low LimitSubframe powerPower > Subframe PowerHigh Limit, Low LimitOFDM symbol powerPower > OFDM Symbol PowerHigh Limit, Low LimitFrame average powerPower > Frame Avg PowerHigh Limit, Low LimitTime alignment error for MIMOTime Alignment Error > MIMOHigh LimitTime errorTime ErrorHigh Limit, Low Limit	P-SS error vector magnitude	EVM > P-SS EVM	High Limit
P-SS power Power > P-SS Power High Limit, Low Limit S-SS power Power > S-SS Power High Limit, Low Limit PBCH power Power > PBCH Power High Limit, Low Limit Subframe power Power > Subframe Power High Limit, Low Limit OFDM symbol power Power > OFDM Symbol Power High Limit, Low Limit Frame average power Power > Frame Avg Power High Limit, Low Limit Time alignment error for MIMO Time Alignment Error > MIMO High Limit Time error Time Error High Limit, Low Limit	S-SS error vector magnitude	EVM > S-SS EVM	High Limit
S-SS power Power > S-SS Power High Limit, Low Limit PBCH power Power PBCH Power High Limit, Low Limit Subframe power Power > Subframe Power High Limit, Low Limit OFDM symbol power Power > OFDM Symbol Power High Limit, Low Limit Frame average power Power > Frame Avg Power High Limit, Low Limit Time alignment error for MIMO Time Alignment Error > MIMO High Limit Time error Time Error High Limit, Low Limit	Downlink RS power	Power > DL RS Power	High Limit, Low Limit
PBCH power Power PBCH Power High Limit, Low Limit Subframe power Power Subframe Power High Limit, Low Limit OFDM symbol power Power OFDM Symbol Power High Limit, Low Limit Frame average power Power > Frame Avg Power High Limit, Low Limit Time alignment error for MIMO Time Alignment Error > MIMO High Limit Time error Time Error High Limit, Low Limit	P-SS power	Power > P-SS Power	High Limit, Low Limit
Subframe power Power > Subframe Power High Limit, Low Limit OFDM symbol power Power > OFDM Symbol Power High Limit, Low Limit Frame average power Power > Frame Avg Power High Limit, Low Limit Time alignment error for MIMO Time Alignment Error > MIMO High Limit Time error Time Error High Limit, Low Limit	S-SS power	Power > S-SS Power	High Limit, Low Limit
OFDM symbol power Power > OFDM Symbol Power High Limit, Low Limit Frame average power Power > Frame Avg Power High Limit, Low Limit Time alignment error for MIMO Time Alignment Error > MIMO High Limit Time error Time Error High Limit, Low Limit	PBCH power	Power > PBCH Power	High Limit, Low Limit
Frame average power Power > Frame Avg Power High Limit, Low Limit Time alignment error for MIMO Time Alignment Error > MIMO High Limit Time error Time Error High Limit, Low Limit	Subframe power	Power > Subframe Power	High Limit, Low Limit
Time alignment error for MIMO Time Alignment Error > MIMO High Limit Time error Time Error High Limit, Low Limit	OFDM symbol power	Power > OFDM Symbol Power	High Limit, Low Limit
Time error Time Error High Limit, Low Limit	Frame average power	Power > Frame Avg Power	High Limit, Low Limit
	Time alignment error for MIMO	Time Alignment Error > MIMO	High Limit
I-Q origin offset IQ Origin Offset High Limit	Time error	Time Error	High Limit, Low Limit
	I-Q origin offset	IQ Origin Offset	High Limit

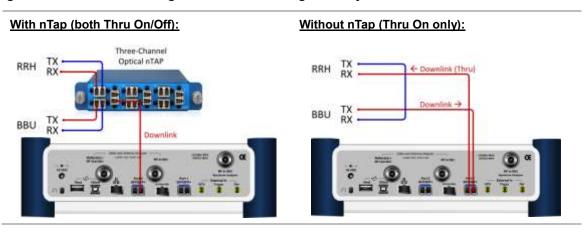
- 4 Optional. You can enable alarm sound that goes off if the measurement falls outside of the limit. Toggle the Beep soft key between On and Off to enable or disable the beep sound.
- **5** Optional. Go to **SAVE/LOAD > Save**, and then select **Limit** to save the limit settings. See "Using save" on page 34 for more information.

Performing LTE-TDD downlink signal analysis

If your JD700B series has the option 092 RFoCPRI LTE-TDD Signal Analyzer installed with a license, you can performs power and spectrum measurements as well as modulation analysis to test the proper transmitter performance of TDD LTE systems over CPRI.

This instrument provides the following measurement tools for TDD LTE system over CPRI:

- Spectrum Analysis
- RF Analysis
 - Channel Power
 - Occupied Bandwidth
- Power vs. Time (Frame)
- Modulation Analysis
 - Constellation
 - Data Channel
 - Control Channel
 - Subframe
 - Time Alignment Error


- Data Allocation Map
- Power Statistics CCDF

Connecting cables

You can connect cables with a tap or without a tap as illustrated in Figure 351. If you have connected cables directly from RRH and BBU without using the nTap, you must turn on the through mode (Thru) in the CPRI parameter settings.

A SFP/SFP+ transceiver that is connected to your JD700B series must be compatible with your DUT and you must have your module information such as line rate, wavelength, and mode (MM or SM) handy.

Figure 351 Connection diagram for downlink signal analysis

Selecting measurement mode

Procedure

- 1 Press the **MEASURE** hot key.
- 2 Select Signal Analyzer > LTE-TDD.
- 3 Select the downlink signal analysis mode from the following choices:

Spectrum

RF Analysis > Channel Power or Occupied BW

Power vs Time (Frame)

 ${\bf Modulation\ Analysis > Constellation,\ Data\ Channel,\ Control\ Channel,\ Subframe,}$

Time Alignement Error, or Data Allocation Map

Power Statistics CCDF

Selecting port

JD700B series supports two antenna ports for signal transmission, and each port can generate different waveforms selectively and simultaneously. User can select the port to use for the measurement in any measurement mode of RFoCPRI mode.

- 1 In any measurement mode, press the **MEASURE SETUP** hot key.
- 2 Toggle the **Select Port** soft key between **Port 1** and **Port 2** to select the desired port.

Configuring test parameters

Setting frequency

You can set the frequency with either frequency or channel number. If a frequency to be set matches to the frequency corresponding to the selected channel standard, the instrument calculates its channel number and updates the screen with it automatically.

Procedure

To set the center frequency:

- 1 Press the FREQ/DIST hard key.
- 2 Toggle the Unit soft key to Freq.
- 3 Press the Center Frequency soft key.
- 4 Enter a value by using the numeric keys or the rotary knob.
- 5 Select the unit: GHz, MHz, kHz, or Hz.
- 6 Optional. To define the amount of frequency increment for the rotary knob, complete the following steps:
 - a Press the Frequency Step soft key.
 - **b** Enter a value by using the numeric keys or the rotary knob.
 - Press the unit: GHz, MHz, kHz, or Hz.

To set the channel number:

- 1 Press the FREQ/DIST hard key.
- 2 Toggle the Unit soft key to Channel.

NOTE

Selecting **Channel** sets the standard channel to **Band Global** automatically so that you can set the **Channel Number** without choosing a standard channel band from the list.

- 3 Press the Channel Number soft key.
- **4** Enter a value by using the numeric keys or the rotary knob.
- 5 Press the Enter soft key.
 - The instrument automatically displays the corresponding center frequency value for the selected channel number.
- 6 Optional. To define the amount of channel increment for the rotary knob, complete the following steps:
 - a Press the Channel Step soft key.
 - **b** Enter a value by using the numeric keys or the rotary knob.
 - c Press the Enter soft key.

Setting amplitude

You can set the reference automatically or manually to optimize the display of the trace, as you desire.

Procedure

- 1 Press the AMP/SCALE hard key.
- **2** Complete one of the followings:

To optimize the Y-axis scale automatically, press the Auto Scale soft key.

To set the maximum reference value on the Y-axis manually, complete the following steps:

- a Press the Reference Level soft key.
- **b** Enter a value by using the numeric keys or the rotary knob with 10 dB increments.
- c Press the unit soft key or the ENTER hard key.

NOTE

In the **Control Channel**, **Subframe**, and **Frame** measurement modes, you can select the reference option between **Relative** and **Absolute** instead.

- 3 To set an external offset, complete the following steps:
 - Toggle the External Offset soft key to On.
 - **b** Enter a value by using the numeric keys.
 - Press the dB soft key to complete the entry.

NOTE

The instrument displays a measurement result with the set value reflected. For example, if you set it to 40 dB, the measurement result compensates 40 dB.

- **4** To change the setting of the scale per division, complete the following steps:
 - a Select More (1/2) > Scale/Div.
 - **b** Enter a value between 1 and 20 by using the numeric keys.
 - c Press the dB soft key to complete the entry.
- 5 To change the scale unit, select More (1/2) > Units, and then select the display unit option from: dBm, dBV, dBmV, dBμV, V, or W.
 The scale unit on the screen changes accordingly.

NOTE

The Scale/Div and Units menus are available in the Spectrum and RF Analysis modes.

Setting average

In the spectrum and RF analysis, you can set the number of measurements to be averaged for the trace presentation. A maximum of 100 times of averaging can be set. When the averaging reaches to your setting, a new measurement value replaces the measurement value in sequence from the earliest.

Procedure

- 1 Press the BW/AVG hard key.
- 2 Press the Average soft key.
- 3 Enter a value between 1 and 100 as needed by using the numeric keys.
- 4 Press the Enter soft key.

Setting sweep mode

The default setting is **Continue** to sweep continuously for most on-going measurements. If you want to hold the measurement or get a single sweep, you can change the sweep mode.

Procedure

- 1 Press the SWEEP hot key.
- 2 Do the following:

To select the single sweep mode, complete the following steps:

- a Toggle the **Sweep Mode** soft key to **Single** or press the **HOLD** hot key. The letter **HOLD** in red appears and the sweeping is paused.
- **b** To get a new measurement, press the **Sweep Once** soft key.

To return to the continuous sweep mode, toggle the **Sweep Mode** soft key to **Continue** or press the **HOLD** hot key.

The letter HOLD in red disappears and the sweeping resumes.

Setting measure setup

Procedure

- 1 Press the **MEASURE SETUP** hot key.
- 2 To set the CPRI line bit rate of the fronthaul under test, complete the following steps:
 - a Press the Link Rate soft key.
 - b Select the CPRI link rate option from: 614.4 Mbps, 1228.8 Mbps, 2457.6 Mbps, 3072.0 Mbps, 4915.2 Mbps, 6144.0 Mbps, or 9830.4 Mbps.

NOTE

It is important that you set the link rate correctly to avoid any misleading LOS and LOF alarms displayed on the screen.

- 3 Press the Tx Clock soft key, and then select Recovered (default).
- 4 Toggle the Port Type soft key to Slave (default).
- 5 To turn on the through mode if you have not used a tap, go to More (1/2) > Thru, and then toggle the Thru soft key to On. To turn off, toggle to Off.
- 6 To configure Rx parameters, see "Configuring Rx Parameters" on page 597.
- 7 Optional. To use the RF signal generator function, see "Using RF source in RFoCPRI testing" on page 617.
- 8 Optional. To use the CPRI signal generator function, see "Using CPRI source" on page 618.

Configuring Rx Parameters

Procedure

- 1 Press the **MEASURE SETUP** hot key.
- 2 Press the Rx Parameters soft key.
- **3** To set the antenna per carrier group, complete the following steps:
 - a Press the AxC Group soft key.
 - **b** Enter a value by using the numeric keys or the rotary knob.
 - c Press the Enter soft key.

NOTE

Maximum number of the AxC Group is determined by the factors of link rate, sample width, oversampling, and signal bandwidth.

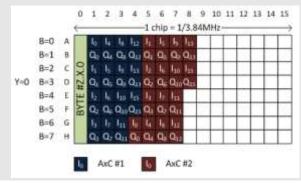
- **4** To set the I and Q sample widths, complete the following steps:
 - a Press the IQ Sample Width soft key
 - **b** Enter a value between 4 and 20 by using the rotary knob or the numeric keys, and then press the **Enter** soft key.

NOTE

According to the CPRI specification, the IQ sample width shall be between 4 and 20 bits for I and Q in the uplink and between 8 and 20 bits in the downlink.

- 5 To set the first bit position of each AxC Container in the IQ data block of a basic frame, complete the following steps:
 - a Press the Map Position soft key.
 - b Select the AxC Container number you want to set from the choices: AxC 0, AxC 1, AxC 2, AxC 3, AxC 4, AxC 5, AxC 6, or AxC 7. Not all of these are activated depending on your bandwidth setting.
 - **c** Enter a value by using the numeric keys or the rotary knob.
 - d Press the Enter soft key.

NOTE


The Antenna-Carrier (AxC) is the amount of digital baseband (IQ) U-plane data necessary for either reception or transmission of one carrier at one independent antenna element. The number of required AxC Container for a basic frame are two AxCs for 5 MHz, four AxCs for 10 MHz, and eight AxCs for 20 MHz.

Following is an example of test configuration for a DUT.

DUT	
CPRI Line Rate (Mbps)	614.4
UMTS Channel (MHz)	3.84
Camers	2
AxC Positioning	Packed
IQ Sampling	15
Over Sampling	1

Tes	t Configuration	on	
Link Rate	(Mbps)	614.4	
Bandwidth (MHz)		3	
NEN	4	None	
AxC Group		1-2	
IQ Sample	e Width	15	
Map Position	AxC 0	0	
	AxC 1	15	

For this test configuration, IQ allocation will be like this in the CPRI basic frame.

- **6** To set the bandwidth of the downlink signal, complete the following steps:
 - a Press the Bandwidth soft key.
 - Select the bandwidth option from: 1.4 MHz, 3 MHz, 5 MHz, 10 MHz, 15 MHz, 15 MHz, 4 AxC), 20 MHz, or 20 MHz (6 AxC).

The RBW range changes based on this bandwidth setting. Required number of AxC containers varies depending on the selected bandwidth.

- 7 To use the pre-configured settings for a NEM, complete the following steps:
 - Press the NEM soft key.
 - Select an NEM from the following choices:

None (no pre-configuration)

Ericsson > Ericsson (UL) and Ericsson (DL)

Alcatel-Lucent (UL/DL)

Samsung (UL/DL)

Huawei > Huawei (UL) and Huawei (DL)

ZTE (UL/DL)

NOTE

If you have selected a NEM, the instrument sets the Map Postion and other releated settings automatically based on the selected NEM and you cannot edit the map position setting. The pre-configured information may be subject to changes at any times by NEMs.

Conducting spectrum measurement

Making a measurement

Procedure

- 1 Press the **MEASURE** hot key to select the measurement mode.
- 2 Select Signal Analyzer > LTE-TDD > Spectrum.
- 3 Configure test parameters as described in the "Configuring test parameters" on page 595.
- 4 Press the **MEASURE SETUP** hot key, and then set the following parameters:

Measurement setups as described in the "Setting measure setup" on page 597

Rx Parameters as described in the "Configuring Rx Parameters" on page 597

- **5** Check your measurement result displayed on the screen.
- 6 To clear current (C) and history (H) status of CPRI alarm on LOS and LOF and start a new monitoring, press the **MEASURE SETUP** hot key and then the **Clear History** soft key.
- 7 Optional. Go to **SAVE/LOAD** > **Save**, and then select the save option from the choices available for your measurement mode. See "Using save" on page 34 for more information.

Setting trace

You can display up to six traces on the measurement chart simultaneously.

Procedure

- 1 Press the TRACE/DISPLAY hard key.
- 2 Press the Select Trace soft key, and then select the trace number: T1, T2, T3, T4, T5, or T6. The legend shape of the selected trace changes from square to round to indicate that the trace is the active one now.
- 3 Complete one of the following:

То	Select	Trace Legend
Clear current data and display with new measurements	Clear Write	W
Display the input signal's maximum response only (unlimited or for a certain amount of time)	Max Hold	M
Display the input signal's minimum response only (unlimited or for a certain amount of time)	Min Hold	m
Capture the selected trace and compare traces	Capture	С
Load a saved trace	More (1/2) > Load	L
Hide the displayed trace	Trace View > Off	F
Remove all the traces and initialize the trace settings	More (1/2) > Trace Clear All	

NOTE

For the **Max Hold** and **Min Hold**, your instrument compares newly acquired data with the active trace and displays larger maximum values or smaller minimum values on the screen. You can set it to **Unlimited** to hold and view maximum or minimum data or specify a certain amount of time up to 60 seconds by using numeric keys or rotary knob.

- 4 Optional. Select More (1/2) > Trace Info, and then select the trace number to view the trace's parameter setting information stored at the time of the measurement or None to hide the information display.
- Optional. If you have the two traces T1 and T2, you can perform trace math. To view the power difference between the traces, press the T1 T2 -> T5 or T2 T1 -> T6 soft key. The result is overlaid on the screen along with the second Y-axis.

Figure 352 Spectrum measurement with RFoCPRI LTE-TDD signal analyzer

Conducting channel power measurement

The Channel Power measurement is a common test used in the wireless industry to measure the total transmitted power of a radio within a defined frequency channel. It acquires a number of points representing the input signal in the time domain, transforms this information into the frequency domain using Fast Fourier Transform (FFT), and then calculates the channel power. The effective resolution bandwidth of the frequency domain trace is proportional to the number of points acquired for the FFT.

The channel power measurement identifies the total RF power and power spectral density (PSD) of the signal in the LTE channel bandwidth.

Making a measurement

- 1 Press the **MEASURE** hot key to select the measurement mode.
- 2 Select Signal Analyzer > LTE-TDD > RF Analysis > Channel Power.
- 3 Configure test parameters as described in the "Configuring test parameters" on page 595.
- 4 Press the **MEASURE SETUP** hot key, and then set the following parameters:
 - Measurement setups as described in the "Setting measure setup" on page 597
 - Rx Parameters as described in the "Configuring Rx Parameters" on page 597
- **5** Check your measurement result displayed on the screen.
- **6** To clear current (C) and history (H) status of CPRI alarm on LOS and LOF and start a new monitoring, press the **MEASURE SETUP** hot key and then the **Clear History** soft key.
- 7 Optional. Go to SAVE/LOAD > Save, and then select the save option from the choices available for your measurement mode. See "Using save" on page 34 for more information.

Figure 353 Channel power measurement with RFoCPRI LTE-TDD signal analyzer

NOTE

You can use the *LIMIT* hot key to analyze your measurements with the user-definable limit and Pass/Fail indication. See "Setting limit for RFoCPRI signal analysis" on page 592 for more information.

Occupied bandwidth

The Occupied Bandwidth measures the spectrum shape of the carrier. It is defined as the bandwidth, which includes 99% of the transmitted power among total transmitted power.

Making a measurement

- 1 Press the **MEASURE** hot key to select the measurement mode.
- 2 Select Signal Analyzer > LTE-TDD > RF Analysis > Occupied BW.
- 3 Configure test parameters as described in the "Configuring test parameters" on page 595.
- 4 Press the **MEASURE SETUP** hot key, and then set the following parameters:
 - Measurement setups as described in the "Setting measure setup" on page 597
 - Rx Parameters as described in the "Configuring Rx Parameters" on page 597
- **5** Check your measurement result displayed on the screen.
- 6 To clear current (C) and history (H) status of CPRI alarm on LOS and LOF and start a new monitoring, press the **MEASURE SETUP** hot key and then the **Clear History** soft key.
- 7 Optional. Go to **SAVE/LOAD** > **Save**, and then select the save option from the choices available for your measurement mode. See "Using save" on page 34 for more information.

Figure 354 Occupied bandwidth measurement with RFoCPRI LTE-TDD signal analyzer

NOTE

You can use the *LIMIT* hot key to analyze your measurements with the user-definable limit and Pass/Fail indication. See "Setting limit for RFoCPRI signal analysis" on page 592 for more information.

Conducting power vs. time (frame) measurement

The Power vs. Time (Frame) measures the modulation envelope in the time domain, showing the power of each time slot in an LTE signal.

Making a measurement

Procedure

- 1 Press the **MEASURE** hot key to select the measurement mode.
- 2 Select Signal Analyzer > LTE-TDD > P vs T (Frame).
- 3 Configure test parameters as described in the "Configuring test parameters" on page 595.
- 4 Press the **MEASURE SETUP** hot key, and then set the following parameters:

Measurement setups as described in the "Setting measure setup" on page 597

Rx Parameters as described in the "Configuring Rx Parameters" on page 597

- 5 To select the subframe number to be measured, complete the following steps:
 - a Press the Subframe No soft key.
 - **b** Enter a value by using the numeric keys or the rotary knob.
 - c Press the Enter soft key.
- 6 Toggle the Cell ID soft key between Auto and Manual:

Auto: Makes the instrument detect the Cell ID for the LTE signal automatically.

Manual: Sets a specific Cell ID for the LTE signal manually in order to speed up the synchronization.

- 7 Depending on your selected NEM, you may need to turn on or off the inversion of the I and Q order by toggling the IQ Swap soft key to On or Off.
- 8 Optional. Press the Miscellaneous soft key, and then do the following as needed:

To assign a antenna port number automatically or manually, press the Antenna Port soft

key and select the option from: Auto, 0, or 1.

To select the cyclic prefix, toggle the **Cyclic Prefix** soft key to **Normal** or **Extended**. See "Appendix E – Cyclic prefix table" on page 749 for OFDM parameter details by different bandwidth.

- **9** Check your measurement result displayed on the screen.
- 10 To clear current (C) and history (H) status of CPRI alarm on LOS and LOF and start a new monitoring, press the MEASURE SETUP hot key and then the Clear History soft key.
- 11 Optional. Go to **SAVE/LOAD** > **Save**, and then select the save option from the choices available for your measurement mode. See "Using save" on page 34 for more information.

Measurement example

Figure 355 Power vs. time (frame) measurement with RFoCPRI LTE-TDD signal analyzer

Conducting constellation measurement

The Constellation is used to observe some aspects of modulation accuracy and can reveal certain fault mechanisms such as I/Q amplitude imbalance or quadrature imbalance. It displays constellation diagram by modulation types.

Making a measurement

Procedure

- 1 Press the **MEASURE** hot key to select the measurement mode.
- 2 Select Signal Analyzer > LTE-TDD > Modulation Analysis > Constellation.
- 3 Configure test parameters as described in the "Configuring test parameters" on page 595.
- 4 Press the **MEASURE SETUP** hot key, and then set the following parameters:

Measurement setups as described in the "Setting measure setup" on page 597

Rx Parameters as described in the "Configuring Rx Parameters" on page 597

- 5 To select the subframe number to be measured, complete the following steps:
 - Press the Subframe No soft key.
 - **b** Enter a value by using the numeric keys or the rotary knob.

NOTE

For MBMS testing, this subframe number must be neither 0 nor 5 as these subframes 0

and 5 are not available for MBMS and it must be set to the MBMS transmitted channel's subframe number.

- c Press the Enter soft key.
- 6 Toggle the Cell ID soft key between Auto and Manual:

Auto: Detects the Cell ID for the LTE signal automatically.

Manual: Sets a specific Cell ID for the LTE signal manually in order to speed up the synchronization.

- 7 Depending on your selected NEM, you may need to turn on or off the inversion of the I and Q order by toggling the IQ Swap soft key to On or Off.
- **8** Optional. Press the **Miscellaneous** soft key, and then set other miscellaneous setups as described in the following section.
- **9** Check your measurement result displayed on the screen.
- **10** To clear current (C) and history (H) status of CPRI alarm on LOS and LOF and start a new monitoring, press the **MEASURE SETUP** hot key and then the **Clear History** soft key.
- 11 Optional. Go to **SAVE/LOAD** > **Save**, and then select the save option from the choices available for your measurement mode. See "Using save" on page 34 for more information.

Setting other miscellaneous setups

Procedure

- 1 To assign a antenna port number automatically or manually, press the **Antenna Port** soft key and select the option from: **Auto**, **0**, or **1**.
- To select the cyclic prefix, toggle the Cyclic Prefix soft key to Normal or Extended. See "Appendix E Cyclic prefix table" on page 749 for OFDM parameter details by different bandwidth.
- 3 To turn on or off the Multimedia Broadcast Multicast Service (MBMS) feature, toggle the MBMS soft key to On or Off. For proper MBMS testing, you need to set the Subframe No with the same PMCH subframe number. If this setting is on, either PMCH or PDSCH appears on the screen depending on the detected channel.
- 4 To set the Multicast Broadcast Single Frequency Network (MBSFN) detection automatically or manually for MBMS testing, toggle the MBSFN soft key to Auto or Manual. An automatically detected or manually entered MBSFN ID appears on the screen.
- To select the PDSCH modulation type, press the PDSCH Modulation Type soft key and then select the option from: Auto, QPSK, 16 QAM, 64 QAM, E-TM3.3, E-TM3.2, E-TM3.1, E-TM2, E-TM1.2, or E-TM1.1.

NOTE

If two or more modulation types are used in a frame, select **Auto**. If the PDSCH uses the same modulation type in a frame or in a subframe, select a specific modulation type to get more accurate EVM.

- **6** To set the threshold for PDSCH, complete the following steps:
 - Press the PDSCH Threshold soft key.
 - **b** Enter a value by using the numeric keys.
 - c Press the Enter soft key.
- 7 To enable or disable the PDSCH precoding, toggle the PDSCH Precoding soft key to On or Off.
- 8 To set the Control Format Indicator, toggle the CFI soft key between Auto and Manual:

Auto: Makes the instrument set the number of OFDM symbols used for transmitting PDCCHs in a subframe.

Manual: Sets the number of OFDM symbols manually.

9 To select the number of PHICH groups (Ng), press the PHICH Ng soft key and then select the option from: 1/6, 1/2, 1, 2, E-1/6, E-1/2, E-1, or E-2.

Figure 356 Constellation measurement with RFoCPRI LTE-TDD signal analyzer

NOTE

You can use the *LIMIT* hot key to analyze your measurements with the user-definable limit and Pass/Fail indication. See "Setting limit for RFoCPRI signal analysis" on page 592 for more information.

Conducting data channel measurement

The Data Channel measures the constellation for the specified resource block as well as the modulation accuracy of each PDSCH at the specified subframe.

Making a measurement

Procedure

- 1 Press the **MEASURE** hot key to select the measurement mode.
- 2 Select Signal Analyzer > LTE-TDD > Modulation Analysis > Data Channel.
- 3 Configure test parameters as described in the "Configuring test parameters" on page 595.
- 4 Press the **MEASURE SETUP** hot key, and then set the following parameters:

Measurement setups as described in the "Setting measure setup" on page 597

Rx Parameters as described in the "Configuring Rx Parameters" on page 597

- 5 To select the subframe number to be measured, complete the following steps:
 - a Press the Subframe No soft key.
 - **b** Enter a value by using the numeric keys or the rotary knob.

NOTE

For MBMS testing, this subframe number must be neither 0 nor 5 as these subframes 0 and 5 are not available for MBMS and it must be set to the MBMS transmitted channel's subframe number.

- c Press the Enter soft key.
- 6 Toggle the Cell ID soft key between Auto and Manual:

Auto: Makes the instrument detect the Cell ID for the LTE signal automatically.

Manual: Sets a specific Cell ID for the LTE signal manually in order to speed up the synchronization.

- 7 To enable or disable the event hold feature, toggle the Event Hold soft key to On or Off. When enabled, the display line for the PDSCH threshold appears. When an event occurs, the measurement is put on hold until you press the HOLD hot key.
- Depending on your selected NEM, you may need to turn on or off the inversion of the I and Q order by toggling the IQ Swap soft key to On or Off.
- 9 Optional. Press the Miscellaneous soft key, and then set other miscellaneous setups as described in the following section.
- **10** Check your measurement result displayed on the screen.
- 11 To clear current (C) and history (H) status of CPRI alarm on LOS and LOF and start a new monitoring, press the *MEASURE SETUP* hot key and then the **Clear History** soft key.
- **12** Optional. Go to **SAVE/LOAD** > **Save**, and then select the save option from the choices available for your measurement mode. See "Using save" on page 34 for more information.

Setting other miscellaneous setups

Procedure

- 1 To assign a antenna port number automatically or manually, press the **Antenna Port** soft key and select the option from: **Auto**, **0**, or **1**.
- 2 To select the cyclic prefix, toggle the Cyclic Prefix soft key to Normal or Extended. See "Appendix E Cyclic prefix table" on page 749 for OFDM parameter details by different bandwidth.
- To turn on or off the Multimedia Broadcast Multicast Service (MBMS) feature, toggle the MBMS soft key to On or Off. For proper MBMS testing, you need to set the Subframe No with the same PMCH subframe number. If this setting is on, either PMCH or PDSCH appears on the screen depending on the detected channel.
- 4 To set the Multicast Broadcast Single Frequency Network (MBSFN) detection automatically or manually for MBMS testing, toggle the MBSFN soft key to Auto or Manual. An automatically detected or manually entered MBSFN ID appears on the screen.
- To select the PDSCH modulation type, press the PDSCH Modulation Type soft key and then select the option from: Auto, QPSK, 16 QAM, 64 QAM, E-TM3.3, E-TM3.2, E-TM3.1, E-TM2, E-TM1.2. or E-TM1.1.

NOTE

If two or more modulation types are used in a frame, select **Auto**. If the PDSCH uses the same modulation type in a frame or in a subframe, select a specific modulation type to get more accurate EVM.

- 6 To set the threshold for PDSCH, complete the following steps:
 - a Press the PDSCH Threshold soft key.
 - **b** Enter a value by using the numeric keys.
 - Press the Enter soft key.
- 7 To enable or disable the PDSCH precoding, toggle the PDSCH Precoding soft key to On or Off.
- 8 To set the Control Format Indicator, toggle the CFI soft key to Auto or Manual:

Auto: Makes the instrument set the number of OFDM symbols used for transmitting PDCCHs in a subframe.

Manual: Sets the number of OFDM symbols manually.

9 To select the number of PHICH groups (Ng), press the PHICH Ng soft key and then select the option from: 1/6, 1/2, 1, 2, E-1/6, E-1/2, E-1, or E-2.

Using marker

You can use the **MARKER** hard key to place a marker on a resource block and display the IQ diagram for the selected resource block.

Procedure

- 1 Press the MARKER hard key.
- 2 Press the RB Number soft key to select the resource block to be marked.
- 3 Enter the resource block number by using the numeric keys.
- 4 Press the Enter soft key. The marker appears on the selected resource block.
- 5 Toggle the Marker View soft key between On and Off to display or hide the result of the selected resource block.

Measurement example

Figure 357 Data channel measurement with RFoCPRI LTE-FDD signal analyzer

NOTE

You can use the *LIMIT* hot key to analyze your measurements with the user-definable limit and Pass/Fail indication. See "Setting limit for RFoCPRI signal analysis" on page 592 for more information.

Conducting control channel measurement

The Control Channel measures the constellation for the specified control channel as well as modulation accuracy of the control channel at the specified subframe.

Making a measurement

- 1 Press the **MEASURE** hot key to select the measurement mode.
- 2 Select Signal Analyzer > LTE-TDD > Modulation Analysis > Control Channel.
- 3 Configure test parameters as described in the "Configuring test parameters" on page 595.
- 4 Press the **MEASURE SETUP** hot key, and then set the following parameters:
 - Measurement setups as described in the "Setting measure setup" on page 597 Rx Parameters as described in the "Configuring Rx Parameters" on page 597
- 5 To select the subframe number to be measured, complete the following steps:

- a Press the Subframe No soft key.
- **b** Enter a value by using the numeric keys or the rotary knob.

NOTE

For MBMS testing, this subframe number must be neither 0 nor 5 as these subframes 0 and 5 are not available for MBMS and it must be set to the MBMS transmitted channel's subframe number.

- c Press the Enter soft key.
- Toggle the Cell ID soft key between Auto and Manual:

Auto: Detects the Cell ID for the LTE signal automatically.

Manual: Sets a specific Cell ID for the LTE signal manually in order to speed up the synchronization.

7 Toggle the EVM Detection Mode soft key between Single and Combine:

Single: Testing on one single antenna connected to your JD700B series with a cable.

Combine: Testing on multiple antennas connected to your JD700B series with a 2x1 combiner or an antenna.

- 8 Depending on your selected NEM, you may need to turn on or off the inversion of the I and Q order by toggling the IQ Swap soft key between On and Off.
- 9 Optional. Press the Miscellaneous soft key, and then set other miscellaneous setups as described in the following section.
- **10** Check your measurement result displayed on the screen.
- 11 To clear current (C) and history (H) status of CPRI alarm on LOS and LOF and start a new monitoring, press the *MEASURE SETUP* hot key and then the **Clear History** soft key.
- **12** Optional. Go to **SAVE/LOAD** > **Save**, and then select the save option from the choices available for your measurement mode. See "Using save" on page 34 for more information.

Setting other miscellaneous setups

Procedure

- 1 To assign a antenna port number automatically or manually, press the **Antenna Port** soft key and select the option from: **Auto**, **0**, or **1**.
- To select the cyclic prefix, toggle the Cyclic Prefix soft key to Normal or Extended. See "Appendix E Cyclic prefix table" on page 749 for OFDM parameter details by different bandwidth.
- 3 To turn on or off the Multimedia Broadcast Multicast Service (MBMS) feature, toggle the MBMS soft key to On or Off. For proper MBMS testing, you need to set the Subframe No with the same PMCH subframe number. If this setting is on, either PMCH or PDSCH appears on the screen depending on the detected channel.
- 4 To set the Multicast Broadcast Single Frequency Network (MBSFN) detection automatically or manually for MBMS testing, toggle the MBSFN soft key to Auto or Manual. An automatically detected or manually entered MBSFN ID appears on the screen.
- 5 To set the threshold for PDCCH, complete the following steps:
 - Press the PDCCH Threshold soft key.
 - Enter a value by using the numeric keys.
 - Press the Enter soft key.
- 6 Toggle the PDCCH Mode soft key between REG and Avg.

REG: Calculates EVM based on Resource Element Group

Avg: Calculates EVM after adding all the PDCCH signals from one subframe.

7 To set the Control Format Indicator, toggle the CFI soft key between Auto and Manual:

Auto: Makes the instrument set the number of OFDM symbols used for transmitting PDCCHs in a subframe.

Manual: Sets the number of OFDM symbols manually.

8 To select the number of PHICH groups (Ng), press the **PHICH Ng** soft key and then select the option from: **1/6**, **1/2**, **1**, **2**, **E-1/6**, **E-1/2**, **E-1**, or **E-2**.

Using marker

You can use the **MARKER** hard key to place a marker on a control channel and display the IQ diagram for the selected channel.

Procedure

- 1 Press the MARKER hard key.
- 2 Press the Channel soft key to select a channel to be displayed in the IQ diagram. The channel P-SS is selected by default.
- **3** Press the up/down arrow keys or turn the rotary knob to highlight a channel in the channel summary table, and then press the center of the rotary knob.
- 4 Toggle the Marker View soft key between On and Off to display or hide the result of the selected channel.

Measurement example

Figure 358 Control channel measurement with RFoCPRI LTE-TDD signal analyzer

NOTE

You can use the *LIMIT* hot key to analyze your measurements with the user-definable limit and Pass/Fail indication. See "Setting limit for RFoCPRI signal analysis" on page 592 for more information.

Conducting subframe measurement

The Subframe measures the modulation accuracy of all the data and control channels at the specified subframe (1 ms).

Making a measurement

- 1 Press the **MEASURE** hot key to select the measurement mode.
- 2 Select Signal Analyzer > LTE-TDD > Modulation Analysis > Subframe.
- 3 Configure test parameters as described in the "Configuring test parameters" on page 595.
- 4 Press the **MEASURE SETUP** hot key, and then set the following parameters:

Measurement setups as described in the "Setting measure setup" on page 597 Rx Parameters as described in the "Configuring Rx Parameters" on page 597

- 5 To select the subframe number to be measured, complete the following steps:
 - Press the Subframe No soft key.
 - **b** Enter a value by using the numeric keys or the rotary knob.

NOTE

For MBMS testing, this subframe number must be neither 0 nor 5 as these subframes 0 and 5 are not available for MBMS and it must be set to the MBMS transmitted channel's subframe number.

- c Press the Enter soft key.
- 6 Toggle the Cell ID soft key between Auto and Manual:

Auto: Deteccts the Cell ID for the LTE signal automatically.

Manual: Sets a specific Cell ID for the LTE signal manually in order to speed up the synchronization.

7 Toggle the EVM Detection Mode soft key between Single and Combine:

Single: Testing on one single antenna connected to your JD700B series with a cable.

Combine: Testing on multiple antennas connected to your JD700B series with a 2x1 combiner or an antenna.

- 8 Depending on your selected NEM, you may need to turn on or off the inversion of the I and Q order by toggling the IQ Swap soft key to On or Off.
- 9 Optional. Press the Miscellaneous soft key, and then set other miscellaneous setups as described in the following section.
- **10** Check your measurement result displayed on the screen.
- 11 To clear current (C) and history (H) status of CPRI alarm on LOS and LOF and start a new monitoring, press the MEASURE SETUP hot key and then the Clear History soft key.
- **12** Optional. Go to **SAVE/LOAD** > **Save**, and then select the save option from the choices available for your measurement mode. See "Using save" on page 34 for more information.

Setting other miscellaneous setups

Procedure

- 1 To assign a antenna port number automatically or manually, press the **Antenna Port** soft key and select the option from: **Auto**, **0**, or **1**.
- 2 To select the cyclic prefix, toggle the Cyclic Prefix soft key to Normal or Extended. See "Appendix E Cyclic prefix table" on page 749 for OFDM parameter details by different bandwidth.
- To turn on or off the Multimedia Broadcast Multicast Service (MBMS) feature, toggle the MBMS soft key to On or Off. For proper MBMS testing, you need to set the Subframe No with the same PMCH subframe number. If this setting is on, either PMCH or PDSCH appears on the screen depending on the detected channel.
- 4 To set the Multicast Broadcast Single Frequency Network (MBSFN) detection automatically or manually for MBMS testing, toggle the MBSFN soft key to Auto or Manual. An automatically detected or manually entered MBSFN ID appears on the screen.
- To select the PDSCH modulation type, press the PDSCH Modulation Type soft key and then select the option from: Auto, QPSK, 16 QAM, 64 QAM, E-TM3.3, E-TM3.2, E-TM3.1, E-TM2, E-TM1.2, or E-TM1.1.

NOTE

If two or more modulation types are used in a frame, select **Auto**. If the PDSCH uses the same modulation type in a frame or in a subframe, select a specific modulation type to get more accurate EVM.

- **6** To set the threshold for PDSCH, complete the following steps:
 - Press the PDSCH Threshold soft key.
 - **b** Enter a value by using the numeric keys.
 - c Press the Enter soft key.

- 7 To set the threshold for PDCCH, complete the following steps:
 - Press the PDCCH Threshold soft key.
 - **b** Enter a value by using the numeric keys.
 - c Press the Enter soft key.
- 8 Toggle the PDCCH Mode soft key between REG and Avg:

REG: Calculates EVM based on Resource Element Group

Avg: Calculates EVM after adding all the PDCCH signals from one subframe.

- 9 To enable or disable the PDSCH precoding, toggle the PDSCH Precoding soft key to On or Off.
- 10 To set the Control Format Indicator, toggle the CFI soft key between Auto and Manual:

Auto: Makes the instrument set the number of OFDM symbols used for transmitting PDCCHs in a subframe.

Manual: Sets the number of OFDM symbols manually.

11 To select the number of PHICH groups (Ng), press the PHICH Ng soft key and then select the option from: 1/6, 1/2, 1, 2, E-1/6, E-1/2, E-1, or E-2.

Setting display

You can use the TRACE/DISPLAY hard key to view the RE and RS power at a specific symbol.

Procedure

- 1 Press the TRACE/DISPLAY hard key.
- 2 Toggle the Chart soft key between On and Off to display or hide the chart. If this setting is on, the MARKER hard key is activated.

Using marker

If you turn the Chart view on, you can use the MARKER hard key to place the marker at a specific symbol.

- 1 Press the MARKER hard key.
- 2 Toggle the Marker View soft key between On and Off to display or hide the marker on the chart.
- 3 Press the Symbol soft key to select the symbol number, to which the marker is placed.
- 4 Enter a value by using the numeric keys.
- 5 Press the Enter soft key.

Figure 359 Subframe measurement (regular view) with RFoCPRI LTE-TDD signal analyzer

NOTE

You can use the *LIMIT* hot key to analyze your measurements with the user-definable limit and Pass/Fail indication. See "Setting limit for RFoCPRI signal analysis" on page 592 for more information.

Conducting time alignment error measurement

In eNode-B supporting Tx Diversity transmission, signals are transmitted from two or more antennas. These signals shall be aligned. The time alignment error in Tx diversity is specified as the delay between the signals from two antennas at the antenna ports.

Making a measurement

Procedure

- 1 Press the **MEASURE** hot key to select the measurement mode.
- 2 Select Signal Analyzer > LTE-TDD > Modulation Analysis > Time Alignment Error.
- 3 Configure test parameters as described in the "Configuring test parameters" on page 595.
- 4 Press the **MEASURE SETUP** hot key, and then set the following parameters:

Measurement setups as described in the "Setting measure setup" on page 597

Rx Parameters as described in the "Configuring Rx Parameters" on page 597

- 5 Toggle the Antenna Config soft key between Ant0 and Ant1.
- 6 Toggle the Cell ID soft key between Auto and Manual:

Auto: Detects the Cell ID for the LTE signal automatically.

Manual: Sets a specific Cell ID for the LTE signal manually in order to speed up the synchronization.

- 7 Depending on your selected NEM, you may need to turn on or off the inversion of the I and Q order by toggling the IQ Swap soft key between On and Off.
- 8 Optional. To select the cyclic prefix, complete the following steps:
 - Press the Miscellaneous soft key.
 - b Toggle the Cyclic Prefix soft key between Normal and Extended. See "Appendix E Cyclic prefix table" on page 749 for OFDM parameter details by different bandwidth.

- **9** Check your measurement result displayed on the screen.
- 10 To clear current (C) and history (H) status of CPRI alarm on LOS and LOF and start a new monitoring, press the MEASURE SETUP hot key and then the Clear History soft key.
- 11 Optional. Go to **SAVE/LOAD** > **Save**, and then select the save option from the choices available for your measurement mode. See "Using save" on page 34 for more information.

Measurement example

Figure 360 Time alignment error measurement with RFoCPRI LTE-TDD signal analyzer

NOTE

You can use the *LIMIT* hot key to analyze your measurements with the user-definable limit and Pass/Fail indication. See "Setting limit for RFoCPRI signal analysis" on page 592 for more information.

Conducting data allocation map measurement

The Data Allocation Map function represents data allocation as a frame.

Making a measurement

Procedure

- 1 Press the **MEASURE** hot key to select the measurement mode.
- 2 Select Signal Analyzer > LTE-TDD > Modulation Analysis > Data Allocation Map.
- 3 Configure test parameters as described in the "Configuring test parameters" on page 595.
- 4 Press the **MEASURE SETUP** hot key, and then set the following parameters:
 - Measurement setups as described in the "Setting measure setup" on page 597
 - Rx Parameters as described in the "Configuring Rx Parameters" on page 597
- **5** To select the subframe number to be measured, complete the following steps:
 - Press the Subframe No soft key.
 - **b** Enter a value by using the numeric keys or the rotary knob.

NOTE

For MBMS testing, this subframe number must be neither 0 nor 5 as these subframes 0 and 5 are not available for MBMS and it must be set to the MBMS transmitted channel's subframe number.

- c Press the Enter soft key.
- 6 Toggle the Cell ID soft key between Auto and Manual:

Auto: Detects the Cell ID for the LTE signal automatically.

Manual: Sets a specific Cell ID for the LTE signal manually in order to speed up the synchronization.

- 7 To set the threshold for PDSCH, complete the following steps:
 - a Press the PDSCH Threshold soft key.
 - **b** Enter a value by using the numeric keys.
 - Press the Enter soft key.
- 8 Depending on your selected NEM, you may need to turn on or off the inversion of the I and Q order by toggling the IQ Swap soft key between On and Off.
- 9 Optional. Press the Miscellaneous soft key, and then set other miscellaneous setups as described in the following section.
- **10** Check your measurement result displayed on the screen.
- 11 To clear current (C) and history (H) status of CPRI alarm on LOS and LOF and start a new monitoring, press the **MEASURE SETUP** hot key and then the **Clear History** soft key.
- **12** Optional. Go to **SAVE/LOAD** > **Save**, and then select the save option from the choices available for your measurement mode. See "Using save" on page 34 for more information.

Setting other miscellaneous setups

Procedure

- 1 To assign a antenna port number automatically or manually, press the **Antenna Port** soft key and select the option: **Auto**, **0**, or **1**.
- To select the cyclic prefix, toggle the Cyclic Prefix soft key between Normal and Extended. See "Appendix E Cyclic prefix table" on page 749 for OFDM parameter details by different bandwidth.
- 3 To turn on or off the Multimedia Broadcast Multicast Service (MBMS) feature, toggle the MBMS soft key between On and Off. For proper MBMS testing, you need to set the Subframe No with the same PMCH subframe number. If this setting is on, either PMCH or PDSCH appears on the screen depending on the detected channel.
- 4 To set the Multicast Broadcast Single Frequency Network (MBSFN) detection automatically or manually for MBMS testing, toggle the MBSFN soft key to Auto or Manual. An automatically detected or manually entered MBSFN ID appears on the screen.

Setting display

You can use the TRACE/DISPLAY hard key to change the display mode to PDSCH, PMCH, or both.

Procedure

- 1 Press the TRACE/DISPLAY hard key.
- 2 Press the Display Channel soft key.
- 3 Select the display mode from: **PDSCH**, **PMCH**, or **Both**.

Using marker

You can use the **MARKER** hard key to place the marker at a specific resource block and subframe.

Procedure

1 Press the MARKER hard key.

- 2 Toggle the Marker View soft key between On and Off to display or hide the marker on the chart.
- **3** To select the resource block number, complete the following steps:
 - Press the RB Number soft key.
 - **b** Enter the resource block number to select by using the numeric keys. You can also use the rotary knob to move the marker side by side.
 - c Press the Enter soft key.
- **4** To select the subframe block number, complete the following steps:
 - Press the Subframe No soft key.
 - **b** Enter the subframe number to select by using the numeric keys. You can also use the rotary knob to move the marker up and down.
 - c Press the Enter soft key.

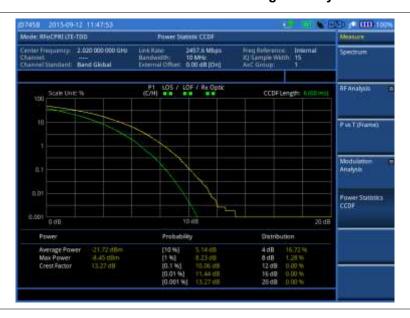
Measurement example

Figure 361 Data allocation map measurement with RFoCPRI LTE-TDD signal analyzer

Performing power statistics CCDF measurement

The Power Statistics Complementary Cumulative Distribution Function (CCDF) measurement characterizes the power statistics of the input signal. It provides PAR (Peak to Average power Ratio) versus different probabilities.

Making a measurement


- 1 Press the **MEASURE** hot key to select the measurement mode.
- 2 Select Signal Analyzer > LTE-TDD > Power Statistics CCDF.
- 3 Configure test parameters as described in the "Configuring test parameters" on page 595.
- 4 Press the **MEASURE SETUP** hot key, and then set the following parameters:
 - Measurement setups as described in the "Setting measure setup" on page 597 Rx Parameters as described in the "Configuring Rx Parameters" on page 597
 - To set the length of the CCDF, complete the following steps:
 - Press the CCDF Length soft key.
 - **b** Enter a value between 1 and 100 by using the numeric keys. You can also use the rotary

knob.

- c Press the Enter soft key.
- **6** Check your measurement result displayed on the screen.
- 7 To clear current (C) and history (H) status of CPRI alarm on LOS and LOF and start a new monitoring, press the **MEASURE SETUP** hot key and then the **Clear History** soft key.
- **8** Optional. Go to **SAVE/LOAD** > **Save**, and then select the save option from the choices available for your measurement mode. See "Using save" on page 34 for more information.

Measurement example

Figure 362 CCDF measurement with RFoCPRI LTE-TDD signal analyzer

Setting limit for RFoCPRI signal analysis

By default, test limits specified in the standard are set for you. You can change thresholds if you desire.

Procedure

- 1 Press the *LIMIT* hot key.
- 2 To set a limit for RF analysis tests, press the **RF Test Limits** soft key and then set limits as needed, depending on where you are in the measurement mode.

To set the limit for	Select	Set
Channel power	Channel Power	High Limit, Low Limit
Occupied bandwidth	Occupied BW	High Limit

3 To set a limit for modulation tests, press the **Modulation Test Limits** soft key and then set limits as needed, depending on where you are in the measurement mode.

To set the limit for	Select	Set
Frequency error	Frequency Error	High Limit, Low Limit
PDSCH error vector magnitude if MBMS is off	EVM > PDSCH EVM	High Limit (QPSK) High Limit (16 QAM) High Limit (64 QAM)
PMCH error vector magnitude	EVM > PMCH EVM	High Limit (QPSK)

if MBMS is on and a PMCH is detected RMS for data error vector magnitude Peak for data error vector magnitude RS error vector magnitude EVM > Data EVM Peak High Limit RS error vector magnitude EVM > RS EVM High Limit P-SS error vector magnitude EVM > RS EVM High Limit P-SS error vector magnitude EVM > P-SS EVM High Limit S-SS error vector magnitude EVM > S-SS EVM High Limit Downlink RS power Power > DL RS Power High Limit, Low Limit P-SS power Power > P-SS Power High Limit, Low Limit S-SS power Power > Power > S-SS Power High Limit, Low Limit PBCH power Power > Power > POWER > Power High Limit, Low Limit Subframe power Power > Subframe Power High Limit, Low Limit Frame average power Power > Frame Avg Power High Limit, Low Limit Time alignment error for MIMO Time Alignment Error > MIMO High Limit, Low Limit Time Error High Limit, Low Limit High Limit, Low Limit High Limit, Low Limit Time Error High Limit, Low Limit High Limit, Low Limit			
Peak for data error vector magnitude RS error vector magnitude EVM > RS EVM High Limit P-SS error vector magnitude EVM > P-SS EVM High Limit F-SS error vector magnitude EVM > P-SS EVM High Limit F-SS error vector magnitude EVM > P-SS EVM High Limit Downlink RS power Power > DL RS Power High Limit, Low Limit P-SS power Power > P-SS Power High Limit, Low Limit S-SS power Power > S-SS Power High Limit, Low Limit PBCH power Power > Power > POWER > Power High Limit, Low Limit Frame power Power > Subframe Power High Limit, Low Limit Frame average power Power > OFDM Symbol Power High Limit, Low Limit Frame average power Power > Frame Avg Power High Limit, Low Limit Time alignment error for MIMO Time Alignment Error > MIMO High Limit, Low Limit			· , ,
RS error vector magnitude EVM > RS EVM High Limit P-SS error vector magnitude EVM > P-SS EVM High Limit S-SS error vector magnitude EVM > S-SS EVM High Limit Downlink RS power Power > DL RS Power High Limit, Low Limit P-SS power Power > P-SS Power High Limit, Low Limit S-SS power Power > S-SS Power High Limit, Low Limit PBCH power Power > PBCH Power High Limit, Low Limit Subframe power Power > Subframe Power High Limit, Low Limit OFDM symbol power Power > OFDM Symbol Power High Limit, Low Limit Frame average power Power > Frame Avg Power High Limit, Low Limit Time alignment error for MIMO Time Alignment Error > MIMO High Limit, Low Limit Time error Time Error High Limit, Low Limit		EVM > Data EVM RMS	High Limit
P-SS error vector magnitude EVM > P-SS EVM High Limit S-SS error vector magnitude EVM > S-SS EVM High Limit Downlink RS power Power > DL RS Power High Limit, Low Limit P-SS power Power > P-SS Power High Limit, Low Limit S-SS power Power > S-SS Power High Limit, Low Limit PBCH power Power > PBCH Power High Limit, Low Limit Subframe power Power > Subframe Power High Limit, Low Limit OFDM symbol power Power > OFDM Symbol Power High Limit, Low Limit Frame average power Power > Frame Avg Power High Limit, Low Limit Time alignment error for MIMO Time Alignment Error > MIMO High Limit Time error Time Error High Limit, Low Limit	. Can ici data circi recto.	EVM> Data EVM Peak	High Limit
S-SS error vector magnitude EVM > S-SS EVM High Limit Downlink RS power Power > DL RS Power High Limit, Low Limit P-SS power Power > P-SS Power High Limit, Low Limit S-SS power Power > S-SS Power High Limit, Low Limit PBCH power Power > PBCH Power High Limit, Low Limit Subframe power Power > Subframe Power High Limit, Low Limit OFDM symbol power Power > OFDM Symbol Power High Limit, Low Limit Frame average power Power > Frame Avg Power High Limit, Low Limit Time alignment error for MIMO Time Alignment Error > MIMO High Limit Time error Time Error High Limit, Low Limit	RS error vector magnitude	EVM > RS EVM	High Limit
Downlink RS power Power > DL RS Power High Limit, Low Limit P-SS power Power > P-SS Power High Limit, Low Limit S-SS power Power > S-SS Power High Limit, Low Limit PBCH power Power > PBCH Power High Limit, Low Limit Subframe power Power > Subframe Power High Limit, Low Limit OFDM symbol power Power > OFDM Symbol Power High Limit, Low Limit Frame average power Power > Frame Avg Power High Limit, Low Limit Time alignment error for MIMO Time Alignment Error > MIMO High Limit Time error Time Error High Limit, Low Limit	P-SS error vector magnitude	EVM > P-SS EVM	High Limit
P-SS power Power > P-SS Power High Limit, Low Limit S-SS power Power > S-SS Power High Limit, Low Limit PBCH power Power > PBCH Power High Limit, Low Limit Subframe power Power > Subframe Power High Limit, Low Limit OFDM symbol power Power > OFDM Symbol Power High Limit, Low Limit Frame average power Power > Frame Avg Power High Limit, Low Limit Time alignment error for MIMO Time Alignment Error > MIMO High Limit Time error Time Error High Limit, Low Limit	S-SS error vector magnitude	EVM > S-SS EVM	High Limit
S-SS power Power > S-SS Power High Limit, Low Limit PBCH power Power > PBCH Power High Limit, Low Limit Subframe power Power > Subframe Power High Limit, Low Limit OFDM symbol power Power > OFDM Symbol Power High Limit, Low Limit Frame average power Power > Frame Avg Power High Limit, Low Limit Time alignment error for MIMO Time Alignment Error > MIMO High Limit Time error Time Error High Limit, Low Limit	Downlink RS power	Power > DL RS Power	High Limit, Low Limit
PBCH power Power PBCH Power High Limit, Low Limit Subframe power Power Subframe Power High Limit, Low Limit OFDM symbol power Power > OFDM Symbol Power High Limit, Low Limit Frame average power Power > Frame Avg Power High Limit, Low Limit Time alignment error for MIMO Time Alignment Error > MIMO High Limit Time error Time Error High Limit, Low Limit	P-SS power	Power > P-SS Power	High Limit, Low Limit
Subframe power Power > Subframe Power High Limit, Low Limit OFDM symbol power Power > OFDM Symbol Power High Limit, Low Limit Frame average power Power > Frame Avg Power High Limit, Low Limit Time alignment error for MIMO Time Alignment Error > MIMO High Limit Time error Time Error High Limit, Low Limit	S-SS power	Power > S-SS Power	High Limit, Low Limit
OFDM symbol power Power > OFDM Symbol Power High Limit, Low Limit Frame average power Power > Frame Avg Power High Limit, Low Limit Time alignment error for MIMO Time Alignment Error > MIMO High Limit Time error Time Error High Limit, Low Limit	PBCH power	Power > PBCH Power	High Limit, Low Limit
Frame average power Power > Frame Avg Power High Limit, Low Limit Time alignment error for MIMO Time Alignment Error > MIMO High Limit Time error Time Error High Limit, Low Limit	Subframe power	Power > Subframe Power	High Limit, Low Limit
Time alignment error for MIMO Time Alignment Error > MIMO High Limit Time error Time Error High Limit, Low Limit	OFDM symbol power	Power > OFDM Symbol Power	High Limit, Low Limit
Time error Time Error High Limit, Low Limit	Frame average power	Power > Frame Avg Power	High Limit, Low Limit
g =, =	Time alignment error for MIMO	Time Alignment Error > MIMO	High Limit
I-Q origin offset IQ Origin Offset High Limit	Time error	Time Error	High Limit, Low Limit
	I-Q origin offset	IQ Origin Offset	High Limit

- **4** Optional. You can enable alarm sound that goes off if the measurement falls outside of the limit. Toggle the **Beep** soft key between **On** and **Off** to enable or disable the beep sound.
- Optional. Go to SAVE/LOAD > Save, and then select Limit to save the limit settings. See "Using save" on page 34 for more information.

Using signal generator

If your JD700B series has the signal generator options installed with a license, you can use RF Source or CPRI Source, or both.

Using RF source in RFoCPRI testing

You can use the RF Source feature to calibrate the uplink noise floor at a given point, check the uplink gain and dynamic range, and verify that current AxC configuration including map positioning is correct.

Procedure

- 1 Press the MEASURE SETUP hot key.
- 2 Press the **Source** soft key. Depending on your selection of measurement mode, you may need to select **More** (1/2) > **Source**.
- 3 Press the RF Source soft key.
- **4** To set the frequency of the CW signal to be injected, complete the following steps:
 - Press the Frequency soft key.
 - **b** Enter a value within the frequency range of your instrument.

JD740B series: 25 MHz to 4 GHz

JD780B series: 5 MHz to 6 GHz

NOTE

The frequency of the CW signal must be in the uplink band of the RRH under test.

- c Select the unit option from: GHz, MHz, kHz, or Hz.
- **5** To set the output level of the CW signal to be injected, complete following steps:
 - Press the Power Level soft key.
 - **b** Enter a value within the output range for the frequency you have set in step **4**.

JD740B series: -80 dBm to -30 dBm, 0 dBm

JD780B series: -60 dBm to 10 dBm

- c Press the unit soft key.
- 6 To start to inject the set signal, toggle the **RF Source** soft key to **On**.
- 7 To stop injecting the signal, toggle the RF Source soft key to Off.

Using CPRI source

You can use the CPRI Source feature to generate CW and various types of E-UTRA Test Model waveforms in RFoCPRI testing for LTE-FDD and LTE-TDD: **CW**, **CW** (**Two Tone**), **E-TM1.1**, **E-TM1.2**, **E-TM2**, **E-TM3.1**, **E-TM3.2**, and **E-TM3.3**. You can also select the Tx signals to inject and configure the TX parameters of the selected signals.

Procedure

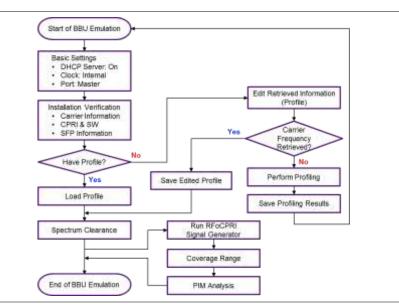
1 Make the Tx of a SFP/SFP+ module looped back to the Rx of the same module.

NOTE

When two SFP/SFP+ modules are installed in both Port 1 and Port 2, the CPRI source always works via the Port 1, which is the primary port. If you want to use the Port 2 for this CPRI signal generation, make sure to eject the module from the Port 1.

- 2 Press the **MEASURE SETUP** hot key.
- 3 To set the Tx Clock and Port Type settings correctly, complete the following steps:
 - a Press the Rx Parameters soft key.
 - **b** Press the **Tx Clock** soft key and then select **Internal**.
 - c Toggle the Port Type soft key to Master.
 - d Press the PREV hard key to return to the Measure Setup menu.
- 4 Press the Source soft key. Depending on your selection of measurement mode, you may need to select More (1/2) > Source.
- 5 Press the CPRI Source soft key.
- Select a desired Tx Parameters you want to inject from the menu bar: Tx1 Parameters, Tx2 Parameters, Tx3 Parameters, or Tx4 Parameters.
- 7 To select a Tx carrier, complete following steps:
 - a Press the Select Tx Carrier soft key.
 - Select a desired Tx carrier number from the menu bar.
 Up to 12 selections for carriers are available based upon configuration.
- **8** To select a Tx container, complete the following steps:
 - a Press the Select Tx Container soft key.
 - **b** Select a desired Tx container from the menu bar. Total 4 containers are available.
- **9** To set the bandwidth of the downlink signal, complete the following steps:
 - a Press the Bandwidth soft key.
 - Select the bandwidth option from: 1.4 MHz, 3 MHz, 5 MHz, 10 MHz,15 MHz, or 20 MHz.
- **10** To select a waveform to be generated, complete the following steps:
 - Press the Waveforms soft key. The Waveform list dialog box appears.

- Select a signal from the list that you want to generate for your selected NEM. Supported bandwidths are: 5 MHz, 10 MHz, 15 MHz, and 20 MHz.
- c Tap the **Apply** button on the screen or press the **ENTER** hard key.
- 11 To adjust the gain of the waveform to be transmitted in order to prevent an overrun or underrun of the RRH, complete the following steps:
 - a Press the Gain soft key.
 - **b** Enter a value between **-50.00** and **0.00**.
 - Press the dB soft key or the ENTER hard key.
- 12 To start to inject the selected signal, toggle the CPRI Source soft key to On.
- 13 To stop injecting the signal, toggle the CPRI Source soft key to Off.


Emulating a BBU

Today's deployment of Fiber to the Antenna (FTTA) network has some challenges. One of them is that not all network components are present at the initial stage of RRH installation and testing. For example, when a new RRH is installed, a BBU is not yet connected to the backhaul of the network. Thanks to the capability of BBU emulation in JD700B series, you can now capture C&M messages, configure the RRH successfully to start it up, and perform testing on the RRH without a live BBU.

The RFoCPRI BBU Emulation includes the following functions:

- RRH Profiling It retrieves a complete set of profile information that is essential to bring a RRH up and running from a live link between BBU and RRH so that you can save the profile as a file and use it to configure a new RRH out in the field. It is not mandatory in BBU emulation, but it makes it easy to configure RRHs of the same kind.
- Configuration Verification It enables you not only to verify that RRH configuration is correct, but also to apply saved or edited profile to the RRH to set up the RRH with correct carrier information. You can also view CPRI State, activated SW, and SFP Information.
- Spectrum Clearance It helps you identify and clear signals interfering with the uplink signal. This provides the same functions as the RFoCPRI Interference Analyzer, which includes Spectrum, Spectrogram, RSSI, Dual Spectrum, and Dual Spectrogram.
- Coverage Range With checking the transmission of a carrier at a certain frequency, it enables you to manipulate the tilt of the antenna in the way to minimize the interference with neighboring cells and optimize the coverage range.
- PIM Analysis It helps you to measure the PIM characteristic of RRH and antenna feeder by injecting the CW sweep frequency and wide-band frequency over fiber link. With this feature, you can also check the flatness of the spectrum.
- RET-Information It enables you to optimize, control, and maintain the antenna line devices remotely.

Figure 363 High-level workflow of BBU emulation

Selecting measurement mode

Procedure

- 1 Press the **MODE** hard key.
- 2 Select RFoFiber > RFoCPRI.
- 3 Press the MEASURE hot key.
- 4 Select BBU Emulation > Alcatel-Lucent.

NOTE

CellAdvior FW3.060 supports Alcatel-Lucent BBU only.

5 Select the mode that you want to open:

Profiling

Configuration Verification > Carrier Information, CPRI & Active SW, or SFP Information

Spectrum Clearance > Spectrum, Spectrogram, RSSI, Dual Spectrum, or Dual Spectrogram

Coverage Range

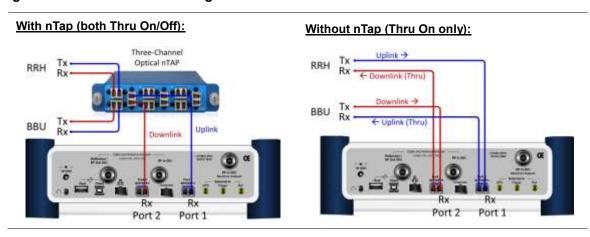
PIM Analysis

RET-Information

Selecting port

JD700B series supports two antenna ports for signal transmission, and each port can generate up to four different Tx waveforms selectively and simultaneously. User can select the port to use for the measurement in any measurement mode of RFoCPRI mode.

- 1 In any measurement mode, press the **MEASURE SETUP** hot key.
- 2 Toggle the Select Port soft key between Port 1 and Port 2 to select the desired port.


Performing RRH profiling

If the RRH is new and there is no file has been saved that can be used for the RRH configuration, you need to run the RRH Profiling and capture the C&M messages first, and then retrieve profile parameter values the RRH Profiling to capture C&M messages, and retrieve profile parameter values, such as RHH vendor, technology, VSWR level, RSSI level, carrier frequency, Link ID, and RE ID, from both BBU and RRH. If you already have a saved profile that works for the RRH, you can skip this RRH Profiling.

Connecting cables

To perform the RRH profiling, make the Thru mode cable connection as illustrated in Figure 364.

Figure 364 Thru connection diagram

Enabling Thru mode in CellAdvisor

Procedure

- 1 Press the **MEASURE** hot key.
- 2 Select BBU Emulation > Alcatel-Lucent > Profiling.
- 3 Press the **MEASURE SETUP** hot key.
- 4 Toggle the Laser soft key to On.
- 5 Press the More (1/2) soft key.
- 6 Toggle the **Thru** soft key to **On**.

Setting measure setup

After you have connected cables and set up your CellAdvisor for the Thru mode, you need to configure measure parameters to capture C&M messages.

- 1 Press the **MEASURE SETUP** hot key.
- 2 To set the CPRI line bit rate of the fronthaul link between BBU and RRH, complete the following steps:
 - a Press the Link Rate soft key.
 - b Select the CPRI link rate option from: 614.4 Mbps, 1228.8 Mbps, 2457.6 Mbps, 3072.0 Mbps, 4915.2 Mbps, 6144.0 Mbps, or 9830.4 Mbps.
 - c Make sure the current LOS and LOF alarms are all green.

It is important that you set the link rate correctly to avoid any misleading LOS and LOF alarms displayed on the screen.

- 3 To set the Rx optic limit to for the visual check of whether the received power is within specified range, complete the following steps:
 - a Press the LIMIT hot key.
 - b Press the Rx Optic Level soft key.
 - Set the threshold for High Limit and Low Limit.
 - d To enable the Rx optic limit, toggle the Test Limits soft key to On. If the optic power level falls out of the specified threshold, the power reading or indicator turns red.

Starting and stopping profiling

After all measurement parameters have been configured, you can capture the C&M messages and retrieve the profile information.

Procedure


- 1 Press the **MEASURE SETUP** hot key.
- 2 Press the More (1/2) soft key.
- 3 To start the profiling, toggle the **Profiling** soft key to **On**. The screen displays the elapsed profiling time and the size of captured data. The Profiling screen is updated with the retrieved RRH and carrier information.
- 4 Toggle the **Profiling** soft key to **Off** to stop the RRH profiling. An example is shown in Figure 365.

NOTE

All carriers in use must display "Enable" and have valid information for all parameters.

Figure 365 Example of RRH profiling results with carrier information

Reading profile information

As you can see in the example of RRH profiling results in Figure 365, RRH profiling provides the following information:

■ RRH Description – It contains the RRH information, specified by its manufacturer. It may not be

identical with the field-optimized information. Some of BBUs may not request this information to the RRH depending on its version.

- **Carrier Information** It is field-optimized information that includes carrier frequency and CPRI mapping. You can edit the carrier information using the Profile Editor.
 - **Carrier**: It means a set of signals assigned to and transmitted at a certain frequency. A different carrier should be at a different frequency. For example, a triple band RRH activates three carriers: Carrier 1, Carrier 2, and Carrier 3.
 - **Number of Tx Container**: It means how many antenna branches the RRH has. A different Tx container is sent to a different antenna branch. For example, a 2x2 MIMO system activated two Tx Containers: Tx Container 1 and Tx Container 2.
 - **State**: It indicates the state of the carrier use. If the carrier is in use, the state changes from None to Disable, and then to Enable.
 - **Carrier Type**: It is the technology and the signal bandwidth information.
 - Uplink and Downlink Frequencies: They are center frequencies of the carrier actually being serviced.
 - Uplink Noise: It is the threshold for UL RSSI, expressed in dBFS (Full Scale).

Changing display of profiling results

After you have retrieved all necessary information and stopped the RRH profiling, you can change the display option to view other parameters than carrier information.

Procedure

- 1 Press the TRACE/DISPLAY hard key.
- 2 Press the Select Parameter soft key.
- **3** Select the display option that you want from the following choices:

Carrier Information: It contains information of carrier frequencies and CPRI mapping.


CPRI & Active SW: It contains information of CPRI configuration and activated software in the RRH.

SFP Information: It contains information of the SFP installed in the RRH.

Figure 366 Example of RRH profiling results with CPRI state and activated SW

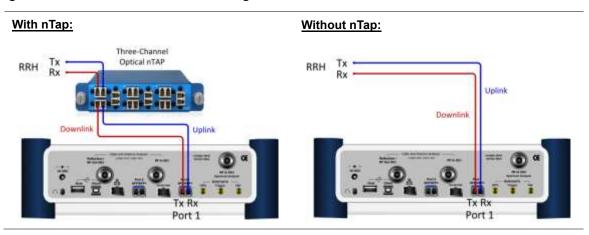
Figure 367 Example of RRH profiling results with SFP information

Saving profiling results as a file

After you have checked that you have retrieved all required information, you need to save your RRH profiling results as a file so that you can use it to configure and bring up a new RRH of the same kind later.

Procedure

- 1 Press the SAVE/LOAD hard key.
- 2 Select Save > Save Profile.
- **3** Type a file name that you want to use.
- 4 Press the **Save** soft key. It saves the profile as a file with .jcm extension.


Verifying and configuring a RRH

A baseband unit (BBU) connected to a network can send and receive C&M messages to and from a RRH to configure the RRH correctly and start it up and running successfully. Using the BBU Emulation feature of JD700B series, you can work with the RRH, without connecting to a BBU, to configure it correctly as if you do from the BBU.

Connecting cables

Before starting to verify RRH configuration using your CellAdvisor as a BBU, you need to make the Term mode cable connection as illustrated in Figure 368 and configure the instrument.

Figure 368 Term mode connection diagram

When your CellAdvisor has two SFP transceivers installed in Port 1 and Port 2, you must connect the cables to the SFP in Port 1 because BBU emulation in FW3.060 supports and works with Port 1 only.

Setting CellAdvisor for BBU emulation

After you have made the Term mode cable connection, you need to get your CellAdvisor ready to work as a BBU.

Procedure

- 1 Press the MEASURE hot key.
- 2 Select BBU Emulation > Alcatel-Lucent > Configuration Verification > Carrier Information.
- 3 Once you change the measure mode in step 2, the instrument automatically sets itself to be ready for the communication with the RRH and starts to update the screen with retrieved RRH profile, including RRH and carrier information. Following are the indications of successful connection that you can find on the screen:

The status of RRH connection changes to "RRH Connection: On".

The RRH symbol () appears in the system status bar at the top.

4 If you do not have these indicators on the screen, press the **MEASURE SETUP** hot key and check the following parameters have been set up correctly:

Laser: On

Tx Clock: Internal Port Type: Master

Rx Parameters > More (1/2) > CPRI Network > Standard Indicator: LTE

Rx Parameters > More (1/2) > CPRI Network > DHCP Server: On

5 If the type of the connected RRH is not LTE, you can change it to others as needed.

NOTE

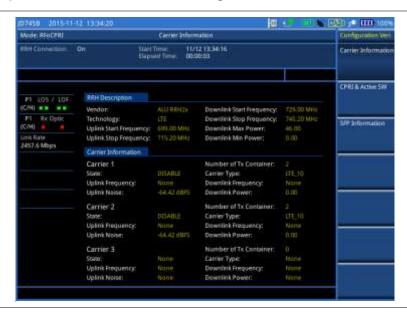
Make sure to keep the RRH connection status to On throughout the BBU emulation.

Verifying carrier configuration

Once you have enabled the DHCP session, your CellAdvisor starts to retrieve the profile of the connected RRH sequentially, updating the RRH description first and then the carrier information. It may take a few minutes to complete.

Procedure

1 In the Carrier Information screen, check the state of the carriers. You must have at least one carrier with its state of Disable or Enable.


None: It indicates that the carrier is not in use.

Disable: It indicates that the carrier is in use and your CellAdvisor is waiting for mapping information from the RRH.

Enable: It indicates that the carrier is in use and your CellAdvisor retrieved mapping information.

- 2 Check that the number of the Tx container for the carrier in use is equal to or greater than "1".
- 3 Check if the uplink and downlink frequencies for the carrier are retrieved. Most of the cases you will see these fields are "None", requiring you to use the Profile Editor to send frequency values to the RRH.

Figure 369 Example of verification of carrier configuration

Figure 369 is an example of missing carrier frequencies for Carrier 1 and Carrier 2. If any of the required fields for the carriers in use were not retrieved, it means that you have to send C&M messages with new parameter values using Profile Editor. You can also load a profile using Load Profile that you have saved in the same type of the RRH before to re-configure the RRH. For more information, see "Loading a saved RRH profile" on page 628 and "Editing RRH Information" on page 628.

Verifying CPRI state and active software

You can also verify that the RRH has set for CPRI and activated software correctly.

- 1 Press the **MEASURE** hot key.
- 2 Select BBU Emulation > Alcatel-Lucent > Configuration Verification > CPRI & Active SW. The CPRI & Active SW screen appears with "RRH Connection: On".

| Mode ShipPall | Certif Active SW | Configuration Verice State | Certif Active SW | Configuration Verice | Certif Active SW |

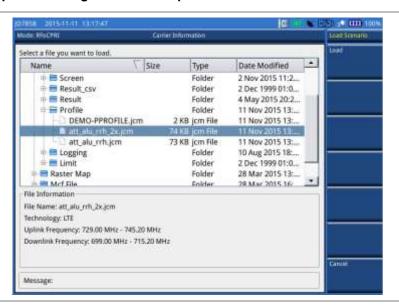
Figure 370 Example of verification of CPRI state and active software

Verifying SFP information

You can also view the SFP information to verify if correct SFPs are installed in the RRH.

- 1 Press the **MEASURE** hot key.
- Select BBU Emulation > Alcatel-Lucent > Configuration Verification > SFP Information. The SFP Information screen appears with "RRH Connection: On".

Figure 371 Example of verification of SFP information


Loading a saved RRH profile

If you already have a saved profile that matches with the RRH, you can load it instead of editing parameters.

Procedure

- 1 Press the SAVE/LOAD hard key.
- 2 Select Load > Load Profile.
- 3 Navigate to the .jcm file that you want to load and send to the connected RRH. If the RRH description stored in the file does not match with the description of the connected RRH, you will encounter an error message "File Mismatch".
- 4 Press the Load soft key. It sends the profile to the RRH to try to set it up with new values as stored in the file. If you are viewing all the fields filled with values, you are now done with bringing up the RRH with correct configuration.

Figure 372 Example of loading a saved RRH profile

Editing RRH Information

You can edit the RRH information

- Make sure that you maintain the RRH connection on.
- 2 In the Carrier Information screen, press the MEASURE SETUP hot key.
- 3 Press the More (1/2) soft key.
- 4 Press the RRH Information Editor soft key. The RRH Information Editor screen appears.
- 5 To import the RRH information from the connected RRH device, tap the OverWrite button. The imported RRH information appears in the bottom window.
- 6 Tap on the top window, and then edit the RRH information as desired.
- 7 Tap the Apply button. The RRH information you have edited will be instantly applied to the connected RRH device, and the applied RRH information will appear in the bottom window.
- 8 Check whether the updated RRH information is correct. If yes, tap the Exit button to exit. If not, repeat step 6-7.

Editing RRH profile

If you do not have a saved profile that can bring up the connected RRH, you need to edit profile parameters with values that work for the RRH. You can edit carrier parameters.

Procedure

- 1 Make sure that you maintain the RRH connection on.
- 2 In the Carrier Information screen, press the MEASURE SETUP hot key.
- 3 Press the More (1/2) soft key.
- 4 Press the **Profile Editor** soft key.

The Profile Editor menu bar appears with the soft keys activated for the carriers in use. For example, carriers with their state DISABLE or ENABLE, you will have Carrier 1 and Carrier 2 soft keys activated.

Select the carrier number soft key for which you want to edit values. The Profile Editor screen for the selected carrier number appears with the on-screen keyboard as shown in Figure 373.

NOTE

Not always is the order of the parameter names the same. In addition, parameters can vary depending on the RRH vendor or technology.

- **6** To edit a value in the Value column, complete the following steps:
 - a Scroll up or down to navigate to the value field that you want to edit.
 - Tap on the value field, and then enter a new value. Here are some of examples when you may need to edit the profile.

If you want to change the carrier state from DISABLE to ENABLE, tap on the value field next to the STATE and then type ENABLE.

If you want to enter a downlink frequency of 709 MHz, tap on the value field next to the TXFREQ and then enter 709000 in kHz.

If you need to change the retrieved carrier type, select one of the following buttons: **LTE5**, **LTE10**, **LTE15**, or **LTE20**. The standard profile paramters for the selected carrier type will be automaically set. You can change edit the value as you needed.

NOTE

In Profile Editor, you can rename a parameter name or add a new parameter with a value for some cases. As doing this requires much knowledge and experience with RRH configuration, it is not recommended for general users.

- 7 To apply your changes and send your edited C&M message to the RRH, tap the **APPLY** button.
- 8 Verify that you have received all required information.

If you have set up the RRH correctly and the RRH has been brought up and running successfully, you will have all fields in the Carrier Information filled properly.

If not, the profile parameters will be initialized. You can repeat steps **4-7**, or tap the **Last** button to import the most recently applied profile parameters and modify only the necessary part.

Figure 373 Example of RRH profile editor

Following is an example of parameters and values that you can find in Profile Editor.

Table 22 Example of RRH profile parameters and values for 2x2 MIMO

Parameters	Description						
STATE	This is the carrier status. There are three available states: - None: Unused - Disable: Used but inactivated - Enable: Used and activated This value must be "ENABLE" for every carrier being used by RRH.						
TXCONTAINER	It means the first Tx Container (antenna branch for downlink) that is equivalent to AxC Group. Zero (0) is no activation. This value must not be used by other containers.						
TX2CONTAINER	It means the second Tx Container (antenna branch for downlink) that is equivalent to AxC Group. Zero (0) is no activation. This value must not be used by other containers.						
RX1CONTAINER	It means the first Rx Container (antenna branch for uplink) that is equivalent to AxC Group. Zero (0) is no activation. This value must not be used by other containers.						
RX2CONTAINER	It means the second Rx Container (antenna branch for downlink) that is equivalent to AxC Group. Zero (0) is no activation. This value must not be used by other containers.						
GRPSIZEDOWN	It means four downlink AxC containers are used for Tx Container.						
	Signal Bandwidth	3 MHz	5 MHz	10 MH	z 15 MH	Iz 20 MHz	
	GRPSIZEDOWN	1	2	4	6	8	
GRPSIZEUP	It means four uplin	nk AxC cor	ntainers use	ed for Rx	Container.		
	Signal Bandwidth	3 MHz	5 MHz	10 MHz	15 MHz	20 MHz	
	GRPSIZEUP	1	2	4	6	8	
TXFREQ	This value is the carrier's downlink center frequency in kHz.						
RXFREQ	This value is the carrier's uplink center frequency in kHz.						
POWER	This value must be are displayed in the					n Tx power levels thed in 0.1 dB.	nat

SIGTYPE	This is a default setting for RRH. Do not change.
CARRTYPE	This is a default setting for RRH. It is not recommended, but you can change the signal bandwidth as needed when you have to.
ULNOISE	It means the uplink noise floor threshold expressed in 0.01 dBFS. This is a default setting for RRH. Do not change.
APCFPOWER	This is for RFM overload protection. This is a default setting for RRH. Do not change.

Saving your edited profile as a file

After you have successfully brought up and running the RRH, you can save your complete profile as a file so that you can use it to configure and bring up other RRHs of the same kind later.

Procedure

- 1 Press the SAVE/LOAD hard key.
- 2 Select Save > Save Profile.
- **3** Type a file name that you want to use.
- 4 Press the **Save** soft key. It saves the profile as a file with .jcm extension.

Performing spectrum clearance

After you have started up the RRH successfully, meaning that you have at least one enabled carrier with uplink and downlink frequency information, you can move to Spectrum Clearance to identify any interfering signals in the uplink carrier by performing the following measurements while keeping your CellAdvisor to work as a BBU.

This instrument provides the following measurements in the BBU Emulation mode:

- Spectrum
- Spectrogram
- RSSI
- Dual spectrum
- Dual spectrogram

NOTE

It is very important that you maintain the Term mode cable connection as illustrated in Figure 368 and keep the RRH connection on as you have done in the RRH configuration verification.

Conducting spectrum measurement

In this Spectrum mode, you only need to change the following settings as needed.

- 1 Press the **MEASURE** hot key.
- 2 Select BBU Emulation > Alcatel-Lucent > Spectrum Clearance > Spectrum.
- 3 Press the MEASURE SETUP hot key.
- 4 To select the Rx carrier and Rx container to measure, complete the following steps:

- a Press the Rx Parameters soft key.
- b Press the Select Rx Carrier soft key. The Rx carrier soft key is active only if the Rx carrier is enabled.
- Select a desired Rx carrier number from the menu bar.
 Up to 12 selections for carriers are available based upon configuration.
- d Press the Select Rx Container soft key, and then select a desired Rx container from the menu bar.

Total 4 Rx containers are available.

NOTE

In the BBU Emulation mode, retrieved Rx carrier and Rx container information is used for de-mapping and signal transmission instead of Map Position.

- **5** To enable alarm sound, complete the following steps:
 - a Press the **MEASURE SETUP** hot key.
 - b Press the Sound Indicator soft key.
 - c Toggle the Alarm Reference soft key between Marker and Line:

Marker: Sets the active marker position as the alarm reference if you have enabled a marker on the spectrum.

Line: Makes the limit line as the alarm reference.

- d If you have set the alarm reference to Line, press the **Limit Line** soft key to set a threshold for an alarm.
- Enter a value, and then press the dBm soft key.
- To turn on the alarm sound, toggle the **Sound** soft key to **On**. To turn off, toggle to **Off**.
- **g** Optional. To adjust the volume for alarm sound, press the **Volume** soft key, and then turn the rotary knob clockwise or counter clockwise.
- **6** To set the interference ID, complete the following steps:
 - a Press the **MEASURE SETUP** hot key.
 - b Press the Interference ID soft key.
 - c Press the Threshold soft key.
 - d Enter a value, and then press the dBm soft key.
 - e To turn on the Interference ID, toggle the Interference ID soft key to On. To turn off, toggle to Off.

NOTE

The Interference ID automatically classifies interfering signals over a designated spectrum and displays a list of possible signal types corresponding to the selected signal.

7 To clear current (C) and history (H) status of CPRI alarm on LOS and LOF, press the **MEASURE SETUP** hot key, the **More** (2/3) soft key, and then the **Clear History** soft key.

Figure 374 Example of spectrum measurement in BBU emulation

You can use the *LIMIT* hot key to analyze your measurements with the limit line or multi-segment line. See "Setting limit for spectrum clearance" on page 638 for more information.

Conducting dual spectrum measurement

If you have two or more carriers enabled, you can view two spectrums for different Rx carriers and Rx containers simultaneously. If you enable the Dual Active Trace function in the Dual Spectrum mode, you can view two sweeping traces, one from the top window and the other from the bottom window, overlapped on a single chart.

Procedure

- 1 Press the **MEASURE** hot key.
- 2 Select BBU Emulation > Alcatel-Lucent > Spectrum Clearance > Dual Spectrum.
- 3 Press the **MEASURE SETUP** hot key.
- 4 Press the More (1/2) soft key.
- 5 Toggle the Active Window soft key between Top and Bottom. You can also tap the chart on the screen.
- 6 To select the Rx carrier and Rx container to measure, complete the following steps:
 - a Press More (2/2) > Rx Parameters.
 - Press the Select Rx Carrier soft key.
 The Rx carrier soft key is active only if the Rx carrier is enabled.
 - Select a desired Rx carrier number from the menu bar.
 Up to 12 selections for Rx carriers are available based upon configuration.
 - **d** Press the **Select Rx Container** soft key, and then select a desired Rx container from the menu bar.
 - Total 4 selections for Rx containers are available

NOTE

In the BBU Emulation mode, retrieved Rx carrier and Rx container information is used for de-mapping and signal transmission instead of Map Position.

- 7 To view all traces overlaid on a single chart, complete the following steps:
 - a Press the More (1/2) soft key.
 - Toggle the Dual Active Trace to On.
 The screen displays the traces overlaid on a single chart.

The currently active trace is brought to front of all traces and highlighted in bold. You can check which trace is currently active at the top left of the chart.

- **c** To change the active trace, press the **PREV** hard key and then toggle the **Active Window** soft key between **Top** and **Bottom**. You can also tap on the chart on the screen.
- d To exit the overlaid view and return to the dual spectrum view, toggle the Dual Active Trace to Off.
- 8 To clear current (C) and history (H) status of CPRI alarm on LOS and LOF, press the **MEASURE SETUP** hot key, the **More** (1/2) soft key, and then the **Clear History** soft key.

Figure 375 Example of dual spectrum analysis in BBU emulation

NOTE

You can use the **LIMIT** hot key to analyze your measurements with the limit line or multisegment line. See "Setting limit for spectrum clearance" on page 638 for more information.

Conducting spectrogram

In this Spectrogram mode, you only need to change the following settings as needed.

Procedure

- 1 Press the **MEASURE** hot key.
- 2 Select BBU Emulation > Alcatel-Lucent > Spectrum Clearance > Spectrogram.
- 3 Press the **MEASURE SETUP** hot key.
- 4 To select the Rx carrier and Rx container to measure, complete the following steps:
 - a Press the Rx Parameters soft key.
 - Press the Select Rx Carrier soft key.
 The Rx carrier soft key is active only if the Rx carrier is enabled.
 - Select a desired Rx carrier number from the menu bar.
 Up to 12 selections for carriers are available based upon configuration.
 - Press the Select Rx Container soft key, and then select a desired Rx container from the menu bar.
 Total 4 collections for Dx containers are qualified.

Total 4 selections for Rx containers are available.

NOTE

In the BBU Emulation mode, retrieved Rx carrier and Rx container information is used for de-mapping and signal transmission instead of Map Position.

5 To set the amount of time between each trace measurement:

- Press the MEASURE SETUP hot key.
- b Press the More (1/2) soft key and then the Time Interval soft key.
- c Enter a value, and then press the Sec soft key.
- **6** To set the time cursor on a specific trace position, complete the following steps:
 - Toggle the Time Cursor soft key to On. The Position soft key is activated.
 - b Press the Position soft key.
 - c To move the time cursor, turn the rotary or enter a value and then press the **Enter** soft key.
 - d To turn off the time cursor, toggle the Time Cursor soft key to Off.

Enabling the time cursor puts the measurement on hold and you can make post-processing analysis for each measurement over time using the time cursor.

- 7 To start a new measurement, press the **Reset/Restart** soft key.
- 8 To clear current (C) and history (H) status of CPRI alarm on LOS and LOF, press the **MEASURE SETUP** hot key, the **More** (1/2) soft key, and then the **Clear History** soft key.

Figure 376 Example of spectrogram in BBU emulation

NOTE

You can use the *LIMIT* hot key to analyze your measurements with the limit line or multi-segment line. See "Setting limit for spectrum clearance" on page 638 for more information.

Conducting dual spectrogram

The Dual Spectrogram feature lets you observe two spectrograms for different carriers and Tx containers simultaneously.

- 1 Press the **MEASURE** hot key.
- 2 Select BBU Emulation > Alcatel-Lucent > Spectrum Clearance > Dual Spectrogram.
- 3 Press the MEASURE SETUP hot key.
- 4 Press the More (1/2) soft key.
- 5 Toggle the Active Window soft key between Left and Right. You can also tap the chart on the screen.

- 6 To select the Rx carrier and Rx container to measure, complete the following steps:
 - Press the More (2/2) soft key.
 - b Press the Rx Parameters soft key.
 - c Press the Select Rx Carrier soft key. The Rx carrier soft key is active only if the Rx carrier is enabled.
 - d Select a desired Rx carrier number from the menu bar.
 Up to 12 selections for carriers are available based upon configuration.
 - e Press the Select Rx Container soft key, and then select a desired Rx container from the menu bar.

Total 4 selections for Rx containers are available.

NOTE

In the BBU Emulation mode, retrieved Rx carrier and Rx container information is used for de-mapping and signal transmission instead of Map Position.

- 7 To set the amount of time between each trace measurement:
 - Press the MEASURE SETUP hot key.
 - b Press More (1/2) > Time Interval.
 - Enter a value, and then press the Sec soft key.
- 8 To set the time cursor on a specific trace position, complete the following steps:
 - Toggle the Time Cursor soft key to On.
 - b Press the Position soft key.
 - c To move the time cursor, turn the rotary knob or enter a value and then press the Enter soft key.
 - d To turn off the time cursor, toggle the **Time Cursor** soft key to **Off**.

NOTE

Enabling the time cursor puts the measurement on hold and you can make postprocessing analysis for each measurement over time using the time cursor.

- 9 To start a new measurement, press the Reset/Restart soft key.
- 10 To clear current (C) and history (H) status of CPRI alarm on LOS and LOF, press the MEASURE SETUP hot key, the More (1/2) soft key, and then the Clear History soft key.

Figure 377 Example of dual spectrogram analysis in BBU emulation

NOTE

You can use the *LIMIT* hot key to analyze your measurements with the limit line or multi-segment line. See "Setting limit for spectrum clearance" on page 638 for more information.

Conducting RSSI

The Received Signal Strength Indicator (RSSI) is a multi-signal tracking metric that is particularly useful for measuring power-level variations over time. The RSSI measurement lets you assign power limit line for audible alarms and increase alarm counters every time a signal exceeds a defined limit line.

Procedure

- 1 Press the **MEASURE** hot key.
- 2 Select BBU Emulation > Alcatel-Lucent > Spectrum Clearance > RSSI.
- 3 Press the MEASURE SETUP hot key.
- 4 To select the Rx carrier and Rx container to measure, complete the following steps:
 - Press the Rx Parameters soft key.
 - Press the Select Rx Carrier soft key.
 The Rx carrier soft key is active only if the Rx carrier is enabled.
 - Select a desired Rx carrier number from the menu bar.
 Up to 12 selections for carriers are available based upon configuration.
 - Press the Select Rx Container soft key, and then select a desired Rx container from the menu bar.

Total 4 selections for Rx containers are available.

NOTE

In the BBU Emulation mode, retrieved Rx carrier and Rx container information is used for de-mapping and signal transmission instead of Map Position.

- **5** To set up the alarm parameters, complete the following steps:
 - a Press More (1/2) > Alarm.
 - **b** Press the **Alarm at** soft key, and then select a marker number to set.
 - c Press the Limit Line soft key to set a threshold for the alarm.
 - d Enter a value by using the numeric keys or the rotary knob, and then press the dBm soft key.
 - e Toggle the **Alarm** soft key between **On** and **Off** to turn on/off the alarm.



NOTE

You must set the marker(s) first by using the **MARKER** hard key as these features use the marker position to sound an alarm. See "Using marker" on page 57 for more information.

- f Optional. Press the **Volume** soft key and adjust the volume.
- **6** Press the **PREV** hard key to return to the Measure Setup menu bar.
- 7 To start a new measurement, press the Reset/Restart soft key.
- 8 To clear current (C) and history (H) status of CPRI alarm on LOS and LOF, press the **MEASURE SETUP** hot key, the **More (1/2)** soft key, and then the **Clear History** soft key.

Figure 378 Example of RSSI in BBU emulation

You can use the *LIMIT* hot key to analyze your measurements with the limit line or multi-segment line. See "Setting limit for spectrum clearance" on page 638 for more information.

Setting sweep mode

You can select various sweep settings for better measurement, including the sweep run mode (**Single**, **Continuous**) and the sweep speed mode (**Normal**, **Fast**).

Procedure

- 1 Press the SWEEP hot key.
- Select the desired sweep run mode by toggling the Sweep Mode soft key between Single and Continuous. You can also use the HOLD hot key.

Single: In this mode, the instrument performs a single sweep and waits for further entries. The letter HOLD in red appears and the sweeping is paused.

Continuous (default): In this mode, the instrument is continuously measuring and updating result.

The letter **HOLD** in red disappears and the sweeping resumes.

3 Select the desired sweep speed mode by toggling the Sweep Mode soft key between Normal and Fast:

Normal: The signal processing and update rate is set to normal levels.

Fast (default): It speeds up the signal processing and the display update rate to increase the overall sweep time.

4 Optional. In the Single mode, press the **Sweep Once** soft key to get a new measurement.

Setting limit for spectrum clearance

You can set a display line or multi-segment limit line to analyze results better.

Procedure

To set a single limit line:

1 Press the *LIMIT* hot key.

- 2 Press the **Display Line** soft key for a reference line.
- 3 Enter a value, and then press the dBm unit soft key.
- 4 Toggle the **Display Line** soft key between **On** and **Off** to display and hide the reference line. The straight line appears across the screen to be used as a visual reference only.

To set a multi-segment limit line:

- 1 Press the LIMIT hot key.
- 2 Press the Multi Segment Line soft key for Pass/Fail indication.
- 3 Toggle the Limit soft key between Upper and Lower to select the one to be displayed.
- 4 Set the number of segments for the selected upper or lower limit line, up to 50 segments.
 - a Press the # of Line soft key.
 - **b** Enter a value between 1 and 50 by using the numeric keys.
 - c Press the Enter soft key.
- 5 Press the Autoset soft key to let the instrument set the limit for each segment and display the line.
- **6** To move the limit line, complete the following steps:
 - a Select Limit Up/Down or Limit Left/Right.
 - b Turn the rotary knob to move the line as desired. You can also manually enter a value.
- 7 To edit the segment properties, complete the following steps:
 - a Press the Edit Limit soft key.
 - **b** Press the **Move** soft key and then turn the rotary knob to select the segment to edit.
 - c Select the menu option, from the following choices:

To hide the line for the selected segment, toggle the **Line** soft key to **Off**.

To add a new point, press the Add Point soft key.

To delete the selected point, press the Delete Point soft key.

To change the position, press the **Frequency** or **Amplitude** soft key, and then turn the rotary knob to change the value as desired.

Optional. Go to **SAVE/LOAD > Save**, and then select **Limit** to save the limit settings. See "Using save" on page 34 for more information

Checking coverage range

If your CellAdvisor has the CPRI source installed, you can use it to check the coverage range of the antenna and adjust its tilt to maximize the coverage range as much as possible.

NOTE

It is very important that you maintain the Term mode cable connection as illustrated in Figure 368 and keep the RRH connection on as you have done in the RRH configuration verification.

Checking coverage range

- 1 Press the MEASURE hot key.
- 2 Select BBU Emulation > Alcatel-Lucent > Coverage Range.
- 3 Press the **MEASURE SETUP** hot key.
- 4 Select More (1/2) > Source > CPRI Source.
- 5 Select one of the Tx parameters to configure from: Tx1 Parameters, Tx2 Parameters, Tx3 Parameters, or Tx4 Parameters.
 - Tx Parameters menu bar appears.
- 6 Press the Select Tx Carrier soft key. Only carriers that are currently active have the active soft keys.
- 7 Select a desired Tx carrier from the menu bar.

Up to 12 selections for carriers are available based upon configuration.

8 Press the Select Tx Container soft key, and then select one of the Tx Container from the menu har

Total 4 selections for Tx containers are available.

NOTE

In the BBU Emulation mode, retrieved carrier and Tx container information is used for de-mapping and signal transmission instead of Map Position.

- **9** To select the CW waveform, complete the following steps:
 - a Press the Waveforms soft key. The Waveform list dialog box appears.
 - b From the list, select **CW** or one of the LTE signals that you want to transmit to the RRH.

NOTE

If you have a second unit of JD700B series or a scanner, you can use it to measure RS Power and RS SINR with transmitting a LTE signal from your CellAdvisor to the RRH so that you can optimize the coverage more accurately.

- c Tap the Apply button on the screen or press the ENTER hard key.
- **10** To set the power level, complete the following steps:
 - Press the Power Level soft key.
 - **b** Enter a value, and then press the **Enter** soft key.
- 11 To start to inject the CW signal, toggle the CPRI Source soft key to On.
- **12** Optional. To enable alarm sound, complete the following steps:
 - Press the MEASURE SETUP hot key.
 - b Press the More (1/2) soft key and then Sound Indicator soft key.
 - c Toggle the Alarm Reference soft key between Marker and Line:

Marker: Sets the active marker position as the alarm reference if you have enabled a marker on the spectrum.

Line: Makes the limit line as the alarm reference.

- d If you have set the alarm reference to Line, press the **Limit Line** soft key to set a threshold for an alarm.
- e Enter a value, and then press the dBm soft key.
- f To turn on/off the alarm sound, toggle the **Sound** soft key to **On** or **Off**.
- To adjust the volume for alarm sound, press the **Volume** soft key, and then turn the rotary knob clockwise or counter clockwise.
- 13 To clear current (C) and history (H) status of CPRI alarm on LOS and LOF, press the **MEASURE SETUP** hot key, the **More** (1/2) soft key, and then the **Clear History** soft key.

Figure 379 Example of coverage range in BBU emulation

Adjusting antenna tilt

Procedure

- 1 In the Coverage Range mode, press the *MEASURE SETUP* hot key.
- 2 Select More (1/2) > Antenna Tilt.
- 3 To select the antenna that you want to manipulate, complete the following steps:
 - Press the **Antenna Index** soft key to select the antenna port in the RRH.
 - **b** Enter the value that you know, and then press the **Enter** soft key.
 - If there are more than one antenna chained for the selected antenna port, press the **ALD SUB** soft key to select the antenna line device subscription number.
 - d Enter the value that you know, and then press the **Enter** soft key.
- **4** To manipulate the tilt of the selected antenna, complete the following steps:
 - a Press the Degree soft key.
 - **b** Enter a value within the range that you know for the selected antenna.
 - Press the Enter soft key.
 The antenna tilts forward accordingly.

NOTE

It is recommended that you wait for a few minutes because it may take two minutes or so to get the antenna actually tilted.

5 Check the coverage range again to see if you have the antenna tilt at its best.

Setting sweep mode

You can select various sweep settings for better measurement, including the sweep run mode (**Single**, **Continuous**) and the sweep speed mode (**Normal**, **Fast**).

Procedure

- 1 Press the **SWEEP** hot key.
- 2 Select the desired sweep run mode by toggling the Sweep Mode soft key between Single and Continuous. You can also use the HOLD hot key.

Single: In this mode, the instrument performs a single sweep and waits for further entries. The letter HOLD in red appears and the sweeping is paused.

Continuous (default): In this mode, the instrument is continuously measuring and updating result.

The letter HOLD in red disappears and the sweeping resumes.

3 Select the desired sweep speed mode by toggling the Sweep Mode soft key between Normal and Fast:

Normal: The signal processing and update rate is set to normal levels.

Fast (default): It speeds up the signal processing and the display update rate to increase the overall sweep time.

4 Optional. In the Single mode, press the **Sweep Once** soft key to get a new measurement.

Performing PIM analysis

The PIM analyzer enables you to measure PIM characteristics of RRH and antenna feeder by injecting test signal to RRH over fiber link while de-mapping IQ spectrum for uplink simultaneously.

With the PIM analyzer feature, CellAdvisor can calculate the possible location of PIM position and provide the information of the possible PIM location.

NOTE

It is very important that you maintain the Term mode cable connection as illustrated in Figure 368 and keep the RRH connection on as you have done in the RRH configuration verification.

Selecting measurement mode

Procedure

- 1 Press the **MEASURE** hot key.
- 2 Select BBU Emulation > Alcatel-Lucent > PIM Analysis.
- 3 Select the PIM analysis mode from the following choices:

Sweep Mode: Measures PIM using two CW tone sweeping across the frequency span The Sweep Mode soft key is activated only after you have installed the license on your CellAdvisor.

Wideband Mode: Detects PIM using wideband multiple carriers

NOTE

The Sweep Mode is activated if the below license(s) are installed on your JD700B series:

- RFoCPRI LTE-FDD Multi Carrier Signal Generator (option 083)
- RFoCPRI LTE-TDD Multi Carrier Signal Generator (option 084)

See "Appendix I – Ordering information" on page 756 for more information.

Checking frequency sweep

To perform Sweep Mode PIM analysis, your JD700B series has the RFoCPRI multi carrier signal generator option which allows PIM analysis using two CW tones sweeping within the span equal to the sampling frequency of the DUT carrier. Minimum frequency step of CW tone is 0.96MHz. User can use Auto sweep that covers full span, or can configure the frequency of two CW tones manually.

- 1 Press the **MEASURE** hot key.
- 2 Select BBU Emulation > Alcatel-Lucent > PIM Analysis > Sweep Mode.

- 3 Press the MEASURE SETUP hot key.
- 4 Press the **Sweep Mode** soft key and then select the sweep measure mode option from:

Full (default): Detects the potential PIM frequencies, order of PIM products, and the PIM levels by moving 0.96 Mhz per step after calculating the Tx1 and Tx2 sources within a specified frequency range

Auto: Detects the potential PIM frequencies, order of PIM products, and the PIM levels by moving the potential Tx1 and Tx2 sources of PIM issues 0.96 Mhz per step within a specified frequency range

Manual: Detects the any PIM issues within a user-defined frequency range

- 5 To select the Rx parameters, complete the following steps:
 - Press the Select Rx soft key.
 - b Toggle the Select RRH soft key between Port1 and Port2 to select a RRH to check the spectrum.
 - Press the Select Rx Carrier soft key, and then select the carrier of your choice.
 Only carriers that are currently available have the active soft keys.
 Up to 12 selections for carriers are available based upon configuration.
 - d Press the **Select Rx Container** soft key, and then select the Rx container of your choice. Up to 4 selections for containers are available based upon configuration.
 - Optional. To set the bandwidth, press the Bandwidth soft key, and then select the bandwidth option from: 1.4 MHz, 3 MHz, 5 MHz, 10 MHz, 15 MHz, 15 MHz (4 AxC), 20 MHz, or 20 MHz (6 AxC).
- **6** To enable the auto leveling, complete the following steps:
 - Press the AMP/SCALE hard key.
 - b Press the Auto Leveling soft key.
 - **c** Enter a noise figure value by using the numeric keys or the rotary knob.
 - Press the dB soft key or the ENTER hot key to complete the entry. New external offset value appears in the External Offset menu box.
- 7 To select the Tx parameters, complete the following steps:
 - a Press the Select Tx1 or Select Tx2 soft keys.
 - Press the Select Tx Carrier soft key, and then select the carrier of your choice.
 Only carriers that are currently available have the active soft keys.
 Up to 12 selections for carriers are available based upon configuration.
 - Press the Select Tx Container soft key, and then select the Tx container of your choice. Up to 4 selections for containers are available based upon configuration.
 - d Optional. To adjust the gain of the waveform to be transmitted in order to prevent an overrun or underrun of the RRH, press the Gain soft key, enter a value between -50 and 0.00 by using the rotary knob or the numeric keys, and then press the dB soft key or the ENTER hard key.
 - Optional. To set the power level, press the Power Level soft key, enter a value by using the numeric keys or the rotary knob, and then press the Enter soft key or the ENTER hard key.
 - f To start injecting the signal, toggle the CPRI Source soft key to On. At this time, the waveform is automatically set to CW.
- 8 Press the **PREV** hard key to return to the measure setup menu bar.
- 9 To start the measurement, toggle the Run Sweep soft key to Start. The potential PIM frequencies are displayed on the chart with the colored bar graphs.
- 10 To clear current (C) and history (H) status of CPRI alarm on LOS and LOF, press the MEASURE SETUP hot key, and then the Clear History soft key.

| DPASS 2015-09-30 18-54-30 | PMArabyte |

Figure 380 Example of Sweep mode PIM Analysis in BBU emulation

Checking wideband spectrum

- 1 Press the **MEASURE** hot key.
- 2 Select BBU Emulation > Alcatel-Lucent > PIM Analysis > Wideband Mode.
- 3 Press the **MEASURE SETUP** hot key.
- 4 Toggle the Select RRH soft key between Port1 and Port2 to select a RRH to check the spectrum.
- **5** To set the Rx parameters, complete the following steps:
 - Press the Rx Parameters soft key.
 - Press the Select Rx Carrier soft key, and then select the carrier of your choice.
 Only carriers that are currently available have the active soft keys.
 Up to 12 selections for carriers are available based upon configuration.
 - c Press the **Select Rx Container** soft key, and then select the Rx container of your choice. Up to 4 selections for containers are available based upon configuration.
 - d Optional. To set the bandwidth, press the Bandwidth soft key, and then select the bandwidth option from: 1.4 MHz, 3 MHz, 5 MHz, 10 MHz, 15 MHz, 15 MHz (4AxC), 20 MHz, or 20 MHz (6 AxC).
- 6 To set the CPRI source, complete the following steps:
 - Press the CPRI Source soft key.
 - b Select the Tx number from: Tx1 Parameters, Tx2 Parameters, Tx3 Parameters, or Tx4 Parameters.
 - Press the Select Tx Carrier soft key, and then select the carrier of your choice.
 Only carriers that are currently available have the active soft keys.
 Up to 12 selections for carriers are available based upon configuration.
 - d Press the **Select Tx Container** soft key, and then select the Tx container of your choice. Up to 4 selections for containers are available based upon configuration.
 - e Optional. To set the gain, press the Gain soft key, and then enter a value by using the rotary knob or the numeric keys.
 - f Optional. To set the waveform to be generated, press the Waveforms soft key, select a signal from the Waveform dialog box, and then tap the Apply button or press the ENTER hard key.
 - g Optional. To set the power level, press the Power Level soft key, enter a value by using the numeric keys or the rotary knob, and then press the Enter soft key or the ENTER hard key.
 - h To start injecting the signal, toggle the CPRI Source to On.

7 To clear current (C) and history (H) status of CPRI alarm on LOS and LOF, press the **MEASURE SETUP** hot key, the **More (1/2)** soft key, and then the **Clear History** soft key.

Checking flatness

The flatness in Wideband Mode PIM analysis is an elevation angel that two points create, resulting from the difference in power level at the two ends.

Procedure

- 1 Press the MEASURE hot key.
- 2 Select BBU Emulation > Alcatel-Lucent > PIM Analysis > Wideband Mode.
- 3 Press the **MEASURE SETUP** hot key.
- 4 Select the Flatness soft key.
- 5 To set the bandwidth for the flatness calculation, complete the following steps:
 - a Press the Bandwidth soft key.
 - **b** Enter a value that is smaller than the transmission bandwidth to prevent the spectrum data points from being at the edges of the chart.
- 6 Toggle the Flatness soft key to On.
- 7 To turn it off, toggle the **Flatness** soft key to **Off**.

Setting sweep mode

You can select various sweep settings for better measurement, including the sweep run mode (**Single**, **Continuous**) and the sweep speed mode (**Normal**, **Fast**).

Procedure

- 8 Press the SWEEP hot key.
- 9 Select the desired sweep run mode by toggling the **Sweep Mode** soft key between **Single** and **Continuous**. You can also use the **HOLD** hot key.

Single: In this mode, the instrument performs a single sweep and waits for further entries. The letter HOLD in red appears and the sweeping is paused.

Continuous (default): In this mode, the instrument is continuously measuring and updating result.

The letter HOLD in red disappears and the sweeping resumes.

10 Select the desired sweep speed mode by toggling the Sweep Mode soft key between Normal and Fast:

Normal: The signal processing and update rate is set to normal levels.

Fast (default): It speeds up the signal processing and the display update rate to increase the overall sweep time.

11 Optional. In the Single mode, press the Sweep Once soft key to get a new measurement.

Setting limit line

You can set threshold(s) and display either a single segment line or multi-segment line to analyze the result better.

Procedure

To set a single limit line:

1 Press the LIMIT hot key.

- 2 Press the **Display Line** soft key for a reference line.
- 3 Enter a value, and then press the dBm unit soft key.
- 4 Toggle the **Display Line** soft key between **On** and **Off** to display and hide the reference line. The straight line appears across the screen to be used as a visual reference only.

To set a multi-segment limit line:

- 5 Press the *LIMIT* hot key.
- 6 Press the **Multi Segment Line** soft key for Pass/Fail indication.
- 7 Toggle the Limit soft key between Upper and Lower to select the one to be displayed.
- **8** Set the number of segments for the selected upper or lower limit line, up to 50 segments.
 - a Press the # of Line soft key.
 - **b** Enter a value between 1 and 50 by using the numeric keys.
 - c Press the Enter soft key.
- 9 Press the Autoset soft key to let the instrument set the limit for each segment and display the line.
- **10** To move the limit line, complete the following steps:
 - a Select Limit Up/Down or Limit Left/Right.
 - Turn the rotary knob to move the line as desired. You can also manually enter a value.
- **11** To edit the segment properties, complete the following steps:
 - Press the Edit Limit soft key.
 - **b** Press the **Move** soft key and then turn the rotary knob to select the segment to edit.
 - c Select the menu option, from the following choices:
 - To hide the line for the selected segment, toggle the **Line** soft key to **Off**.
 - To add a new point, press the Add Point soft key.
 - To delete the selected point, press the **Delete Point** soft key.
 - To change the position, press the **Frequency** or **Amplitude** soft key, and then turn the rotary knob to change the value as desired.
- **12** Optional. Go to **SAVE/LOAD > Save**, and then select **Save Limit** to save the limit settings. See "Using save" on page 34 for more information

Figure 381 Example of Wideband Mode PIM analysis in BBU emulation

Optimizing RET information

The JD700B series provide the remote electrical downtilt (RET) feature that enables you to optimize, control and maintain the antenna's tilt position in real-time and in anywhere.

Scanning antenna line devices

You can check the connected antenna line devices information. Devices are sorted by Index number, and the device list is updated after each scan.

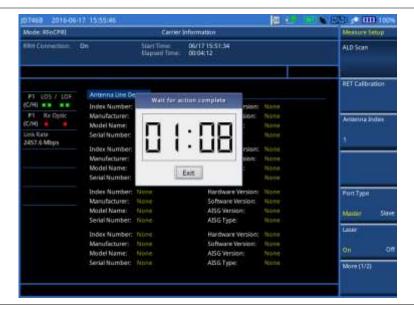
Procedure

- 1 Press the **MEASURE SETUP** hot key.
- 2 Select BBU Emulation > Alcatel-Lucent > RET-Information.
- 3 Press the **MEASURE SETUP** hot key.
- 4 Select **ALD Scan** to start the scan process.

 The scanning time appears. The scanning time may vary depending on the number of connected devices. Once the scan is completed, the Antenna Line Device list will be updated.

NOTE

You can specify the antenna index number to scan in the **Antenna Index** menu.


5 Optional. Tap the **Exit** button to stop the scanning.

Performing RET calibration

After scanning of the antenna line devices, you can progress the calibration.

- 1 Press the **MEASURE SETUP** hot key.
- 2 Select BBU Emulation > Alcatel-Lucent > RET-Information.
- 3 Press the **MEASURE SETUP** hot key.
- 4 Select RET Calibration to start the calibration. The calibration time appears. The calibration time may vary depending on the number of connected devices. Once the calibration is completed, the changes are applied to the antennas.
- **5** Optional. To exit the screen without sending changes, tap the **Exit** button.

Figure 382 Example of ALD scanning in RET information

Chapter 17 Performing RFoOBSAI Testing

This chapter provides instructions for using the RFoOBSAI function that requires Optical Hardware (option 008), RFoOBSAI Interference Analyzer (options 070 – 073), and RFoOBSAI LTE-FDD Signal Analyzer (option 096). Topics discussed in this chapter are as follows:

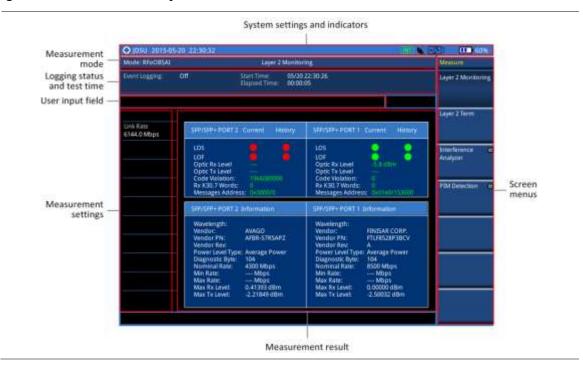
Introduction	649
Display overview	.649
Selecting measurement mode	650
Performing layer 2 monitoring	650
Performing layer 2 term testing	653
Performing interference analysis	656
Performing PIM detection (single and multiple carriers)	.668
Performing LTE-FDD downlink signal analysis	672
Using signal generator	.697

Introduction

Cell sites today have a distributed architecture of the radio that consists of the baseband (BB) module or baseband unit (BBU) installed at the bottom of the tower and the remote RF unit (RRU) or remote radio head (RRH) installed at the top of the tower. These two elements interface with each other for data transfer over fiber links via the Reference Point 3 (RP3) protocol, which is specified by Open Base Station Architecture Initiative (OBSAI).

This distributed architecture provides the benefit of replacing coax-based feeders with fiber- based feeders, significantly reducing the problems of signal loss and reflections. However, since all the RF modules reside on the RRU, any RF maintenance or troubleshooting requires climbing to the top of the tower to access the RRU, increasing operational cost and unnecessary safety issues.

JD700B series analyzers provide the option of RFoOBSAI that allows you to perform RF maintenance and troubleshooting activities on the ground via the fiber interfaces at the BB module, significantly reducing maintenance time and operational expenses. Thanks to the RFoOBSAI technology, you can verify the OBSAI RP3 protocol and extracts the RP3 messages transmitted between the BBU and RRU to monitor and analyze the uplink interferences and the downlink signals.


The RFoOBSAI testing provides following measurements and analysis:

- Layer 2 monitoring of link maintenance errors and optical power
 - Loss of Signal (LOS)
 - Loss of Frame (LOF) Frame synchronization or alignment
 - Optical Rx and Tx power levels
 - Line Code Violation
 - o Rx K30.7 words
 - o RP3 address/message counts
- Layer 2 terminate testing
- Interference analysis
 - o Spectrum
 - o Spectrogram
 - Received Signal Strength Indicator (RSSI)
 - o Spectrum replayer
- PIM detection of single or multiple carrier(s)
- LTE-FDD downlink signal analysis over OBSAI
 - Spectrum
 - o RF analysis Channel Power and Occupied Bandwidth
 - o Power vs. Time (Frame)
 - Modulation analysis Constellation, Data Channel, Control Channel, Subframe, Frame,
 Time Alignment Error, and Data Allocation Map
 - o Power Statistics CCDF

Display overview

Figure 383 provides descriptions for each segment of the measurement screen.

Figure 383 RFoOBSAI analysis screen

Selecting measurement mode

Procedure

- 1 Press the MODE hard key.
- 2 Press the RFoFiber soft key.
- 3 Press the RFoOBSAI soft key. The Layer 2 Monitoring mode is set by default.
- 4 Press the MEASURE hot key, and then select the measurement mode option from the following choices:

Layer 2 Monitoring

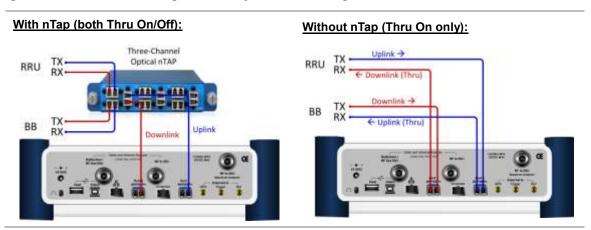
Layer 2 Term

Interference Analyzer > Spectrum, Spectrogram, RSSI, or Spectrum Replayer

PIM Detection > PIM Detection Single Carrier, PIM Detection Multiple Carriers, or Calculated PIM

Signal Analyzer > LTE-FDD > Spectrum, RF Analysis, P vs T (Frame), Modulation Analysis, or Power Statistics CCDF

Performing layer 2 monitoring


The in-service Layer 2 Monitoring is used to monitor link maintenance errors of the physical layer (Layer 1) of the RP3 bus protocol. It also verifies proper optical power levels of the received and transmitted signals.

Connecting cables

The monitoring mode lets you perform in-service testing by using coupler(s) or nTap(s). You can connect cables with a tap or without a tap as illustrated in Figure 384. If you have connected cables directly from RRU and BBU without using the nTap, you must turn on the through mode (Thru) in the Measure Setup menu.

A SFP/SFP+ transceiver that is connected to your JD700B series must be compatible with your DUT and you must have your module information such as line rate, wavelength, and mode (MM or SM) handy.

Figure 384 Connection diagram for Layer-2 monitoring mode

Selecting measurement mode

Procedure

- 1 Press the **MEASURE** hot key.
- 2 Select Layer 2 Monitoring.

Selecting port

JD700B series supports two antenna ports for signal transmission, and each port can generate different waveforms selectively and simultaneously. User can select the port to use for the measurement in any measurement mode of RFoOBSAI mode.

Procedure

- 1 In any measurement mode, press the **MEASURE SETUP** hot key.
- 2 Toggle the Select Port soft key between Port 1 and Port 2 to select the desired port.

Setting measure setup

Procedure

- 1 Press the **MEASURE SETUP** hot key.
- 2 Press the Link Rate soft key to set the line rate of the OBSAI RP3 interface between the BB and the RRII
- 3 Select the RP3 line rate option from the choices: 768 Mbps, 1536 Mbps, 3072 Mbps, and 6144 Mbps.

NOTE

It is important that you set the link rate correctly to avoid any misleading LOS and LOF alarms displayed on the screen.

If you select **6144 Mbps**, the **Scrambler Seed** soft key becomes active in the OBSAI Parameters menu so that you can specify a seed value to avoid false byte alignment.

4 To turn on the through mode if you have not used a tap, toggle the **Thru** soft key and select **On**.

To turn it off, select Off.

Setting Rx optic limit

A RRH has a finite dynamic range for input optic power and it can cause an abnormal behavior of the RRH if the optical power is weaker than certain level. To differentiate intermittent low optic power issues from any RSSI, interference and signal quality issues, it is important for you to monitor the input optic power level during the monitoring of the spectrum and the signal quality. Using this Rx optic limit feature, you can set lower and upper limits and monitor the Rx optic level with Pass/Fail indication in green and red colors.

Procedure

- 1 Press the LIMIT hot key.
- 2 Press the Rx Optic Level soft key.
- 3 Set a threshold for High Limit and Low Limit.
- 4 To enable the Rx optic limit, toggle the Test Limits soft key and select On. If the optic power level falls out of the specified thresholds, the color of the power reading or indicator turns red.
- 5 To disable the Rx optic limit, toggle the **Test Limits** soft key and select **Off**.

Conducting layer 2 monitoring

After you have set the test parameters, you can monitor errors in OBSAI L2 signals.

Procedure

1 Monitor the following error indicators and the optical signal level. Test results in green indicate no detection of errors and red ones represent occurrence(s) of errors.

LOS: Loss of Signal (code violation or low optical power)

LOF: Loss of Frame (frame synchronization or alignment)

Optic Rx Level: If the optical signal level is lower than the threshold, the OBSAI RP3 link may not work properly and the RRU may not be in service mode.

Code Violations: Number of occurrence of invalid line codes

Rx K30.7 Words: Number of counts of K30.7 character, which indicates an error in the byte

RP3 Address: Rx RP3 addresses in the received messages

Message Counts: Number of counts of received messages addressed to the same RP3 address specified in the Measure Setup > OBSAI Parameters > Rx RP3 Address

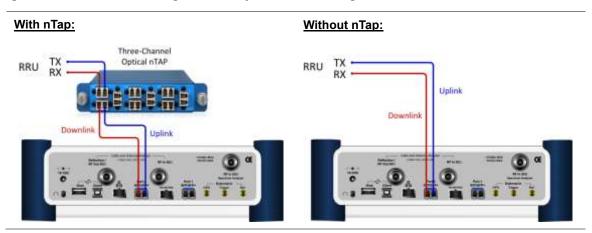
NOTE

If you have selected the link rate **6144 Mbps**, displayed RP3 addresses may include invalid or erroneous addresses.

- **2** Optional. You can use the **Save Logging Data** soft key to record the event logging in .csv file format. See "Using save" on page 34 for more information.
- 3 To clear the previous event history and start a new monitoring, press the MEASURE SETUP hot key and then the Clear History soft key.

Figure 385 OBSAI RP3 layer 2 monitoring

Performing layer 2 term testing


The out-of-service Layer 2 Term is to test the OBSAI RP3 fronthaul in the terminated state and it is used to monitor link maintenance errors of the physical layer (Layer 1) of the RP3 bus protocol. It also verifies proper optical power levels of received and transmitted signals.

Connecting cables

The terminate mode allows you to do out-of-service testing. You can connect cables with a tap or without a tap as illustrated in Figure 386.

A SFP/SFP+ transceiver that is connected to your JD700B series must be compatible with your DUT and you must have your module information such as line rate, wavelength, and mode (MM or SM) handy.

Figure 386 Connection diagram for Layer-2 term testing mode

Selecting measurement mode

Procedure

- 1 Press the MEASURE hot key.
- 2 Select Layer 2 Term.

Selecting port

JD700B series supports two antenna ports for signal transmission, and each port can generate different waveforms selectively and simultaneously. User can select the port to use for the measurement in any measurement mode of RFoOBSAI mode.

Procedure

- 1 In any measurement mode, press the **MEASURE SETUP** hot key.
- 2 Toggle the Select Port soft key between Port 1 and Port 2 to select the desired port.

Setting measure setup

Procedure

- 1 Press the **MEASURE SETUP** hot key
- 2 Press the Link Rate soft key to set the line rate of the OBSAI RP3 interface between the BB and the RRU.
- 3 Select the RP3 line rate option from the choices: 768 Mbps, 1536 Mbps, 3072 Mbps, and 6144 Mbps.

NOTE

It is important that you set the link rate correctly to avoid any misleading LOS and LOF alarms displayed on the screen.

If you select **6144 Mbps**, the **Scrambler Seed** soft key becomes active in the OBSAI Parameters menu so that you can specify a scrambler seed.

- 4 Make sure to turn off the through mode by toggling the **Thru** soft key and selecting **Off**.
- 5 Press the **OBSAI Parameters** soft key to select the port type and the clock reference.
- 6 Toggle the **Port Type** soft key and select **Master**.
- 7 Press the **Tx Clock** soft key, and then select **Internal** for transmission clock reference.

Setting Rx optic limit

A RRH has a finite dynamic range for input optic power and it can cause an abnormal behavior of the RRH if the optical power is weaker than certain level. To differentiate intermittent low optic power issues from any RSSI, interference and signal quality issues, it is important for you to monitor the input optic power level during the monitoring of the spectrum and the signal quality. Using this Rx optic limit feature, you can set lower and upper limits and monitor the Rx optic level with Pass/Fail indication in green and red colors.

- 1 Press the *LIMIT* hot key.
- 2 Press the Rx Optic Level soft key.
- 3 Set a threshold for **High Limit** and **Low Limit**.
- 4 To enable the Rx optic limit, toggle the **Test Limits** soft key and select **On**.

If the optic power level falls out of the specified thresholds, the color of the power reading or indicator turns red.

5 To disable the Rx optic limit, toggle the Test Limits soft key and select Off.

Conducting layer 2 term test

Procedure

- 1 Press the **MEASURE SETUP** hot key.
- 2 Press the More (1/2) soft key to go to the Alarm/Error and Laser menus.
- 3 Toggle the Laser soft key and select On to activate the transmission.
- **4** To insert a code error, complete the following steps:
 - a Toggle the Error Type soft key between Code and K30.7 and select Code.
 - Toggle the **Insert Type** soft key between **Single** and **Rate** and select the insert type option you want.

Single: It inserts an error once and then turns off the error insertion.

Rate: It inserts an error according to the set error rate in the Error Rate menu.

- c If you have selected Rate in step b, press the Error Rate and then select the error rate option from the choices: 1E-3, 1E-4, 1E-5, 1E-6, 1E-7, 1E-8, and 1E-9.
- d Toggle the **Error Insertion** soft key and select **On** to start to insert the specified error.
- To stop inserting the error, toggle the Error Insertion soft key and select Off.
- 5 To insert a K30.7 error signal, complete the following steps:
 - a Toggle the Error Type soft key between Code and K30.7 and select K30.7.
 - b Toggle the **Error Insertion** soft key and select **On** to insert the specified error. The K30.7 error signal is one time insertion. This setting changes back to Off after insertion.
- 6 Check the real time results on the screen.

LOS: Loss of Signal (code violation or low optical power)

LOF: Loss of Frame (frame synchronization or alignment)

Optic Rx Level: If the optical signal level is lower than the threshold, the OBSAI RP3 link may not work properly and the RRU may not be in service mode.

Optic Tx Level: If the optical signal level is lower than the threshold, the OBSAI RP3 link may not work properly and the BB may not be in service mode.

Word Sync Loss Events: Number of occurrence of word sync losses

Code Violations: Number of occurrence of invalid line codes

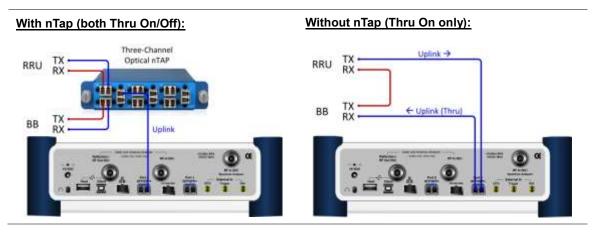
Rx K30.7 Words: Number of counts of K30.7 character, which indicates an error in the byte

Frame Sync Loss Events: Number of detected frame sync losses

- 7 Optional. You can use the Save Logging Data soft key to record the event logging in .csv file format. See "Using save" on page 34 for more information.
- 8 To clear the previous event history and start a new testing, press the **PREV** hard key and then press the **MEASURE SETUP** hot key and then the **Clear History** soft key.

Figure 387 OBSAI layer 2 term test

Performing interference analysis


After checking that the link connection is good with no errors, you can proceed to the interference analysis activities including spectrum, spectrogram, RSSI, and spectrum replayer. You can also monitor current and history OBSAI alarm status for LOS and LOF displayed on the interference measurement screen.

Connecting cables

You can connect cables with a tap or without a tap as illustrated in Figure 388. If you have connected cables directly from RRH and BBU without using the nTap, you must turn on the through mode (Thru) in the Measure Setup menu.

A SFP/SFP+ transceiver that is connected to your JD700B series must be compatible with your DUT and you must have your module information such as line rate, wavelength, and mode (MM or SM) handy.

Figure 388 Connection diagram for interference analysis

Selecting measurement mode

Procedure

- 1 Press the **MEASURE** hot key.
- 2 Press the Interference Analyzer soft key.
- **3** Select the interference measurement mode from the following choices:

Spectrum

Spectrogram

RSSI

Spectrum Replayer

Selecting port

JD700B series supports two antenna ports for signal transmission, and each port can generate different waveforms selectively and simultaneously. User can select the port to use for the measurement in any measurement mode of RFoOBSAI mode.

Procedure

- 1 In any measurement mode, press the **MEASURE SETUP** hot key.
- 2 Toggle the Select Port soft key between Port 1 and Port 2 to select the desired port.

Configuring test parameters

Configuration of test parameters described in this section is used in the Interference Analyzer mode including spectrum measurements, spectrogram, and RSSI.

Setting frequency

You can set the frequency with either frequency or channel number. If a frequency to be set matches to the frequency corresponding to the selected channel standard, the instrument calculates its channel number and updates the screen with it automatically.

Procedure

To set the frequency with center frequency:

- 1 Press the FREQ/DIST hard key.
- 2 Toggle the **Unit** soft key and select **Freq**.
- 3 Press the Center Frequency soft key.
- 4 Enter a value by using the numeric keys. You can also use the rotary knob.
- 5 Select the unit: GHz, MHz, kHz, or Hz.
- 6 Optional. To define the amount of increment for rotary operation, complete the following steps:
 - a Press the Frequency Step soft key.
 - **b** Enter a value by using the numeric keys. You can also use the rotary knob.
 - c Press the unit: GHz, MHz, kHz, or Hz.

To set the frequency with channel number:

- 1 Press the FREQ/DIST hard key.
- 2 Toggle the Unit soft key and select Channel.
- 3 To select the standard channel, complete the following steps:

- Press the Channel Std soft key. The standard channel window appears.
 See "Appendix C Band, frequency & channel standard" on page 745 for more information.
- Highlight the band to be measured by using the rotary knob, the arrow keys, or the Page Up/Page Down soft keys.
- **c** Press the **Select** soft key or the rotary knob to confirm the selection.
- 4 Toggle the Link soft key to select the scanning direction and select Fwd (forward) or Rev (reverse).
- 5 Press the Channel Number soft key.
- **6** Enter a value by using the numeric keys. You can also use the rotary knob.
- 7 Press the Enter soft key.
 - The instrument automatically displays the corresponding center frequency value for the selected channel number.
- 8 Optional. To define the amount of increment for rotary operation, complete the following steps:
 - Press the Channel Step soft key.
 - **b** Enter a value by using the numeric keys. You can also use the rotary knob.
 - c Press the Enter soft key.

Setting reference level

You can set the reference level automatically or manually to optimize the display of the traces measured, as you desire.

Procedure

To automatically set the reference level:

- 1 Press the AMP/SCALE hard key.
- 2 Press the Auto Scale soft key. Each time you press this key, the Y-axis scale changes to be optimized with some margin.

To set the reference level manually:

- 1 Press the AMP/SCALE hard key.
- 2 To set the maximum reference value on the Y-axis manually, complete the following steps:
 - Press the Reference Level soft key.
 - **b** Enter a value by using the numeric keys or the rotary knob with 10 dB increments.
 - c Press the unit soft key or the ENTER hard key. This unit key name changes according to the setting in the Units menu.

Optional. To change the scale unit:

- 1 Select More (1/2) > Units.
- 2 Select the unit of the display scale: dBm, dBV, dBmV, dBμV, V, or W. The scale unit on the screen changes accordingly.

Setting scale per division

You can use the **Scale/Div** feature to change the scale per division, representing the value of one division on the horizontal scale. The default setting is 10 dB per division and the maximum value can be set up to 20 dB.

- 1 Press the AMP/SCALE hard key.
- 2 Select More (1/2) > Scale/Div.
- 3 Enter a value between 1 and 20 by using the numeric keys.

4 Press the dB soft key to complete the entry.

Setting external offset

You can turn the **External Offset** on and manually set the external offset value. An offset consists of a cable loss and a user offset, and the measurement result shows the value reflecting both offset values. When the external offset value is set at 40 dB, the measurement result compensates 40 dB.

Procedure

To set the external offset:

- 1 Press the AMP/SCALE hard key.
- 2 Toggle the External Offset soft key and select On.
- **3** Enter a value by using the numeric keys.
- 4 Press the dB soft key to complete the entry.

To turn the external offset off:

- 1 Press the AMP/SCALE hard key.
- 2 Toggle the External Offset soft key and select Off.

Enabling auto leveling

It is normal that you see higher level of RSSI in OBSAI spectrum than you have seen in RF spectrum because the digital signal has a different gain level from RF's. If you use the Auto Leveling feature and enter the Noise Figure (NF) for the system to be tested, the instrument calculates an offset that compensates the digital gain of RRH and applies it to the spectrum automatically to displace the level of spectrum to a known RSSI power even though its accuracy cannot be guaranteed. Offset calculation for Auto Leveling is based on the following:

Auto Level offset = (Noise Floor of RFoOBSAI) – (Ideal Noise Floor of RRH), where (Idea Noise Floor) = N.F (RRH) + Thermal Noise + 10log (RBW)

Procedure

- 1 Press the AMP/SCALE hard key.
- Press the Auto Leveling soft key. A calculated level of offset without NF is applied as the external offset and the user input field is activated for entry of the noise figure value.
- **3** Enter a noise figure value by using the numeric keys.

NOTE

Having the noise figure factored in the offset calculation for Auto Leveling will enable you to view the OBSAI spectrum closer to what you can view in the RF spectrum, but if you do not know the noise figure, you can skip this noise figure setting.

4 Press the dB soft key to complete the entry. New external offset value appears in the External Offset menu box.

Setting RBW

You can set the RBW and VBW in the Spectrum, Spectrogram, and RSSI modes. The RBW range is limited as per the bandwidth of the signal under test.

Procedure

- 1 Press the **BW/AVG** hard key.
- 2 Press the RBW soft key to set the resolution bandwidth.
- 3 Enter a value in 1-3 sequence by using the numeric keys, and then select **kHz** soft key. You can also use the rotary knob.

For signal bandwidths 1.4 MHz and 3 MHz: RBW from 1 kHz to 30 kHz

For signal bandwidths 5 MHz, 10 MHz, 15 MHz, and 20 MHz: RBW from 1 kHz to 100 kHz

- 4 Press the **VBW** soft key to set the video bandwidth.
- 5 Enter a value by using the numeric keys, and then select the unit option from the choices: MHz, kHz, and Hz. You can also use the rotary knob.

Setting average

You can set the number of measurements to be averaged for the trace presentation in the Spectrum, Spectrogram, and RSSI modes. A maximum of 100 times of averaging can be set. When the averaging reaches to your setting, a new measurement value replaces the measurement value in sequence from the earliest.

Procedure

- 1 Press the BW/AVG hard key.
- 2 Press the Average soft key.
- 3 Enter a value between one and 100 as needed by using the numeric keys.
- 4 Press the Enter soft key.

Setting sweep mode

The default setting is **Continue** to sweep continuously for most on-going measurements. If you want to hold the measurement or get a single sweep, you can change the sweep mode. This setting is used in the Spectrum, Spectrogram, and RSSI modes.

Procedure

To select the single sweep mode:

- 1 Press the SWEEP hot key.
- 2 Toggle the Sweep Mode soft key and select Single. You can also use the HOLD hot key. The letter HOLD in red appears and the sweeping is paused.
- 3 Optional. Press the **Sweep Once** soft key to get a new measurement.

To return to the continuous sweep mode:

1 Toggle the Sweep Mode soft key and select Continue. You can also use the HOLD hot key. The letter HOLD in red disappears and the sweeping resumes.

Setting trace

You can display up to six traces on the measurement chart simultaneously.

- 1 Press the TRACE/DISPLAY hard key.
- Press the Select Trace soft key, and then select the trace number: T1, T2, T3, T4, T5, or T6.
 The legend shape of the selected trace changes from square to round to indicate that the trace is

the active one now.

3 Do one of the following:

То	Select	Trace Legend
Clear current data and display with new measurements	Clear Write	W
Display the input signal's maximum response only (unlimited or for a certain amount of time)	Max Hold	M
Display the input signal's minimum response only (unlimited or for a certain amount of time)	Min Hold	m
Capture the selected trace and compare traces	Capture	С
Load a saved trace	More (1/2) > Load	L
Hide the displayed trace	Trace View > Off	F
Remove all the traces and initialize the trace settings	More (1/2) > Trace Clear All	

NOTE

For the **Max Hold** and **Min Hold**, your instrument compares newly acquired data with the active trace and displays larger maximum values or smaller minimum values on the screen. You can set it to **Unlimited** to hold and view maximum or minimum data or specify a certain amount of time up to 60 seconds by using numeric keys or rotary knob.

4 To select the detection option, select More (1/2) > Detectors, and then do one of the following:

To display	Select
Random noise better than the peak without missing signals	Normal
The highest value in each data point	Peak
The root mean squared average power across the spectrum	RMS
The lowest value in each data point	Negative Peak
The center value in each data point	Sample

- 5 Optional. Select More (1/2) > Trace Info, and then select the trace number to view the trace's parameter setting information stored at the time of the measurement or None to hide the information display.
- Optional. If you have the two traces T1 and T2, you can perform trace math. To view the power difference between the traces, press the T1 T2 -> T5 or T2 T1 -> T6 soft key. The result is overlaid on the screen along with the second Y-axis.

NOTE

To be able to load a trace, the trace to be overlaid must be saved in the same measurement mode and frequency setting as the current measurement.

Setting measure setup

Procedure

- 1 Press the **MEASURE SETUP** hot key
- 2 Press the Link Rate soft key to set the line rate of the OBSAI RP3 interface between the BB and the RRU.
- 3 Select the RP3 line rate option from the choices: 768 Mbps, 1536 Mbps, 3072 Mbps, and 6144 Mbps.

NOTE

It is important that you set the link rate correctly to avoid any misleading LOS and LOF

alarms displayed on the screen.

If you select **6144 Mbps**, the **Scrambler Seed** soft key becomes active in the OBSAI Parameters menu so that you can specify a scrambler seed.

- 4 To turn on the through mode if you have not used a tap, toggle the Thru soft key and select On. To turn it off, select Off.
- 5 Press the OBSAI Parameters soft key, and then do the following:

To specify Rx RP3 Type and RP3 Address of the received message for link rates **768 Mbps**, **1536 Mbps**, and **3072 Mbps**, complete the following steps:

- a Select More (1/2) > Rx Address List. The Rx Address List box appears. JD700B series lists all Rx messages detected by the instrument with RP3 Address and RP3 Type values.
- **b** From the list, select the message to monitor.
- c Tap the Apply button. The instrument automatically sets the RP3 Address and RP3 Type with the selected values.

NOTE

You can also manually specify the RP3 Address and RP3 Type for the received message using the **Rx RP3 Type** and **Rx RP3 Address** soft keys.

d If you have selected a WCDMA/FDD message, toggle the WCDMA Link soft key and select the link direction between FWD for forward (downlink) and REV for reverse (uplink).

To specify Rx RP3 Type and RP3 Address of the received message for link rate **6144 Mbps**, complete the following steps:

- a Select More (1/2) > Rx Address Valid List.
 The Rx Address List box appears. Unlike the Rx Address List, the Rx Address Valid List feature shows only the messages that contain scrambling code seed values.
- **b** From the list, select the message to monitor.
 - Tap the **Apply** button.

 The instrument automatically sets the RP3 Address, RP3 Type, and Scrambler Seed with the selected values.

NOTE

You can also manually specify the RP3 Address, RP3 Type, and Scrambler Seed for the received message using the **Rx RP3 Type**, **Rx RP3 Address**, and **Scrambler Seed** soft keys.

d If you have selected a WCDMA/FDD message, toggle the WCDMA Link soft key and select the link direction between FWD for forward (downlink) and REV for reverse (uplink).

To set the port type and transmission clock reference, complete the following steps:

- Toggle the Port Type soft key and select Slave (default).
- b Press the Tx Clock soft key, and then select Recovered (default).
- 6 Press the **Bandwidth** soft key, and then specify the bandwidth depending on the RP3 type of the received signal.

WCDMA/FDD REV (uplink): 5 MHz WCDMA/FDD FWD (downlink): 3 MHz

LTE: 1.4 MHz, 3 MHz, 5 MHz, 10 MHz, 15 MHz, and 20 MHz

The RBW range changes based on this bandwidth setting.

7 Optional. To use the RF signal generator function, see "Using RF source in RFoOBSAI testing" on page 697.

Conducting spectrum measurement

After setting test parameters as described in "Configuring test parameters" on page 657, you can perform spectrum measurements with an audible indicator. You can also turn on the interference ID.

Procedure

- 1 Press the **MEASURE SETUP** hot key.
- 2 To set the sound indicator, complete the following steps:
 - Press the Sound Indicator soft key.
 - **b** Select the alarm reference option from the choices: **Marker** and **Line**.

Marker: Sets the active marker position as the alarm reference.

Line: Lets the limit line as the alarm reference.

- **c** Press the **Limit Line** soft key to set a threshold for an alarm.
- d Enter a value, and then press the dBm soft key.
- Toggle the Sound soft key and select On to enable to sound or Off to turn it off.
- **f** Optional. To adjust the volume for alarm sound, press the **Volume** soft key, and then turn the rotary knob clockwise or counter clockwise.

NOTE

The Sound Indicator is used to identify interfering signals with alarm sound. It is especially useful for locating interferer sources with a directional antenna.

- **3** To set the interference ID, complete the following steps:
 - Press the Interference ID soft key.
 - b Press the Threshold soft key.
 - **c** Enter a value, and then press the **dBm** soft key.
 - d Toggle the Interference ID soft key and select On to turn on Interference ID or Off to turn it off.

NOTE

The Interference ID automatically classifies interfering signals over a designated spectrum and displays a list of possible signal types corresponding to the selected signal.

- 4 To clear current (C) and history (H) status of OBSAI alarm on LOS and LOF and start a new monitoring, press the **MEASURE SETUP** hot key and then the **Clear History** soft key.
- Optional. Go to SAVE/LOAD > Save, and then select the save option from the choices available for your measurement mode. See "Using save" on page 34 for more information. If you have saved logging data, you can play them in the Spectrum Replayer mode.

NOTE

You can use the *LIMIT* hot key to analyze your measurements with the display line, multi-segment line, and channel limit. See "Setting limit for interference analysis" on page 667 for more information.

Figure 389 RFoOBSAI spectrum measurement

Conducting spectrogram

The Spectrogram is particularly useful when attempting to identify periodic or intermittent signals as it captures spectrum activity over time and uses various colors to differentiate spectrum power levels. When the directional antenna is used to receive the signal, you will see a change in the amplitude of the tracked signal as you change the direction of the antenna and see a change in the Spectrogram colors. The source of the signal is located in the direction that results in the highest signal strength.

After setting test parameters as described in "Configuring test parameters" on page 657, you can perform spectrogram measurements.

Procedure

- 1 Press the **MEASURE SETUP** hot key.
- 2 To set the amount of time between each trace measurement:
 - Press the Time Interval soft key.
 - **b** Enter a value, and then press the **Sec** soft key.
- 3 To set the time cursor on a specific trace position, complete the following steps:
 - a Toggle the **Time Cursor** soft key and select **On**.
 - **b** Press the **Position** soft key.
 - c Turn the rotary knob to move the time cursor. You can also enter a value and then press the Enter soft key.
 - d To turn the time cursor off, toggle the **Time Cursor** soft key and select **Off**.

NOTE

Enabling the time cursor puts the measurement on hold and you can make postprocessing analysis for each measurement over time using the time cursor.

- 4 To start a new measurement, press the **Reset/Restart** soft key.
- To clear current (C) and history (H) status of OBSAI alarm on LOS and LOF and start a new monitoring, press the *MEASURE SETUP* hot key and then the Clear History soft key.
- 6 Optional. Go to SAVE/LOAD > Save, and then select the save option from the choices available for your measurement mode. See "Using save" on page 34 for more information.

The spectrogram shows a vertical line on the chart when the marker is enabled on the screen.

Figure 390 RFoOBSAI interference measurement in spectrogram

You can use the *LIMIT* hot key to analyze your measurements with the display line, multi-segment line, and channel limit. See "Setting limit for interference analysis" on page 667 for more information.

Conducting RSSI

The Received Signal Strength Indicator (RSSI) is a multi-signal tracking metric that is particularly useful for measuring power-level variations over time. The RSSI measurement lets you assign power limit line for audible alarms and increase alarm counters every time a signal exceeds a defined limit line. For long-term analysis, the spectrogram and RSSI measurements can be automatically saved into an external USB memory. Post-analysis can be performed with JDViewer application software.

After configuring test parameters as described in "Configuring test parameters" on page 657, you can continue to proceed to the spectrogram measurement.

Procedure

- 1 Press the **MEASURE SETUP** hot key.
- 2 To set up the alarm parameters, complete the following steps:
 - a Press the Alarm soft key.
 - **b** Press the **Alarm at** soft key, and then select the marker number you want to set.
 - c Press the Limit Line soft key to set a threshold for the alarm.
 - d Enter a value by using the numeric keys. You can also use the rotary knob.
 - e Press the dBm soft key.
 - f Toggle the **Alarm** soft key between **On** and **Off** to turn the alarm feature on or off.

NOTE

You must set the marker(s) first by using the **MARKER** hard key as these features use the marker position to sound an alarm. See "Using marker" on page 57 for more information.

- g Optional. Press the **Volume** soft key and adjust the volume.
- 3 Press the **PREV** hard key to return to the Measure Setup screen bar.
- 4 To start a new measurement, press the **Reset/Restart** soft key.
- 5 To clear current (C) and history (H) status of OBSAI alarm on LOS and LOF and start a new

- monitoring, press the **MEASURE SETUP** hot key and then the **Clear History** soft key.
- 6 Optional. Go to SAVE/LOAD > Save, and then select the save option from the choices available for your measurement mode. See "Using save" on page 34 for more information.

Figure 391 RFoOBSAI interference measurement in RSSI

You can use the *LIMIT* hot key to analyze your measurements with the display line, multi-segment line, and channel limit. See "Setting limit for interference analysis" on page 667 for more information.

Performing spectrum replayer

The Spectrum Replayer lets you retrieve and replay recorded spectrum analyzer traces in interference analysis mode. These traces can be played back in the spectrogram or RSSI. You can configure the limit line to create failure points when signals exceed it. The failure points are clearly displayed on the trace timeline for quick access during playback.

- 1 Press the **MEASURE** hot key.
- 2 Press the **Spectrum Replayer** soft key. The file manager window appears.
- 3 Select a file to be loaded, and then press the **Load** soft key. The Measure Setup screen menus appear.
- 4 Toggle the Replay Direction soft key between FWD and REV to change play direction to forward or reverse.
- 5 Press the Replay Speed soft key, and then select the speed option: X1, X2, X3, and X4.
- 6 Press the Play soft key to start playing.
- 7 Press the **Pause** soft key to pause or stop playing data.
- 8 To move to a particular failure position directly and play from there, complete the following steps:
 - Press the Jump to Fail Index soft key.
 - **b** Enter a value by using the numeric keys, and then press the **Enter** soft key.
- 9 Optional. Toggle the Time Cursor soft key between On and Off to display or dismiss the time cursor on the screen. This key becomes activated when you play logged data in the Spectrogram mode.

If you connected a USB drive, do not remove it while playing to prevent freezing the USB port, which will require you to restart the instrument to get a USB drive recognized again.

Figure 392 RFoOBSAI spectrum replay

Setting display

You can select the display option to view data in a different mode.

Procedure

- 1 Press the TRACE/DISPLAY hard key.
- 2 Select the display option from the choices: Spectrum, Spectrogram, and RSSI.

NOTE

You can use the *LIMIT* hot key to analyze your measurements with the display line, multi-segment line, and channel limit. See "Setting limit for interference analysis" on page 667 for more information.

Setting limit for interference analysis

You can set threshold(s) and display either a single segment line or multi-segment line to analyze the result better.

Setting a single limit line

- 1 Press the *LIMIT* hot key.
- 2 Press the **Display Line** soft key for a reference line.
- 3 Enter a value, and then press the dBm unit soft key.
- 4 Toggle the **Display Line** soft key between **On** and **Off** to display and hide the reference line. The straight line appears across the screen to be used as a visual reference only.

Setting a multi-segment limit line

Procedure

- 1 Press the LIMIT hot key.
- 2 Press the **Multi Segment Line** soft key for Pass/Fail indication.
- 3 Toggle the Limit soft key between Upper and Lower to select the one to be displayed.
- 4 Set the number of segments for the selected upper or lower limit line, up to 50 segments.
 - Press the # of Line soft key.
 - **b** Enter a value between 1 and 50 by using the numeric keys.
 - c Press the Enter soft key.
- 5 Press the **Autoset** soft key to let the instrument set the limit for each segment and display the line.
- **6** To move the limit line, complete the following steps:
 - a Select Limit Up/Down or Limit Left/Right.
 - Turn the rotary knob to move the line as desired. You can also manually enter a value.
- 7 To edit the segment properties, complete the following steps:
 - a Press the Edit Limit soft key.
 - **b** Press the **Move** soft key and then turn the rotary knob to select the segment to edit.
 - **c** Select the menu option, from the following choices:
 - To hide the line for the selected segment, toggle the Line soft key and select Off.

To add a new point, press the Add Point soft key.

To delete the selected point, press the **Delete Point** soft key.

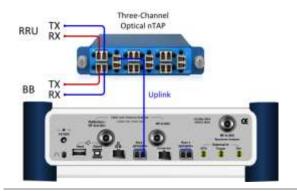
To change the position, press the **Frequency** or **Amplitude** soft key, and then turn the rotary knob to change the value as desired.

8 Optional. Go to **SAVE/LOAD > Save**, and then select **Limit** to save the limit settings. See "Using save" on page 34 for more information.

Performing PIM detection (single and multiple carriers)

The Passive Intermodulation (PIM) Detection allows you to detect Uplink PIM across the full spectrum for any technology. When PIM is detected, the normal repair mode is to replace the offending cable and what you need to do is replacing the whole cable irrespective of the location of the fault.

Connecting cables


You can connect cables with a tap or without a tap as illustrated in Figure 393. If you have connected cables directly from RRH and BBU without using the nTap, you must turn on the through mode (Thru) in the Measure Setup menu.

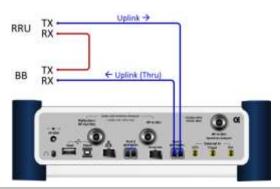

A SFP/SFP+ transceiver that is connected to your JD700B series must be compatible with your DUT and you must have your module information such as line rate, wavelength, and mode (MM or SM) handy.

Figure 393 Connection diagram for PIM detection

With nTap (both Thru On/Off):

Without nTap (Thru On only):

Selecting measurement mode

Procedure

- 1 Press the **MEASURE** hot key.
- 2 Press the PIM Detection soft key.
- 3 Select the PIM detection mode from the following choices:

PIM Detection Single Carrier

PIM Detection Multiple Carriers

Calculated PIM

Selecting port

JD700B series supports two antenna ports for signal transmission, and each port can generate different waveforms selectively and simultaneously. User can select the port to use for the measurement in any measurement mode of RFoOBSAI mode.

Procedure

- 1 In any measurement mode, press the **MEASURE SETUP** hot key.
- 2 Toggle the Select Port soft key between Port 1 and Port 2 to select the desired port.

Setting measure setup

Procedure

- 1 Press the **MEASURE SETUP** hot key.
- 2 Press the Link Rate soft key to set the line rate of the OBSAI RP3 interface between the BB and the RRU.
- 3 Select the RP3 line rate option from the choices: 768 Mbps, 1536 Mbps, 3072 Mbps, and 6144 Mbps.

NOTE

It is important that you set the link rate correctly to avoid any misleading LOS and LOF alarms displayed on the screen.

If you select **6144 Mbps**, the **Scrambler Seed** soft key becomes active in the OBSAI Parameters menu so that you can specify a scrambler seed.

- 4 To turn on the through mode if you have not used a tap, toggle the Thru soft key and select On. To turn it off, select Off.
- 5 Press the **OBSAI Parameters** soft key, and then do the following:

To specify Rx RP3 Type and RP3 Address of the received message for link rates **768 Mbps**, **1536 Mbps**, and **3072 Mbps**, complete the following steps:

- a Select More (1/2) > Rx Address List. The Rx Address List box appears. JD700B series lists all Rx messages detected by the instrument with RP3 Address and RP3 Type values.
- **b** From the list, select the message to monitor.
- Tap the Apply button. The instrument automatically sets the RP3 Address and RP3 Type with the selected values.

NOTE

You can also manually specify the RP3 Address and RP3 Type for the received message using the **Rx RP3 Type** and **Rx RP3 Address** soft keys.

d If you have selected a WCDMA/FDD message, toggle the WCDMA Link soft key and select the link direction between FWD for forward (downlink) and REV for reverse (uplink).

To specify Rx RP3 Type and RP3 Address of the received message for link rate **6144 Mbps**, complete the following steps:

- a Select More (1/2) > Rx Address Valid List.
 The Rx Address List box appears. Unlike the Rx Address List, the Rx Address Valid List feature shows only the messages that contain scrambling code seed values.
- **b** From the list, select the message to monitor.
- Tap the **Apply** button.
 The instrument automatically sets the RP3 Address, RP3 Type, and Scrambler Seed with the selected values.

NOTE

You can also manually specify the RP3 Address, RP3 Type, and Scrambler Seed for the received message using the **Rx RP3 Type**, **Rx RP3 Address**, and **Scrambler Seed** soft keys.

d If you have selected a WCDMA/FDD message, toggle the WCDMA Link soft key and select the link direction between FWD for forward (downlink) and REV for reverse (uplink).

To set the port type and transmission clock reference, complete the following steps:

- a Toggle the **Port Type** soft key and select **Slave** (default).
- b Press the Tx Clock soft key, and then select Recovered (default).
- **6** Press the **Bandwidth** soft key, and then specify the bandwidth depending on the RP3 type of the received signal.

WCDMA/FDD REV (uplink): 5 MHz WCDMA/FDD FWD (downlink): 3 MHz

LTE: 1.4 MHz, 3 MHz, 5 MHz, 10 MHz, 15 MHz, and 20 MHz

The RBW range changes based on this bandwidth setting.

7 Optional. To use the RF signal generator function, see "Using RF source in RFoOBSAI testing" on page 697.

Calculating possible PIM

The Calculated PIM is used when you want to check any possible existence of PIM before the actual measurement. The instrument displays possible PIM in red color.

- 1 Press the **MEASURE SETUP** hot key.
- 2 Press the Calculated PIM soft key.

3 Toggle the Radio Config soft key between Single and Multi to select the desired mode.

Single: Sets the frequency of Radio 1.

Multi: Sets the frequency of Radio 1 and Radio 2.

4 Do one of the following:

To set the frequency and span, complete the following steps:

- Toggle the Mode soft key to Freq.
- b Press the Radio [1]2] Frequency soft key.
- Enter a value by using the numeric keys.
- d Select the unit option from the choices: GHz, MHz, kHz, or Hz.
- Press the Radio [1|2] Span soft key.
- f Enter a value by using the numeric keys.
- Select the unit option from the choices: GHz, MHz, kHz, or Hz.

To set the radio band, complete the following steps:

- a Toggle the Mode soft key to Band.
- b Press the Radio [1]2] Band soft key.
- c Highlight the radio band to select by using the rotary knob.
- d Press the Select soft key.

Detecting PIM (single and multiple carriers)

Procedure

- 1 Press the MEASURE SETUP hot key.
- 2 Connect cables as instructed on the screen.

NOTE

Make sure that the Tx of RRH is connected to the Rx port of SFP/SFP+ installed in your CellAdvisor.

3 Complete one of the following:

To set the uplink center frequency and span to be measured, complete the following steps:

- Toggle the Unit soft key to Freq.
- b Press the Uplink Center Frequency soft key.
- **c** Enter a value by using the numeric keys or the rotary knob.
- d Select the unit from the choices: GHz, MHz, kHz, or Hz.

To set the channel number to be measured, complete the following steps:

- a Toggle the Unit soft key to Channel.
- **b** Press the **Channel Std** soft key, and then highlight a desired band.
- c Press the Select soft key.
- d Press the Channel Number soft key.
- **e** Enter a value by using the numeric keys, and then press the **Enter** soft key. The instrument automatically displays the corresponding center frequency value for the selected channel number.
- 4 Press the **Continue** soft key, and then follow the on-screen instructions.
- 5 To clear current (C) and history (H) status of OBSAI alarm on LOS and LOF and start a new monitoring, press the MEASURE SETUP hot key and then the Clear History soft key.

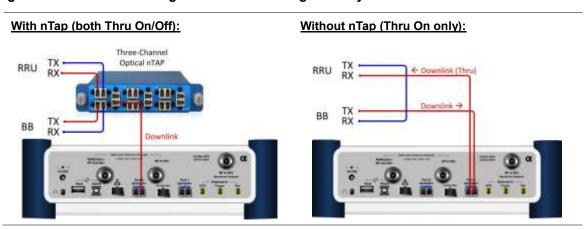
Figure 394 PIM detection of single radio

Performing LTE-FDD downlink signal analysis

If your JD700B series has the option 096 RFoOBSAI LTE-FDD Signal Analyzer installed with a license, you can performs power and spectrum measurements as well as modulation analysis to test the proper transmitter performance of FDD LTE systems over OBSAI.

This instrument provides the following measurement tools for FDD LTE system over OBSAI:

- Spectrum Analysis
- RF Analysis
 - Channel Power
 - Occupied Bandwidth
- Power vs. Time (Frame)
- Modulation Analysis
 - Constellation
 - Data Channel
 - Control Channel
 - Subframe
 - Frame
 - Time Alignment Error
 - Data Allocation Map
- Power Statistics CCDF


Connecting cables

You can connect cables with a tap or without a tap as illustrated in Figure 395. If you have connected cables directly from RRH and BBU without using the nTap, you must turn on the through mode (Thru) in the

Measure Setup menu.

A SFP/SFP+ transceiver that is connected to your JD700B series must be compatible with your DUT and you must have your module information such as line rate, wavelength, and mode (MM or SM) handy.

Figure 395 Connection diagram for downlink signal analysis

Selecting measurement mode

Procedure

- 1 Press the MEASURE hot key.
- 2 Select Signal Analyzer > LTE-FDD.
- 3 Select the downlink signal analysis mode from the following choices:

Spectrum

RF Analysis > Channel Power or Occupied BW

Power vs Time (Frame)

Modulation Analysis > Constellation, Data Channel, Control Channel, Subframe,

Frame, Time Alignement Error, or Data Allocation Map

Power Statistics CCDF

Selecting port

JD700B series supports two antenna ports for signal transmission, and each port can generate different waveforms selectively and simultaneously. User can select the port to use for the measurement in any measurement mode of RFoOBSAI mode.

Procedure

- 1 In any measurement mode, press the **MEASURE SETUP** hot key.
- 2 Toggle the **Select Port** soft key between **Port 1** and **Port 2** to select the desired port.

Configuring test parameters

Setting frequency

You can set the frequency with either frequency or channel number. If a frequency to be set matches to the frequency corresponding to the selected channel standard, the instrument calculates its channel number and updates the screen with it automatically.

Procedure

To set the center frequency:

- Press the FREQ/DIST hard key.
- 2 Toggle the Unit soft key and select Freq.
- 3 Press the Center Frequency soft key.
- 4 Enter a value by using the numeric keys or the rotary knob.
- 5 Select the unit: GHz, MHz, kHz, or Hz.
- 6 Optional. To define the amount of frequency increment for the rotary knob, complete the following steps:
 - a Press the Frequency Step soft key.
 - **b** Enter a value by using the numeric keys. You can also use the rotary knob.
 - c Press the unit: GHz, MHz, kHz, or Hz.

To set the channel number:

- Press the FREQ/DIST hard key.
- 2 Toggle the Unit soft key to Channel.

NOTE

Selecting **Channel** sets the standard channel to **Band Global** automatically so that you can set the **Channel Number** without choosing a standard channel band from the list.

- 3 Press the Channel Number soft key.
- 4 Enter a value by using the numeric keys or the rotary knob.
- 5 Press the Enter soft key.

The instrument automatically displays the corresponding center frequency value for the selected channel number.

- 6 Optional. To define the amount of channel increment for the rotary knob, complete the following steps:
 - a Press the Channel Step soft key.
 - **b** Enter a value by using the numeric keys or the rotary knob.
 - c Press the Enter soft key.

Setting amplitude

You can set the reference automatically or manually to optimize the display of the trace, as you desire.

Procedure

- 1 Press the AMP/SCALE hard key.
- 2 Do the following:

To optimize the Y-axis scale automatically, press the Auto Scale soft key.

To set the maximum reference value on the Y-axis manually, complete the following steps:

- a Press the Reference Level soft key.
- **b** Enter a value by using the numeric keys or the rotary knob with 10 dB increments.
- Press the unit soft key or the ENTER hard key.

NOTE

In the measurements such as **Control Channel**, **Subframe**, and **Frame**, you can select the reference option between **Relative** and **Absolute** instead.

- **3** To set an external offset, complete the following steps:
 - a Toggle the External Offset soft key and select On.
 - **b** Enter a value by using the numeric keys.
 - Press the dB soft key to complete the entry.

The instrument displays a measurement result with the set value reflected. For example, if you set it to 40 dB, the measurement result compensates 40 dB.

- **4** To change the setting of the scale per division, complete the following steps:
 - a Select More (1/2) > Scale/Div.
 - **b** Enter a value between 1 and 20 by using the numeric keys.
 - c Press the dB soft key to complete the entry.
- 5 To change the scale unit, select More (1/2) > Units, and then select the display unit option from the choices: dBm, dBV, dBmV, dBµV, V, and W. The scale unit on the screen changes accordingly.

NOTE

The Scale/Div and Units menus are available in the Spectrum and RF Analysis modes.

Setting average

In the spectrum and RF analysis, you can set the number of measurements to be averaged for the trace presentation. A maximum of 100 times of averaging can be set. When the averaging reaches to your setting, a new measurement value replaces the measurement value in sequence from the earliest.

Procedure

- 1 Press the BW/AVG hard key.
- 2 Press the Average soft key.
- 3 Enter a value between 1 and 100 as needed by using the numeric keys.
- 4 Press the Enter soft key.

Setting sweep mode

The default setting is **Continue** to sweep continuously for most on-going measurements. If you want to hold the measurement or get a single sweep, you can change the sweep mode.

Procedure

- 1 Press the **SWEEP** hot key.
- 2 Do the following:

To select the single sweep mode, complete the following steps:

- Toggle the Sweep Mode soft key and select Single. You can also use the HOLD hot key.
 - The letter HOLD in red appears and the sweeping is paused.
- **b** To get a new measurement, press the **Sweep Once** soft key.

To return to the continuous sweep mode, toggle the **Sweep Mode** soft key and select **Continue**. You can also use the HOLD hot key.

The letter HOLD in red disappears and the sweeping resumes.

Setting measure setup

- 1 Press the **MEASURE SETUP** hot key
- 2 Press the Link Rate soft key to set the line rate of the OBSAI RP3 interface between the BB and the RRU.
- 3 Select the RP3 line rate option from the choices: 768 Mbps, 1536 Mbps, 3072 Mbps, and

6144 Mbps.

NOTE

It is important that you set the link rate correctly to avoid any misleading LOS and LOF alarms displayed on the screen.

If you select **6144 Mbps**, the **Scrambler Seed** soft key becomes active in the OBSAI Parameters menu so that you can specify a scrambler seed.

- 4 To turn on the through mode if you have not used a tap, toggle the Thru soft key and select On. To turn it off, select Off.
- 5 Press the **OBSAI Parameters** soft key, and then do the following:

To specify Rx RP3 Type and RP3 Address of the received message for link rates **768 Mbps**, **1536 Mbps**, and **3072 Mbps**, complete the following steps:

- a Select More (1/2) > Rx Address List. The Rx Address List box appears. JD700B series lists all Rx messages detected by the instrument with RP3 Address and RP3 Type values.
- **b** From the list, select the message to monitor.
- Tap the Apply button. The instrument automatically sets the RP3 Address and RP3 Type with the selected values.

NOTE

You can also manually specify the RP3 Address and RP3 Type for the received message using the **Rx RP3 Type** and **Rx RP3 Address** soft keys.

d If you have selected a WCDMA/FDD message, toggle the **WCDMA Link** soft key and select the link direction between **FWD** for forward (downlink) and **REV** for reverse (uplink).

To specify Rx RP3 Type and RP3 Address of the received message for link rate **6144 Mbps**, complete the following steps:

- a Select More (1/2) > Rx Address Valid List.
 The Rx Address List box appears. Unlike the Rx Address List, the Rx Address Valid List feature shows only the messages that contain scrambling code seed values.
- **b** From the list, select the message to monitor.
- Tap the Apply button. The instrument automatically sets the RP3 Address, RP3 Type, and Scrambler Seed with the selected values.

NOTE

You can also manually specify the RP3 Address, RP3 Type, and Scrambler Seed for the received message using the **Rx RP3 Type**, **Rx RP3 Address**, and **Scrambler Seed** soft keys.

d If you have selected a WCDMA/FDD message, toggle the WCDMA Link soft key and select the link direction between FWD for forward (downlink) and REV for reverse (uplink).

To set the port type and transmission clock reference, complete the following steps:

- a Toggle the Port Type soft key to Slave (default).
- Press the Tx Clock soft key, and then select Recovered (default).
- **6** To set the bandwidth of the downlink signal, complete the following steps:
 - Press the Bandwidth soft key.
 - Select the bandwidth option from the choices: 5 MHz, 10 MHz, 15 MHz, or 20 MHz. The RBW range changes based on this bandwidth setting.
- **7** Optional. To use the RF signal generator function, see "Using RF source in RFoOBSAI testing" on page 697.

Conducting spectrum measurement

Making a measurement

Procedure

- 1 Press the **MEASURE** hot key to select the measurement mode.
- 2 Select Signal Analyzer > LTE-FDD > Spectrum.
- 3 Configure test parameters as described in the "Configuring test parameters" on page 673.
- 4 Press the **MEASURE SETUP** hot key and set the measurement setups as described in the "Setting measure setup" on page 675.
- **5** Check your measurement result displayed on the screen.
- **6** To clear current (C) and history (H) status of OBSAI alarm on LOS and LOF and start a new monitoring, press the **MEASURE SETUP** hot key and then the **Clear History** soft key.
- 7 Optional. Go to **SAVE/LOAD** > **Save**, and then select the save option from the choices available for your measurement mode. See "Using save" on page 34 for more information.

Setting trace

You can display up to six traces on the measurement chart simultaneously.

Procedure

- 1 Press the TRACE/DISPLAY hard key.
- 2 Press the Select Trace soft key, and then select the trace number: T1, T2, T3, T4, T5, or T6. The legend shape of the selected trace changes from square to round to indicate that the trace is the active one now.
- **3** Do one of the following:

То	Select	Trace Legend
Clear current data and display with new measurements	Clear Write	W
Display the input signal's maximum response only (unlimited or for a certain amount of time)	Max Hold	M
Display the input signal's minimum response only (unlimited or for a certain amount of time)	Min Hold	m
Capture the selected trace and compare traces	Capture	С
Load a saved trace	More (1/2) > Load	L
Hide the displayed trace	Trace View > Off	F
Remove all the traces and initialize the trace settings	More (1/2) > Trace Clear All	

NOTE

For the **Max Hold** and **Min Hold**, your instrument compares newly acquired data with the active trace and displays larger maximum values or smaller minimum values on the screen. You can set it to **Unlimited** to hold and view maximum or minimum data or specify a certain amount of time up to 60 seconds by using numeric keys or rotary knob.

- 4 Optional. Select More (1/2) > Trace Info, and then select the trace number to view the trace's parameter setting information stored at the time of the measurement or None to hide the information display.
- Optional. If you have the two traces T1 and T2, you can perform trace math. To view the power difference between the traces, press the T1 T2 -> T5 or T2 T1 -> T6 soft key. The result is overlaid on the screen along with the second Y-axis.

Figure 396 Spectrum measurement with RFoOBSAI LTE-FDD signal analyzer

Conducting channel power measurement

The Channel Power measurement is a common test used in the wireless industry to measure the total transmitted power of a radio within a defined frequency channel. It acquires a number of points representing the input signal in the time domain, transforms this information into the frequency domain using Fast Fourier Transform (FFT), and then calculates the channel power. The effective resolution bandwidth of the frequency domain trace is proportional to the number of points acquired for the FFT.

The channel power measurement identifies the total RF power and power spectral density (PSD) of the signal in the LTE channel bandwidth.

Making a measurement

- 1 Press the **MEASURE** hot key to select the measurement mode.
- 2 Select Signal Analyzer > LTE-FDD > RF Analysis > Channel Power.
- 3 Configure test parameters as described in the "Configuring test parameters" on page 673.
- **4** Press the **MEASURE SETUP** hot key and set the measurement setups as described in the "Setting measure setup" on page 675.
- **5** Check your measurement result displayed on the screen.
- 6 To clear current (C) and history (H) status of OBSAI alarm on LOS and LOF and start a new monitoring, press the MEASURE SETUP hot key and then the Clear History soft key.
- 7 Optional. Go to **SAVE/LOAD** > **Save**, and then select the save option from the choices available for your measurement mode. See "Using save" on page 34 for more information.

Figure 397 Channel power measurement with RFoOBSAI LTE-FDD signal analyzer

NOTE

You can use the *LIMIT* hot key to analyze your measurements with the user-definable limit and Pass/Fail indication. See "Setting limit for RFoOBSAI signal analysis" on page 696 for more information.


Occupied bandwidth

The Occupied Bandwidth measures the spectrum shape of the carrier. It is defined as the bandwidth, which includes 99% of the transmitted power among total transmitted power.

Making a measurement

- 1 Press the **MEASURE** hot key to select the measurement mode.
- 2 Select Signal Analyzer > LTE-FDD > RF Analysis > Occupied BW.
- 3 Configure test parameters as described in the "Configuring test parameters" on page 673.
- 4 Press the MEASURE SETUP hot key and set the measurement setups as described in the "Setting measure setup" on page 675.
- 5 Check your measurement result displayed on the screen.
- 6 To clear current (C) and history (H) status of OBSAI alarm on LOS and LOF and start a new monitoring, press the MEASURE SETUP hot key and then the Clear History soft key.
- 7 Optional. Go to SAVE/LOAD > Save, and then select the save option from the choices available for your measurement mode. See "Using save" on page 34 for more information.

Figure 398 Occupied bandwidth measurement with RFoOBSAI LTE-FDD signal analyzer

NOTE

You can use the *LIMIT* hot key to analyze your measurements with the user-definable limit and Pass/Fail indication. See "Setting limit for RFoOBSAI signal analysis" on page 696 for more information.

Conducting power vs. time (frame) measurement

The Power vs. Time (Frame) measures the modulation envelope in the time domain, showing the power of each time slot in an LTE signal.

Making a measurement

Procedure

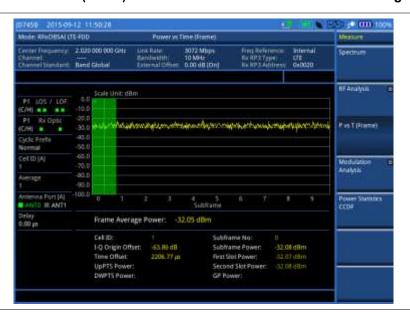
- 1 Press the **MEASURE** hot key to select the measurement mode.
- 2 Select Signal Analyzer > LTE-FDD > P vs T (Frame).
- 3 Configure test parameters as described in the "Configuring test parameters" on page 673.
- 4 Press the MEASURE SETUP hot key and set the measurement setups as described in the "Setting measure setup" on page 675.
- 5 To select the subframe number to be measured, complete the following steps:
 - a Press the Subframe No soft key.
 - **b** Enter a value by using the numeric keys. You can also use the rotary knob.
 - c Press the Enter soft key.
- 6 Toggle the Cell ID soft key and select Auto or Manual as desired:

Auto: Lets the instrument detect the Cell ID for the LTE signal automatically.

Manual: Sets a specific Cell ID for the LTE signal manually in order to speed up the synchronization.

- 7 Depending on your selected NEM, you may need to turn on or off the inversion of the I and Q order by toggling the IQ Swap soft key and selecting On or Off.
- 8 Optional. Press the **Miscellaneous** soft key, and then do the following as needed:

To assign a antenna port number automatically or manually, press the **Antenna Port** soft key and select the option: **Auto**, **0**, and **1**.


To select the cyclic prefix, toggle the Cyclic Prefix soft key and select Normal or

Extended. See "Appendix E – Cyclic prefix table" on page 749 for OFDM parameter details by different bandwidth.

- 9 Check your measurement result displayed on the screen.
- 10 To clear current (C) and history (H) status of OBSAI alarm on LOS and LOF and start a new monitoring, press the MEASURE SETUP hot key and then the Clear History soft key.
- **11** Optional. Go to **SAVE/LOAD** > **Save**, and then select the save option from the choices available for your measurement mode. See "Using save" on page 34 for more information.

Measurement example

Figure 399 Power vs. time (frame) measurement with RFoOBSAI LTE-FDD signal analyzer

Conducting constellation measurement

The Constellation is used to observe some aspects of modulation accuracy and can reveal certain fault mechanisms such as I/Q amplitude imbalance or quadrature imbalance. It displays constellation diagram by modulation types.

Making a measurement

Procedure

- 1 Press the **MEASURE** hot key to select the measurement mode.
- 2 Select Signal Analyzer > LTE-FDD > Modulation Analysis > Constellation.
- 3 Configure test parameters as described in the "Configuring test parameters" on page 673.
- 4 Press the MEASURE SETUP hot key and set the measurement setups as described in the "Setting measure setup" on page 675.
- 5 To select the subframe number to be measured, complete the following steps:
 - Press the Subframe No soft key.
 - **b** Enter a value by using the numeric keys. You can also use the rotary knob.

NOTE

For MBMS testing, this subframe number must be neither 0 nor 5 as these subframes 0 and 5 are not available for MBMS and it must be set to the MBMS transmitted channel's subframe number.

c Press the Enter soft key.

6 Toggle the Cell ID soft key and select Auto or Manual as desired:

Auto: Lets the instrument detect the Cell ID for the LTE signal automatically.

Manual: Sets a specific Cell ID for the LTE signal manually in order to speed up the synchronization.

- 7 Depending on your selected NEM, you may need to turn on or off the inversion of the I and Q order by toggling the IQ Swap soft key and selecting On or Off.
- **8** Optional. Press the **Miscellaneous** soft key, and then set other miscellaneous setups as described in the following section.
- **9** Check your measurement result displayed on the screen.
- 10 To clear current (C) and history (H) status of OBSAI alarm on LOS and LOF and start a new monitoring, press the MEASURE SETUP hot key and then the Clear History soft key.
- 11 Optional. Go to **SAVE/LOAD** > **Save**, and then select the save option from the choices available for your measurement mode. See "Using save" on page 34 for more information.

Setting other miscellaneous setups

Procedure

- 1 To assign a antenna port number automatically or manually, press the **Antenna Port** soft key and select the option: **Auto**, **0**, and **1**.
- 2 To select the cyclic prefix, toggle the Cyclic Prefix soft key and select Normal or Extended. See "Appendix E Cyclic prefix table" on page 749 for OFDM parameter details by different bandwidth.
- To turn on or off the Multimedia Broadcast Multicast Service (MBMS) feature, toggle the MBMS soft key and select On or Off. For proper MBMS testing, you need to set the Subframe No with the same PMCH subframe number. If this setting is on, either PMCH or PDSCH appears on the screen depending on the detected channel.
- 4 To set the Multicast Broadcast Single Frequency Network (MBSFN) detection automatically or manually for MBMS testing, toggle the MBSFN soft key and select Auto or Manual. An automatically detected or manually entered MBSFN ID appears on the screen.
- To select the PDSCH modulation type, press the PDSCH Modulation Type soft key and then select the option from the choices: Auto, QPSK, 16 QAM, 64 QAM, E-TM3.3, E-TM3.2, E-TM3.1, E-TM2, E-TM1.2, and E-TM1.1.

NOTE

If two or more modulation types are used in a frame, select **Auto**. If the PDSCH uses the same modulation type in a frame or in a subframe, select a specific modulation type to get more accurate EVM.

- **6** To set the threshold for PDSCH, complete the following steps:
 - a Press the PDSCH Threshold soft key.
 - b Enter a value by using the numeric keys.
 - c Press the Enter soft key.
- 7 To enable or disable the PDSCH precoding, toggle the PDSCH Precoding soft key and select On or Off.
- 8 To set the Control Format Indicator, toggle the CFI soft key and select Auto or Manual:

Auto: Lets the instrument set the number of OFDM symbols used for transmitting PDCCHs in a subframe.

Manual: Sets the number of OFDM symbols manually.

To select the number of PHICH groups (Ng), press the **PHICH Ng** soft key and then select the option from the choices: **1/6**, **1/2**, **1, 2**, **E-1/6**, **E-1/2**, **E-1**, or **E-2**.

Figure 400 Constellation measurement with RFoOBSAI LTE-FDD signal analyzer

NOTE

You can use the *LIMIT* hot key to analyze your measurements with the user-definable limit and Pass/Fail indication. See "Setting limit for RFoOBSAI signal analysis" on page 696 for more information.

Conducting data channel measurement

The Data Channel measures the constellation for the specified resource block as well as the modulation accuracy of each PDSCH at the specified subframe.

Making a measurement

Procedure

- 1 Press the **MEASURE** hot key to select the measurement mode.
- 2 Select Signal Analyzer > LTE-FDD > Modulation Analysis > Data Channel.
- 3 Configure test parameters as described in the "Configuring test parameters" on page 673.
- 4 Press the **MEASURE SETUP** hot key and set the measurement setups as described in the "Setting measure setup" on page 675.
- 5 To select the subframe number to be measured, complete the following steps:
 - Press the Subframe No soft key.
 - **b** Enter a value by using the numeric keys. You can also use the rotary knob.

NOTE

For MBMS testing, this subframe number must be neither 0 nor 5 as these subframes 0 and 5 are not available for MBMS and it must be set to the MBMS transmitted channel's subframe number.

- c Press the Enter soft key.
- 6 Toggle the Cell ID soft key and select Auto or Manual as desired:

Auto: Lets the instrument detect the Cell ID for the LTE signal automatically.

Manual: Sets a specific Cell ID for the LTE signal manually in order to speed up the synchronization.

7 To enable or disable the event hold feature, toggle the Event Hold soft key and then select On or Off.

- When enabled, the display line for the PDSCH threshold appears.

 When an event occurs, the measurement is put on hold until you press the **HOLD** hot key.
- Depending on your selected NEM, you may need to turn on or off the inversion of the I and Q order by toggling the IQ Swap soft key and selecting On or Off.
- **9** Optional. Press the **Miscellaneous** soft key, and then set other miscellaneous setups as described in the following section.
- 10 Check your measurement result displayed on the screen.
- 11 To clear current (C) and history (H) status of OBSAI alarm on LOS and LOF and start a new monitoring, press the **MEASURE SETUP** hot key and then the **Clear History** soft key.
- **12** Optional. Go to **SAVE/LOAD** > **Save**, and then select the save option from the choices available for your measurement mode. See "Using save" on page 34 for more information.

Setting other miscellaneous setups

Procedure

- 1 To assign a antenna port number automatically or manually, press the **Antenna Port** soft key and select the option: **Auto**. **0**, and **1**.
- To select the cyclic prefix, toggle the Cyclic Prefix soft key and select Normal or Extended. See "Appendix E Cyclic prefix table" on page 749 for OFDM parameter details by different bandwidth.
- 3 To turn on or off the Multimedia Broadcast Multicast Service (MBMS) feature, toggle the MBMS soft key and select On or Off. For proper MBMS testing, you need to set the Subframe No with the same PMCH subframe number. If this setting is on, either PMCH or PDSCH appears on the screen depending on the detected channel.
- 4 To set the Multicast Broadcast Single Frequency Network (MBSFN) detection automatically or manually for MBMS testing, toggle the MBSFN soft key and select Auto or Manual. An automatically detected or manually entered MBSFN ID appears on the screen.
- To select the PDSCH modulation type, press the PDSCH Modulation Type soft key and then select the option from the choices: Auto, QPSK, 16 QAM, 64 QAM, E-TM3.3, E-TM3.2, E-TM3.1, E-TM2, E-TM1.2, and E-TM1.1.

NOTE

If two or more modulation types are used in a frame, select **Auto**. If the PDSCH uses the same modulation type in a frame or in a subframe, select a specific modulation type to get more accurate EVM.

- **6** To set the threshold for PDSCH, complete the following steps:
 - Press the PDSCH Threshold soft key.
 - **b** Enter a value by using the numeric keys.
 - Press the Enter soft key.
- 7 To enable or disable the PDSCH precoding, toggle the PDSCH Precoding soft key and select On or Off.
- 8 To set the Control Format Indicator, toggle the CFI soft key and select Auto or Manual:

Auto: Lets the instrument set the number of OFDM symbols used for transmitting PDCCHs in a subframe.

Manual: Sets the number of OFDM symbols manually.

9 To select the number of PHICH groups (Ng), press the **PHICH Ng** soft key and then select the option from the choices: **1/6**, **1/2**, **1**, **2**, **E-1/6**, **E-1/2**, **E-1**, or **E-2**.

Using marker

You can use the **MARKER** hard key to place a marker on a resource block and display the IQ diagram for the selected resource block.

Procedure

- 1 Press the MARKER hard key.
- 2 Press the RB Number soft key to select the resource block to be marked.
- 3 Enter the resource block number by using the numeric keys.
- 4 Press the Enter soft key. The marker appears on the selected resource block.
- 5 Toggle the Marker View soft key between On and Off to display or hide the result of the selected resource block.

Measurement example

Figure 401 Data channel measurement with RFoOBSAI LTE-FDD signal analyzer

NOTE

You can use the *LIMIT* hot key to analyze your measurements with the user-definable limit and Pass/Fail indication. See "Setting limit for RFoOBSAI signal analysis" on page 696 for more information.

Conducting control channel measurement

The Control Channel measures the constellation for the specified control channel as well as modulation accuracy of the control channel at the specified subframe.

Making a measurement

- 1 Press the **MEASURE** hot key to select the measurement mode.
- 2 Select Signal Analyzer > LTE-FDD > Modulation Analysis > Control Channel.
- 3 Configure test parameters as described in the "Configuring test parameters" on page 673.
- 4 Press the **MEASURE SETUP** hot key and set the measurement setups as described in the "Setting measure setup" on page 675.
- 5 To select the subframe number to be measured, complete the following steps:
 - Press the Subframe No soft key.
 - **b** Enter a value by using the numeric keys. You can also use the rotary knob.

NOTE

For MBMS testing, this subframe number must be neither 0 nor 5 as these subframes 0 and 5 are not available for MBMS and it must be set to the MBMS transmitted channel's subframe number.

- c Press the Enter soft key.
- 6 Toggle the Cell ID soft key and select Auto or Manual as desired:

Auto: Lets the instrument detect the Cell ID for the LTE signal automatically.

Manual: Sets a specific Cell ID for the LTE signal manually in order to speed up the synchronization.

7 Toggle the EVM Detection Mode soft key and select Single or Combine as desired:

Single: Testing on one single antenna connected to your JD700B series with a cable.

Combine: Testing on multiple antennas connected to your JD700B series with a 2x1 combiner or an antenna.

- 8 Depending on your selected NEM, you may need to turn on or off the inversion of the I and Q order by toggling the IQ Swap soft key and selecting On or Off.
- 9 Optional. Press the Miscellaneous soft key, and then set other miscellaneous setups as described in the following section.
- **10** Check your measurement result displayed on the screen.
- 11 To clear current (C) and history (H) status of OBSAI alarm on LOS and LOF and start a new monitoring, press the **MEASURE SETUP** hot key and then the **Clear History** soft key.
- **12** Optional. Go to **SAVE/LOAD** > **Save**, and then select the save option from the choices available for your measurement mode. See "Using save" on page 34 for more information.

Setting other miscellaneous setups

Procedure

- 1 To assign a antenna port number automatically or manually, press the **Antenna Port** soft key and select the option: **Auto**, **0**, and **1**.
- 2 To select the cyclic prefix, toggle the Cyclic Prefix soft key and select Normal or Extended. See "Appendix E Cyclic prefix table" on page 749 for OFDM parameter details by different bandwidth.
- 3 To turn on or off the Multimedia Broadcast Multicast Service (MBMS) feature, toggle the **MBMS** soft key and select **On** or **Off**. For proper MBMS testing, you need to set the **Subframe No** with the same PMCH subframe number. If this setting is on, either PMCH or PDSCH appears on the screen depending on the detected channel.
- 4 To set the Multicast Broadcast Single Frequency Network (MBSFN) detection automatically or manually for MBMS testing, toggle the MBSFN soft key and select Auto or Manual. An automatically detected or manually entered MBSFN ID appears on the screen.
- 5 To set the threshold for PDCCH, complete the following steps:
 - a Press the PDCCH Threshold soft key.
 - **b** Enter a value by using the numeric keys.
 - c Press the Enter soft key.
- 6 Toggle the PDCCH Mode soft key and select REG or Avg.

REG: Calculates EVM based on Resource Element Group

Avg: Calculates EVM after adding all the PDCCH signals from one subframe.

7 To set the Control Format Indicator, toggle the CFI soft key and select Auto or Manual:

Auto: Lets the instrument set the number of OFDM symbols used for transmitting PDCCHs in a subframe.

Manual: Sets the number of OFDM symbols manually.

8 To select the number of PHICH groups (Ng), press the **PHICH Ng** soft key and then select the option from the choices: **1/6**, **1/2**, **1**, **2**, **E-1/6**, **E-1/2**, **E-1**, or **E-2**.

Using marker

You can use the **MARKER** hard key to place a marker on a control channel and display the IQ diagram for the selected channel.

Procedure

- 1 Press the MARKER hard key.
- 2 Press the Channel soft key to select a channel to be displayed in the IQ diagram. The channel P-SS is selected by default.
- 3 Press the up/down arrow keys or turn the rotary knob to highlight a channel in the channel summary table, and then press the center of the rotary knob.
- 4 Toggle the Marker View soft key between On and Off to display or hide the result of the selected channel.

Measurement example

Figure 402 Control channel measurement with RFoOBSAI LTE-FDD signal analyzer

NOTE

You can use the *LIMIT* hot key to analyze your measurements with the user-definable limit and Pass/Fail indication. See "Setting limit for RFoOBSAI signal analysis" on page 696 for more information.

Conducting subframe measurement

The Subframe measures the modulation accuracy of all the data and control channels at the specified subframe (1 ms).

Making a measurement

- 1 Press the **MEASURE** hot key to select the measurement mode.
- 2 Select Signal Analyzer > LTE-FDD > Modulation Analysis > Subframe.
- 3 Configure test parameters as described in the "Configuring test parameters" on page 673.
- 4 Press the MEASURE SETUP hot key and set the measurement setups as described in the

"Setting measure setup" on page 675.

- 5 To select the subframe number to be measured, complete the following steps:
 - Press the Subframe No soft key.
 - Enter a value by using the numeric keys. You can also use the rotary knob.

NOTE

For MBMS testing, this subframe number must be neither 0 nor 5 as these subframes 0 and 5 are not available for MBMS and it must be set to the MBMS transmitted channel's subframe number.

- c Press the Enter soft key.
- 6 Toggle the Cell ID soft key and select Auto or Manual as desired:

Auto: Lets the instrument detect the Cell ID for the LTE signal automatically.

Manual: Sets a specific Cell ID for the LTE signal manually in order to speed up the synchronization.

7 Toggle the EVM Detection Mode soft key and select Single or Combine as desired:

Single: Testing on one single antenna connected to your JD700B series with a cable.

Combine: Testing on multiple antennas connected to your JD700B series with a 2x1 combiner or an antenna.

- **8** Depending on your selected NEM, you may need to turn on or off the inversion of the I and Q order by toggling the **IQ Swap** soft key and selecting **On** or **Off**.
- 9 Optional. Press the Miscellaneous soft key, and then set other miscellaneous setups as described in the following section.
- **10** Check your measurement result displayed on the screen.
- 11 To clear current (C) and history (H) status of OBSAI alarm on LOS and LOF and start a new monitoring, press the **MEASURE SETUP** hot key and then the **Clear History** soft key.
- **12** Optional. Go to **SAVE/LOAD** > **Save**, and then select the save option from the choices available for your measurement mode. See "Using save" on page 34 for more information.

Setting other miscellaneous setups

Procedure

- 1 To assign a antenna port number automatically or manually, press the **Antenna Port** soft key and select the option: **Auto**, **0**, and **1**.
- To select the cyclic prefix, toggle the Cyclic Prefix soft key and select Normal or Extended. See "Appendix E Cyclic prefix table" on page 749 for OFDM parameter details by different bandwidth.
- 3 To turn on or off the Multimedia Broadcast Multicast Service (MBMS) feature, toggle the MBMS soft key and select On or Off. For proper MBMS testing, you need to set the Subframe No with the same PMCH subframe number. If this setting is on, either PMCH or PDSCH appears on the screen depending on the detected channel.
- 4 To set the Multicast Broadcast Single Frequency Network (MBSFN) detection automatically or manually for MBMS testing, toggle the MBSFN soft key and select Auto or Manual. An automatically detected or manually entered MBSFN ID appears on the screen.
- To select the PDSCH modulation type, press the PDSCH Modulation Type soft key and then select the option from the choices: Auto, QPSK, 16 QAM, 64 QAM, E-TM3.3, E-TM3.2, E-TM3.1, E-TM2, E-TM1.2, and E-TM1.1.

NOTE

If two or more modulation types are used in a frame, select **Auto**. If the PDSCH uses the same modulation type in a frame or in a subframe, select a specific modulation type to get more accurate EVM.

- 6 To set the threshold for PDSCH, complete the following steps:
 - a Press the PDSCH Threshold soft key.
 - **b** Enter a value by using the numeric keys.
 - c Press the Enter soft key.
- **7** To set the threshold for PDCCH, complete the following steps:

- a Press the PDCCH Threshold soft key.
- **b** Enter a value by using the numeric keys.
- c Press the Enter soft key.
- 8 Toggle the PDCCH Mode soft key and select REG or Avg.

REG: Calculates EVM based on Resource Element Group

Avg: Calculates EVM after adding all the PDCCH signals from one subframe.

- 9 To enable or disable the PDSCH precoding, toggle the PDSCH Precoding soft key and select On or Off.
- 10 To set the Control Format Indicator, toggle the CFI soft key and select Auto or Manual:

Auto: Lets the instrument set the number of OFDM symbols used for transmitting PDCCHs in a subframe.

Manual: Sets the number of OFDM symbols manually.

11 To select the number of PHICH groups (Ng), press the **PHICH Ng** soft key and then select the option from the choices: **1/6**, **1/2**, **1**, **2**, **E-1/6**, **E-1/2**, **E-1**, or **E-2**.

Setting display

You can use the TRACE/DISPLAY hard key to view the RE and RS power at a specific symbol.

Procedure

- 1 Press the TRACE/DISPLAY hard key.
- 2 Toggle the Chart soft key between On and Off to display or hide the chart. If this setting is on, the MARKER hard key is activated.

Using marker

If you turn the Chart view on, you can use the MARKER hard key to place the marker at a specific symbol.

- 1 Press the MARKER hard key.
- 2 Toggle the Marker View soft key between On and Off to display or hide the marker on the chart.
- 3 Press the **Symbol** soft key to select the symbol number, to which the marker is placed.
- 4 Enter a value by using the numeric keys.
- 5 Press the Enter soft key.

Measurement example

Figure 403 Subframe measurement with RFoOBSAI LTE-FDD signal analyzer

NOTE

You can use the *LIMIT* hot key to analyze your measurements with the user-definable limit and Pass/Fail indication. See "Setting limit for RFoOBSAI signal analysis" on page 696 for more information.

Conducting frame measurement

The Frame measures the modulation accuracy of all the data and control channels at the frame (10 ms).

Making a measurement

- 1 Press the **MEASURE** hot key to select the measurement mode.
- 2 Select Signal Analyzer > LTE-FDD > Modulation Analysis > Frame.
- 3 Configure test parameters as described in the "Configuring test parameters" on page 673.
- 4 Press the **MEASURE SETUP** hot key and set the measurement setups as described in the "Setting measure setup" on page 675.
- 5 Toggle the Cell ID soft key and select Auto or Manual as desired:
 - Auto: Lets the instrument detect the Cell ID for the LTE signal automatically.
 - **Manual:** Sets a specific Cell ID for the LTE signal manually in order to speed up the synchronization.
- 6 Toggle the **EVM Detection Mode** soft key and select **Single** or **Combine** as desired:
 - Single: Testing on one single antenna connected to your JD700B series with a cable.
 - **Combine:** Testing on multiple antennas connected to your JD700B series with a 2x1 combiner or an antenna.
- 7 Depending on your selected NEM, you may need to turn on or off the inversion of the I and Q order by toggling the IQ Swap soft key and selecting On or Off.
- 8 Optional. Press the **Miscellaneous** soft key, and then set other miscellaneous setups as described in the following section.
- **9** Check your measurement result displayed on the screen.
- 10 To clear current (C) and history (H) status of OBSAI alarm on LOS and LOF and start a new

- monitoring, press the **MEASURE SETUP** hot key and then the **Clear History** soft key.
- 11 Optional. Go to **SAVE/LOAD** > **Save**, and then select the save option from the choices available for your measurement mode. See "Using save" on page 34 for more information.

Setting other miscellaneous setups

Procedure

- 1 To assign a antenna port number automatically or manually, press the **Antenna Port** soft key and select the option: **Auto**, **0**, and **1**.
- To select the cyclic prefix, toggle the Cyclic Prefix soft key and select Normal or Extended. See "Appendix E Cyclic prefix table" on page 749 for OFDM parameter details by different bandwidth.
- 3 To turn on or off the Multimedia Broadcast Multicast Service (MBMS) feature, toggle the MBMS soft key and select On or Off. For proper MBMS testing, you need to set the Subframe No with the same PMCH subframe number. If this setting is on, either PMCH or PDSCH appears on the screen depending on the detected channel.
- To set the Multicast Broadcast Single Frequency Network (MBSFN) detection automatically or manually for MBMS testing, toggle the **MBSFN** soft key and select **Auto** or **Manual**. An automatically detected or manually entered MBSFN ID appears on the screen.
- To select the PDSCH modulation type, press the PDSCH Modulation Type soft key and then select the option from the choices: Auto, QPSK, 16 QAM, 64 QAM, E-TM3.3, E-TM3.2, E-TM3.1, E-TM2, E-TM1.2, and E-TM1.1.

NOTE

If two or more modulation types are used in a frame, select **Auto**. If the PDSCH uses the same modulation type in a frame or in a subframe, select a specific modulation type to get more accurate EVM.

- **6** To set the threshold for PDSCH, complete the following steps:
 - Press the PDSCH Threshold soft key.
 - **b** Enter a value by using the numeric keys.
 - c Press the Enter soft key.
- 7 To set the threshold for PDCCH, complete the following steps:
 - Press the PDCCH Threshold soft key.
 - **b** Enter a value by using the numeric keys.
 - Press the Enter soft key.
- 8 Toggle the PDCCH Mode soft key and select REG or Avg.

REG: Calculates EVM based on Resource Element Group

Avg: Calculates EVM after adding all the PDCCH signals from one subframe.

- 9 To enable or disable the PDSCH precoding, toggle the PDSCH Precoding soft key and select On or Off.
- 10 To set the Control Format Indicator, toggle the CFI soft key and select Auto or Manual:

Auto: Lets the instrument set the number of OFDM symbols used for transmitting PDCCHs in a subframe.

Manual: Sets the number of OFDM symbols manually.

11 To select the number of PHICH groups (Ng), press the **PHICH Ng** soft key and then select the option from the choices: **1/6**, **1/2**, **1**, **2**, **E-1/6**, **E-1/2**, **E-1**, or **E-2**.

Measurement example

Figure 404 Frame measurement with RFoOBSAI LTE-FDD signal analyzer

NOTE

You can use the *LIMIT* hot key to analyze your measurements with the user-definable limit and Pass/Fail indication. See "Setting limit for RFoOBSAI signal analysis" on page 696 for more information.

Conducting time alignment error measurement

In eNode-B supporting Tx Diversity transmission, signals are transmitted from two or more antennas. These signals shall be aligned. The time alignment error in Tx diversity is specified as the delay between the signals from two antennas at the antenna ports.

Making a measurement

Procedure

- 1 Press the **MEASURE** hot key to select the measurement mode.
- 2 Select Signal Analyzer > LTE-FDD > Modulation Analysis > Time Alignment Error.
- **3** Configure test parameters as described in the "Configuring test parameters" on page 673.
- 4 Press the **MEASURE SETUP** hot key and set the measurement setups as described in the "Setting measure setup" on page 675.
- 5 Toggle the Antenna Config soft key and select Ant0 or Ant1 as needed.
- 6 Toggle the Cell ID soft key and select Auto or Manual as desired:

Auto: Lets the instrument detect the Cell ID for the LTE signal automatically.

Manual: Sets a specific Cell ID for the LTE signal manually in order to speed up the synchronization.

- 7 Depending on your selected NEM, you may need to turn on or off the inversion of the I and Q order by toggling the IQ Swap soft key and selecting On or Off.
- 8 Optional. To select the cyclic prefix, complete the following steps:
 - d Press the Miscellaneous soft key.
 - Toggle the Cyclic Prefix soft key and select Normal or Extended. See "Appendix E Cyclic prefix table" on page 749 for OFDM parameter details by different bandwidth.
- 9 Check your measurement result displayed on the screen.
- 10 To clear current (C) and history (H) status of OBSAI alarm on LOS and LOF and start a new

- monitoring, press the **MEASURE SETUP** hot key and then the **Clear History** soft key.
- 11 Optional. Go to **SAVE/LOAD** > **Save**, and then select the save option from the choices available for your measurement mode. See "Using save" on page 34 for more information.

Measurement example

Figure 405 Time alignment error measurement with RFoOBSAI LTE-FDD signal analyzer

NOTE

You can use the *LIMIT* hot key to analyze your measurements with the user-definable limit and Pass/Fail indication. See "Setting limit for RFoOBSAI signal analysis" on page 696 for more information.

Conducting data allocation map measurement

The Data Allocation Map function represents data allocation as a frame.

Making a measurement

Procedure

- 1 Press the **MEASURE** hot key to select the measurement mode.
- 2 Select Signal Analyzer > LTE-FDD > Modulation Analysis > Data Allocation Map.
- 3 Configure test parameters as described in the "Configuring test parameters" on page 673.
- 4 Press the **MEASURE SETUP** hot key and set the measurement setups as described in the "Setting measure setup" on page 675.
- **5** To select the subframe number to be measured, complete the following steps:
 - a Press the Subframe No soft key.
 - **b** Enter a value by using the numeric keys. You can also use the rotary knob.

NOTE

For MBMS testing, this subframe number must be neither 0 nor 5 as these subframes 0 and 5 are not available for MBMS and it must be set to the MBMS transmitted channel's subframe number.

- c Press the Enter soft key.
- 6 Toggle the Cell ID soft key and select Auto or Manual as desired:

Auto: Lets the instrument detect the Cell ID for the LTE signal automatically.

Manual: Sets a specific Cell ID for the LTE signal manually in order to speed up the synchronization.

- 7 To set the threshold for PDSCH, complete the following steps:
 - Press the PDSCH Threshold soft key.
 - Enter a value by using the numeric keys.
 - c Press the Enter soft key.
- 8 Depending on your selected NEM, you may need to turn on or off the inversion of the I and Q order by toggling the IQ Swap soft key and selecting On or Off.
- 9 Optional. Press the Miscellaneous soft key, and then set other miscellaneous setups as described in the following section.
- **10** Check your measurement result displayed on the screen.
- 11 To clear current (C) and history (H) status of OBSAI alarm on LOS and LOF and start a new monitoring, press the MEASURE SETUP hot key and then the Clear History soft key.
- **12** Optional. Go to **SAVE/LOAD** > **Save**, and then select the save option from the choices available for your measurement mode. See "Using save" on page 34 for more information.

Setting other miscellaneous setups

Procedure

- 1 To assign a antenna port number automatically or manually, press the **Antenna Port** soft key and select the option: **Auto**, **0**, and **1**.
- To select the cyclic prefix, toggle the Cyclic Prefix soft key and select Normal or Extended. See "Appendix E Cyclic prefix table" on page 749 for OFDM parameter details by different bandwidth.
- 3 To turn on or off the Multimedia Broadcast Multicast Service (MBMS) feature, toggle the MBMS soft key and select On or Off. For proper MBMS testing, you need to set the Subframe No with the same PMCH subframe number. If this setting is on, either PMCH or PDSCH appears on the screen depending on the detected channel.
- 4 To set the Multicast Broadcast Single Frequency Network (MBSFN) detection automatically or manually for MBMS testing, toggle the MBSFN soft key and select Auto or Manual. An automatically detected or manually entered MBSFN ID appears on the screen.

Setting display

You can use the TRACE/DISPLAY hard key to change the display mode to PDSCH, PMCH, or both.

Procedure

- Press the TRACE/DISPLAY hard key.
- 2 Press the Display Channel soft key.
- 3 Select the display mode from the choice: PDSCH, PMCH, and Both.

Using marker

You can use the **MARKER** hard key to place the marker at a specific resource block and subframe.

- 1 Press the MARKER hard key.
- 2 Toggle the Marker View soft key between On and Off to display or hide the marker on the chart.
- **3** To select the resource block number, complete the following steps:
 - Press the RB Number soft key.

- **b** Enter the resource block number to select by using the numeric keys. You can also use the rotary knob to move the marker side by side.
- c Press the Enter soft key.
- **4** To select the subframe block number, complete the following steps:
 - Press the Subframe No soft key.
 - **b** Enter the subframe number to select by using the numeric keys. You can also use the rotary knob to move the marker up and down.
 - c Press the Enter soft key.

Measurement example

Figure 406 Data allocation map measurement with RFoOBSAI LTE-FDD signal analyzer

Performing power statistics CCDF measurement

The Power Statistics Complementary Cumulative Distribution Function (CCDF) measurement characterizes the power statistics of the input signal. It provides PAR (Peak to Average power Ratio) versus different probabilities.

Making a measurement

- 1 Press the **MEASURE** hot key to select the measurement mode.
- 2 Select Signal Analyzer > LTE-FDD > Power Statistics CCDF.
- 3 Configure test parameters as described in the "Configuring test parameters" on page 673.
- 4 Press the MEASURE SETUP hot key and set the measurement setups as described in the "Setting measure setup" on page 675.
- **5** To set the length of the CCDF, complete the following steps:
 - a Press the CCDF Length soft key.
 - **b** Enter a value between 1 and 100 by using the numeric keys. You can also use the rotary knob.
 - c Press the Enter soft key.
- **6** Check your measurement result displayed on the screen.
- 7 To clear current (C) and history (H) status of OBSAI alarm on LOS and LOF and start a new monitoring, press the MEASURE SETUP hot key and then the Clear History soft key.

8 Optional. Go to SAVE/LOAD > Save, and then select the save option from the choices available for your measurement mode. See "Using save" on page 34 for more information.

Measurement example

Figure 407 CCDF measurement with RFoOBSAI LTE-FDD signal analyzer

Setting limit for RFoOBSAI signal analysis

By default, test limits specified in the standard are set for you. You can change thresholds if you desire.

Procedure

- 1 Press the *LIMIT* hot key.
- 2 To set a limit for RF analysis tests, press the **RF Test Limits** soft key and then set limits as needed, depending on where you are in the measurement mode.

To set the limit for	Select	Set
Channel power	Channel Power	High Limit, Low Limit
Occupied bandwidth	Occupied BW	High Limit

3 To set a limit for modulation tests, press the Modulation Test Limits soft key and then set limits as needed, depending on where you are in the measurement mode.

To set the limit for	Select	Set
Frequency error	Frequency Error	High Limit, Low Limit
PDSCH error vector magnitude if MBMS is off	EVM > PDSCH EVM	High Limit (QPSK) High Limit (16 QAM) High Limit (64 QAM)
PMCH error vector magnitude if MBMS is on and a PMCH is detected	EVM > PMCH EVM	High Limit (QPSK) High Limit (16 QAM) High Limit (64 QAM)
RMS for data error vector magnitude	EVM > Data EVM RMS	High Limit
Peak for data error vector	EVM> Data EVM Peak	High Limit

magnitude		
RS error vector magnitude	EVM > RS EVM	High Limit
P-SS error vector magnitude	EVM > P-SS EVM	High Limit
S-SS error vector magnitude	EVM > S-SS EVM	High Limit
Downlink RS power	Power > DL RS Power	High Limit, Low Limit
P-SS power	Power > P-SS Power	High Limit, Low Limit
S-SS power	Power > S-SS Power	High Limit, Low Limit
PBCH power	Power > PBCH Power	High Limit, Low Limit
Subframe power	Power > Subframe Power	High Limit, Low Limit
OFDM symbol power	Power > OFDM Symbol Power	High Limit, Low Limit
Frame average power	Power > Frame Avg Power	High Limit, Low Limit
Time alignment error for MIMO	Time Alignment Error > MIMO	High Limit
Time error	Time Error	High Limit, Low Limit
I-Q origin offset	IQ Origin Offset	High Limit

- **4** Optional. You can enable alarm sound that goes off if the measurement falls outside of the limit. Toggle the **Beep** soft key between **On** and **Off** to enable or disable the beep sound.
- 5 Optional. Go to SAVE/LOAD > Save, and then select Limit to save the limit settings. See "Using save" on page 34 for more information.

Using signal generator

If your JD700B series has the signal generator options installed with a license, you can use RF Source or OBSAI Source, or both.

Using RF source in RFoOBSAI testing

You can use the RF Source feature to calibrate the uplink noise floor at a given point, check the uplink gain and dynamic range, and verify the current RP3 link.

Procedure

- 1 Press the **MEASURE SETUP** hot key.
- 2 Press the Source soft key. Depending on your selection of measurement mode, you may need to select More (1/2) > Source.
- 3 Press the RF Source soft key.
- 4 To set the frequency of the CW signal to be injected, complete the following steps:
 - a Press the Frequency soft key.
 - **b** Enter a value within the frequency range of your instrument.

JD740B series: 25 MHz to 4 GHz JD780B series: 5 MHz to 6 GHz

NOTE

The frequency of the CW signal must be in the uplink band of the RRH under test.

- Select the unit option from the choices: GHz, MHz, kHz, and Hz.
- **5** To set the output level of the CW signal to be injected, complete following steps:

- a Press the Power Level soft key.
- b Enter a value within the output range for the frequency you have set in step 4.

JD740B series: -80 dBm to -30 dBm, 0 dBm

JD780B series: -60 dBm to 10 dBm

- c Press the unit soft key.
- 6 To start to inject the set signal, toggle the **RF Source** soft key and select **On**.
- 7 To stop injecting the signal, toggle the RF Source soft key and select Off.

Using OBSAI source

You can use the OBSAI Source feature to generate CW and six types of E-UTRA Test Model waveforms in RFoOBSAI testing for LTE-FDD: **CW**, **E-TM1.1**, **E-TM1.2**, **E-TM2**, **E-TM3.1**, **E-TM3.2**, and **E-TM3.3**.

Procedure

1 Make the Tx of a SFP/SFP+ module looped back to the Rx of the same module.

NOTE

When two SFP/SFP+ modules are installed in both Port 1 and Port 2, the OBSAI source always works via the Port 1, which is the primary port. If you want to use the Port 2 for this OBSAI signal generation, make sure to eject the module from the Port 1.

- 2 Press the **MEASURE SETUP** hot key.
- **3** To set the Tx Clock and Port Type settings correctly, complete the following steps:
 - a Press the OBSAI Parameters soft key.
 - **b** Press the **Tx Clock** soft key and then select **Internal**.
 - c Toggle the Port Type soft key and then select Master.
 - d Press the **PREV** hard key to return to the Measure Setup main menu.
- 4 Press the Source soft key. Depending on your selection of measurement mode, you may need to select More (1/2) > Source.
- 5 Press the **OBSAI Source** soft kev.
- **6** To adjust the gain of the waveform to be transmitted in order to prevent an overrun or underrun of the RRU, complete the following steps:
 - a Press the Gain soft key.
 - **b** Enter a value between **-50.00** and **0.00**.
 - c Press the dB soft key or the ENTER hard key.
- 7 To select a waveform to be generated, complete the following steps:
 - Press the Waveforms soft key. The Waveform list dialog box appears.
 - b Select a signal that you want to generate for your selected NEM. Supported bandwidths are 5 MHz, 10 MHz, 15 MHz, and 20 MHz.
 - Tap the Apply button on the screen or press the ENTER hard key.
- 8 To start to inject the selected signal, toggle the OBSAI Source soft key and select On.
- 9 To stop injecting the signal, toggle the OBSAI Source soft key and select Off.

Chapter 18 Using Channel Scanner

This chapter provides instructions for using the Channel Scanner function (option 012). Topics discussed in this chapter are as follows:

Introduction	700
Display overview	700
Connecting a cable	700
Selecting measurement mode	702
Configuring test parameters	702
Making channel scanner measurements	705
Making frequency scanner measurements	706
Making custom scanner measurements	707
Analyzing measurements	709

Introduction

A Channel Scanner is a radio receiver that can automatically tune or scan two or more discrete frequencies and multi-channels, indicating when it finds a signal on one of them and then continuing scanning when that frequency goes silent.

You can measure up to 20 channels with this channel scanner. Using existing format-based or custom parameters, you will be able to easily verify improper multi-channel power levels.

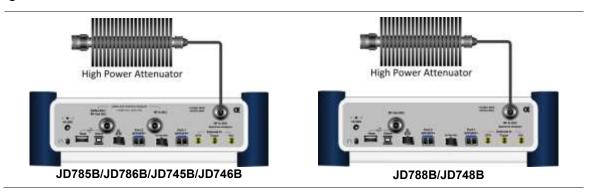
- Channel Scanner
- Frequency Scanner
- Custom Scanner (Channel or Frequency)

Display overview

Figure 408 provides descriptions for each segment of the measurement screen.

System settings and indicators Measurement mode Input settings Attenuation: 0 dB [A] External Offset: 0.00 dB [Off] Pass/fail User input field indicator -20.0 Scale Unit: dilan МІ 40.0 60.0 Screen menus Measurement settings 150 -83 e/ 12 400 175 13 425 84.40 14 450 200 15 16 500 275 82.07 17 525 18 19 Measurement result

Figure 408 Channel scanner screen

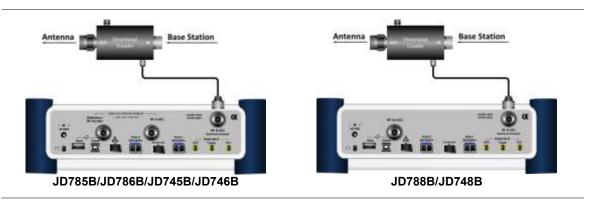

Connecting a cable

Direct connection

Procedure

1 Connect the **Spectrum Analyzer RF In** port of the JD700B series and the Power amplifier output port of BTS.

Figure 409 Direct connection

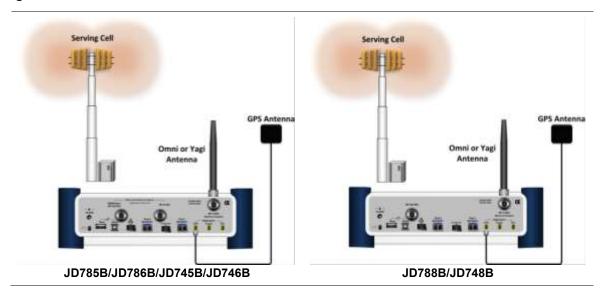


Indirect connection

Procedure

1 Connect the Spectrum Analyzer RF In port of the JD700B series and the monitor (test) port of BTS.

Figure 410 Indirect connection


CAUTION

The maximum power for the **Spectrum Analyzer RF In** port is +25 dBm (0.316 W) for JD780B series and +20 dBm (0.1 W) for JD740B series. If the level of the input signal to be measured is greater than this, use a *High Power Attenuator* to prevent damage when you directly connect the signal to the instrument or connect the signal from the coupling port of a directional coupler.

Over the air (OTA)

- 1 Connect an Omni/directional RF antenna to the Spectrum Analyzer RF In port of the JD700B series.
- 2 Connect a GPS antenna to the GPS port of the JD700B series.

Figure 411 OTA connection

CAUTION

If the input signal level to be measured is less than 0 dBm, set 0 dB attenuation or turn on the preamp to have better dynamic range for the OTA testing.

Selecting measurement mode

Procedure

- 1 Press the MODE hard key.
- 2 Press the Channel Scanner soft key. The Channel Scanner mode is selected by default.
- 3 To change the measurement mode, press the MEASURE hot key and then select the measurement mode:

Channel Scanner

Frequency Scanner

Custom Scanner

Configuring test parameters

Setting frequency

You need to set the channel or frequency to be scanned depending on the scanner mode: channel scanner, frequency scanner, and custom scanner. Refer to each scanner mode for how to set the channel or frequency.

Setting amplitude

Reference level and attenuation

You can set the reference and attenuation levels automatically or manually to optimize the display of the traces measured, as you desire.

Procedure

To automatically set the reference and attenuation level:

- 1 Press the AMP/SCALE hard key.
- 2 Press the Auto Scale soft key. Each time you press this key, both of the Y-axis scale and input attenuation level change to be optimized with some margin.

To set the reference or attenuation level manually:

- 1 Press the AMP/SCALE hard key.
- 2 To set the maximum reference value on the Y-axis manually, complete the following steps:
 - a Press the Reference Level soft key.
 - **b** Enter a value by using the numeric keys or the rotary knob with 10 dB increments.
 - Press the unit soft key or the ENTER hard key.
 This unit key name changes according to the setting in the Units menu.
- **3** To set the attenuation option, select one from the following choices:

To set the input attenuator's level automatically, select **Attenuation > Auto**.

NOTE

It is recommended that you set the **Attenuation** to **Auto** in most situations so that the level of the input attenuator can be set automatically according to your input signal level.

To set the input attenuation manually up to 55 dB for JD780B series or 50 dB for JD740B series to optimize S/N, complete the following steps:

- Select Attenuation > Manual.
- b Press the Attenuation Value soft key to set the level.
- c Enter a value in fives by using the numeric keys.
- d Press the dB soft key or the ENTER hard key.

To couple the input attenuator's level with your reference level setting, select **Attenuation > Couple**.

As you increase the reference setting, the attenuation level also increases accordingly.

Optional. To change the scale unit:

- 1 Select More (1/2) > Units.
- 2 Select the unit of the display scale: dBm, dBV, dBmV, dBμV, V, or W. The scale unit on the screen changes accordingly.

Pre-amplifier

You can turn the internal pre-amplifier on to correct and compensate for the gain of the preamp so that amplitude readings show the value at the input connector.

Procedure

- 1 Press the AMP/SCALE hard key.
- 2 Toggle the **Preamp** soft key and select **On** or **Off** as needed.

NOTE

You can turn the Preamp on when the input attenuation range is from 0 dB to 10 dB. If the attenuation value is manually set to greater than 10 dB, the instrument will automatically turn off the pre-amplifier to display low-level signal properly on the chart.

External offset

You can turn the **External Offset** on and manually set the external offset value. An offset consists of a cable loss and a user offset and the measurement result shows the value reflecting both offset values. When the

external offset value is set at 40 dB in the Spectrum mode, the measurement result compensates 40 dB at both the Spectrum Analyzer and Signal Analyzer modes.

Procedure

To set the external offset:

- 1 Press the AMP/SCALE hard key.
- 2 Toggle the External Offset soft key and select On.
- 3 Enter a value by using the numeric keys.
- 4 Press the dB soft key to complete the entry.

To turn the external offset off:

- 1 Press the AMP/SCALE hard key.
- 2 Toggle the External Offset soft key and select Off.

Setting average

You can set the number of measurements to be averaged for the trace presentation. A maximum of 100 times of averaging can be set. When the averaging reaches to your setting, a new measurement value replaces the measurement value in sequence from the earliest.

Procedure

- 1 Press the **BW/AVG** hard key.
- 2 Press the Average soft key.
- 3 Enter a value between 1 and 100 as needed by using the numeric keys.
- 4 Press the Enter soft key.

Setting sweep mode

The default setting is **Continue** to sweep continuously for most on-going measurements. If you want to hold the measurement or get a single sweep, you can change the sweep mode.

Procedure

To select the single sweep mode:

- 1 Press the **SWEEP** hot key.
- 2 Toggle the Sweep Mode soft key and select Single. You can also use the HOLD hot key. The letter HOLD in red appears and the sweeping is paused.
- 3 Optional. Press the Sweep Once soft key to get a new measurement.

To return to the continuous sweep mode:

1 Toggle the Sweep Mode soft key and select Continue. You can also use the HOLD hot key. The letter HOLD in red disappears and the sweeping resumes.

NOTE

Selecting **Sweep Mode > Fast** may reduce the measurement accuracy, but you can use this fast sweep mode to identify the existence of interfering signals.

Making channel scanner measurements

Setting channel

You need to set the channel to be scanned.

Procedure

- 1 Press the FREQ/DIST hard key.
- **2** To select the standard channel, complete the following steps:
 - Press the Channel Std soft key. The standard channel window appears.
 See "Appendix C Band, frequency & channel standard" on page 745 for more information.
 - b Highlight the band to be measured by using the rotary knob, the arrow keys, or the Page Up/Page Down soft keys.
 - c Press the **Select** soft key or the rotary knob to confirm the selection.
- 3 Toggle the Link soft key to select the scanning direction and select Fwd (forward) or Rev (reverse).
- **4** To set the starting channel, complete the following steps:
 - Press the Start Channel soft key.
 - **b** Enter a value by using the numeric keys. You can also use the rotary knob.
 - c Press the Enter soft key.
- 5 To set the amount of channel increment in scanning channels, complete the following steps:
 - a Press the Channel Step soft key.
 - **b** Enter a value by suing the numeric keys. You can also use the rotary knob.
 - c Press the Enter soft key.
- **6** To set the integration bandwidth, complete the following steps:
 - a Press the Integration Bandwidth soft key.
 - **b** Enter a value by using the numeric keys. You can also use the rotary knob.
 - c Select the unit: GHz, MHz, kHz, or Hz.
- 7 To set the number of channels to be displayed in the measurement table, complete the following steps:
 - a Press the # of Channels soft key.
 - **b** Enter a value by using the numeric keys. You can also use the rotary knob.
 - c Press the Enter soft key.

Measurement example

Test results can be saved as a .csv file format so that you can work on it in any spreadsheet software.

Figure 412 Channel scanner measurement

NOTE

You can use the *LIMIT* hot key to analyze your measurements with the display line and channel limit. See "Setting limit for channel scanner" on page 709 for more information.

Making frequency scanner measurements

Setting frequency

You need to set the frequency to be scanned.

- 1 Press the FREQ/DIST hard key.
- **2** To set the starting center frequency, complete the following steps:
 - a Press the Start Frequency soft key.
 - **b** Enter a value by using the numeric keys. You can also use the rotary knob.
 - Select the unit: GHz, MHz, kHz, or Hz.
- 3 To set the amount of frequency increment in scanning channels, complete the following steps:
 - Press the Frequency Step soft key.
 - **b** Enter a value by suing the numeric keys. You can also use the rotary knob.
 - Select the unit: GHz, MHz, kHz, or Hz.
- **4** To set the integration bandwidth, complete the following steps:
 - Press the Integration Bandwidth soft key.
 - **b** Enter a value by using the numeric keys. You can also use the rotary knob.
 - c Select the unit: GHz, MHz, kHz, or Hz.
- 5 To set the number of frequencies to be displayed in the measurement table, complete the following steps:
 - a Press the # of Frequency soft key.
 - **b** Enter a value by using the numeric keys. You can also use the rotary knob.
 - c Press the Enter soft key.

Measurement example

Figure 413 Frequency scanner measurement

NOTE

You can use the *LIMIT* hot key to analyze your measurements with the display line and channel limit. See "Setting limit for channel scanner" on page 709 for more information.

Making custom scanner measurements

Setting channel/frequency

You can customize channels or frequencies to be scanned as you desire.

Procedure

To set the channels to be scanned:

- 1 Press the FREQ/DIST hard key.
- 2 Toggle the **Unit** soft key and select **Channel**.
- **3** To select the standard channel, complete the following steps:
 - a Press the **Channel Std** soft key. The standard channel window appears. See "Appendix C – Band, frequency & channel standard" on page 745 for more information.
 - b Highlight the band to be measured by using the rotary knob, the arrow keys, or the Page Up/Page Down soft keys.
 - c Press the **Select** soft key or the rotary knob to confirm the selection.
- 4 Toggle the Link soft key to select the scanning direction and select Fwd (forward) or Rev (reverse).
- 5 Press the Index soft key, and then enter an index number by turning the rotary knob or using the numeric keys.
- **6** To set the channel number for the selected index, complete the following steps:
 - a Press the Channel Number soft key.
 - **b** Enter a value by using the numeric keys. You can also use the rotary knob.
 - Press the Enter soft key.
 The instrument displays a corresponding center frequency for the channel number.
- **7** To set the integration bandwidth for the selected index, complete the following steps:
 - a Press the Integration Bandwidth soft key.

- **b** Enter a value by using the numeric keys. You can also use the rotary knob.
- c Select the unit: GHz, MHz, kHz, or Hz.
- 8 To add more channels to be scanned, repeat steps 5-7.
- 9 Press the ESC hard key to dismiss the channel list window and view the scanning result.

To set the frequencies to be scanned:

- Press the FREQ/DIST hard key.
- 2 Toggle the **Unit** soft key and select **Freq**.
- 3 Press the **Index** soft key, and then enter an index number by turning the rotary knob or using the numeric keys.
- **4** To set the center frequency for the selected index, complete the following steps:
 - a Press the Center Frequency soft key.
 - **b** Enter a value by using the numeric keys. You can also use the rotary knob.
 - c Select the unit: GHz, MHz, kHz, or Hz.
- 5 To set the integration bandwidth for the selected index, complete the following steps:
 - a Press the Integration Bandwidth soft key.
 - **b** Enter a value by using the numeric keys. You can also use the rotary knob.
 - c Select the unit: GHz, MHz, kHz, or Hz.
- 6 To add more channels to be scanned, repeat steps 3-5.
- 7 Press the ESC hard key to dismiss the channel list window and view the scanning result.

Measurement example

Figure 414 Custom scanner measurement

NOTE

You can use the *LIMIT* hot key to analyze your measurements with the display line and channel limit. See "Setting limit for channel scanner" on page 709 for more information.

Analyzing measurements

Setting limit for channel scanner

Procedure

To use the display line:

- 1 Press the LIMIT hot key.
- 2 Press the Display Line soft key to set a threshold for the limit line and Pass/Fail indication.
- 3 Enter a value, and then press the dBm unit soft key.
- 4 Toggle the Display Line soft key between On and Off to display or dismiss the limit line.

To use the channel limit:

- 1 Press the *LIMIT* hot key.
- 2 Press the Channel Limit soft key to set the limits for each channel index.
- 3 Press the Index soft key, and then select the channel/frequency index number by turning the rotary knob or using the numeric keys.
- 4 Toggle the Limit soft key between On and Off to enable or disable the Pass/Fail indication.
- 5 Set the upper threshold:
 - Press the High Limit soft key.
 - b Enter a value for the upper limit.
 - c Press the dBm unit soft key.
- 6 Set the lower threshold:
 - a Press the Low Limit soft key.
 - **b** Enter a value for the lower limit.
 - c Press the dBm unit soft key.
- 7 Optional. Go to **SAVE/LOAD** > **Save**, and then select the save option from the choices available for your measurement mode. See "Using save" on page 34 for more information.

Chapter 19 Using Power Meter

This chapter provides instructions for using the RF Power Meter function and the Optical Power Meter function. Topics discussed in this chapter are as follows:

Introduction	. 711
Display overview	. 711
Performing internal RF power measurements	. 711
Performing external RF power measurements	.716
Performing optical power measurements	.719

Introduction

The Power Meter of the JD700B series uses power measurement based on spectrum measurement results to provide an accurate power measurement result unlike a general spectrum analyzer, of which power accuracy may be degraded if the span is set too wide.

The power meter also provides Pass/Fail indication with user-defined lower and upper limits.

The Power Meter function provides following measurements:

- Internal RF Power Measurement
- External RF Power Measurement
- Optical Power Measurement

Display overview

Figure 415 provides descriptions for each segment of the measurement screen.

System settings, global positioning information, and indicators Measurement mode Input settings 093.370 000 MHz 10.00 dbw -10.00 dBin and limits Longermoon ca-Pass/fail User input field indicator Display Absolute Detector Mode 20 000000 MHz External Offset 0.00 dB Screen Start Frequency menus 990 0000000 MH 2.43 dBm Stop Frequency 1.0100000000 GF Max : 15.99 dB Chancel Standard GSM 450 More (1/2) Measurement settings and results

Figure 415 Power measurement screen

Performing internal RF power measurements

The internal power measurement of the JD700B series collects powers from the raw data of spectrum analyzer in the optimal span and integrates the powers up to the specified user span, which results in an accurate power measurement, independent of the span setting.

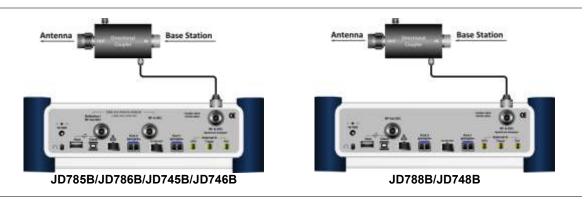
Connecting a cable

Direct connection

Procedure

1 Connect the **Spectrum Analyzer RF In** port of the JD700B series and the Power amplifier output port of BTS as shown in Figure 416.

Figure 416 Direct connection



Indirect connection

Procedure

1 Connect the Spectrum Analyzer RF In port of the JD700B series and the monitor (test) port of BTS as shown in Figure 417.

Figure 417 Indirect connection

CAUTION

The maximum power for the **Spectrum Analyzer RF In** port is +25 dBm (0.316 W) for JD780B series and +20 dBm (0.1 W) for JD740B series. If the level of the input signal to be measured is greater than this, use a *High Power Attenuator* to prevent damage when you directly connect the signal to the instrument or connect the signal from the coupling port of a directional coupler.

Selecting measurement mode

- 1 Press the MODE hard key.
- 2 Select More (1/2) > Power Meter > Internal RF Power Meter.

Setting frequency

You need to set the frequency range to be measured with either the center frequency/span or the start/stop frequencies. You can also set the frequency with the channel number and span.

Procedure

To set the center frequency and span:

- 1 Press the FREQ/DIST hard key.
- 2 Toggle the **Unit** soft key and select **Freq**.
- 3 Press the Center Frequency soft key.
- 4 Enter a value by using the numeric keys. You can also use the rotary knob or the arrow keys.
- 5 Select the unit: GHz, MHz, kHz, or Hz.
- 6 Press the Span soft key, and then do one of the following:

To set the span manually, select **Span**, enter a value, and then select the unit.

To set the span automatically, select Full Span, Zero Span, or Last Span as needed.

NOTE

The **Zero Span** option is available only in the Spectrum mode. If you have selected **Zero Span**, select **TRIGGER** > **Free Run**, **External**, **GPS**, **Video**, or **Display Position**.

To set the start and stop frequencies:

- 1 Press the FREQ/DIST hard key.
- 2 Toggle the Unit soft key and select Freq.
- 3 Press the Start Frequency soft key.
- 4 Enter a value by using the numeric keys. You can also use the rotary knob or the arrow keys.
- 5 Select the unit: GHz, MHz, kHz, or Hz.
- 6 Press the Stop Frequency soft key.
- 7 Enter a value by using the numeric keys. You can also use the rotary knob or the arrow keys.
- 8 Select the unit: GHz, MHz, kHz, or Hz.

To set the channel number and span:

- 1 Press the FREQ/DIST hard key.
- 2 Toggle the Unit soft key and select Channel.
- 3 To select the standard channel, complete the following steps:
 - Press the **Channel Std** soft key. The standard channel window appears. See "Appendix C Band, frequency & channel standard" on page 745 for more information.
 - b Highlight the band to be measured by using the rotary knob, the arrow keys, or the Page Up/Page Down soft keys.
 - c Press the **Select** soft key or the rotary knob to confirm the selection.
- 4 Toggle the **Link** soft key to select the sweep direction and select **Fwd** (forward) or **Rev** (reverse).
- **5** To set the channel number, complete the following steps:
 - Press the Channel Number soft key.
 - **b** Enter a value by using the numeric keys.
 - c Press the Enter soft key or ENTER hard key to complete the entry. The instrument automatically displays the corresponding center frequency value for the selected channel number.
- **6** To set the span, complete the following steps:
 - a Press the Span soft key.
 - **b** Select the span option, from the following choices:

To set the span manually, select **Span**, enter a value, and then select the unit.

To set the span automatically, select Full Span, Zero Span, or Last Span as needed.

NOTE

The Zero Span option is available only in the Spectrum mode. If you have selected Zero Span, select *TRIGGER* > Free Run, External, GPS, Video, or Display Position.

Optional. To define the amount of frequency increment for the rotary knob:

- 1 Press the **Frequency Step** soft key, if the **Freq** is selected.
- 2 Enter a value by using the numeric keys.
- 3 Press the unit: GHz, MHz, kHz, or Hz.

Optional. To define the amount of channel increment for the rotary knob:

- 1 Press the Channel Step soft key, if the Channel is selected.
- 2 Enter a value by using the numeric keys.
- 3 Press the Enter soft key.

Setting amplitude

Procedure

- 1 Press the AMP/SCALE hard key.
- 2 Toggle the **Display** soft key and select the display method: **Relative** or **Absolute**.
- 3 If the Relative is selected, press the Set Reference soft key to set the current value as the reference.
- **4** To specify the display range, complete the following steps:
 - a Press the **Display Maximum** soft key to set the maximum value for the power meter.
 - **b** Enter a value by using the numeric keys. You can also use the rotary knob.
 - c Press the dBm soft key.
 - d Press the **Display Minimum** soft key to set the minimum value for the power meter.
 - e Enter a value by using the numeric keys. You can also use the rotary knob.
 - f Press the dBm soft key.
- **5** *Optional*. To enable the external offset, complete the following steps:
 - a Toggle the External Offset soft key and select On.
 - **b** Enter a value between 0 and 60 by using the numeric keys.
 - c Press the dB soft key.

Setting sweep mode

The default setting of the sweep mode is **Continue**. If you want to hold the measurement, you can change the sweep mode.

- 1 Press the SWEEP hot key.
- 2 To select the single sweep mode, toggle the **Sweep Mode** soft key and select **Single**. You can also use the *HOLD* hot key.
 - The letter **HOLD** in red appears and the sweeping is paused.
- 3 To return to the continuous sweep mode, toggle the Sweep Mode soft key and select Continue. You can also use the HOLD hot key.
 - The letter **HOLD** in red disappears and the sweeping resumes.

Making a measurement

Procedure

- 1 Press the **MEASURE SETUP** hot key.
- 2 Press the **Resolution** soft key, and then select the resolution option from the following choices:
 - 0: Displays the reading with no decimal place
 - 1: Displays the reading with one decimal place
 - 2: Displays the reading with two decimal places
- **3** To set the resolution bandwidth, complete the following steps:
 - Press the RBW soft key.
 - b Enter a value by using the numeric keys.
 - c Press the unit: MHz, kHz, or Hz.
- 4 Press the Accuracy Mode soft key, and then select the accuracy mode option: Low, Middle, and High.
- 5 To specify the number of measurements to be averaged, complete the following steps:
 - Press the Average soft key.
 - **b** Enter a value between 1 and 100 by using the numeric keys.
 - c Press the Enter soft key.
- 6 To set a threshold and view the results with Pass/Fail indication, complete the following steps:
 - Press the LIMIT hot key.
 - b Toggle the Limit soft key between On and Off to enable or disable the Pass/Fail indication.
 - c Press the **High Limit** soft key, and then enter a threshold value.
 - d Press the dBm unit soft key.
 - e Press the Low Limit soft key, and then enter a threshold value.
 - f Press the dBm unit soft key.
- 7 Optional. Go to SAVE/LOAD > Save, and then select the save option from the choices available for your measurement mode. See "Using save" on page 34 for more information.

Measurement example

Figure 418 Internal power measurement

Performing external RF power measurements

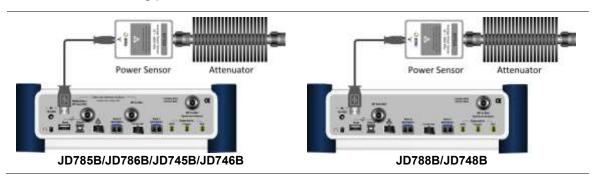
This instrument performs radio output power measurement with the use of optional external power sens ors including JD730 series power sensors. It serves as the highly accurate RF power meter and gives wider range of power measurement.

Connecting a cable

There are two types of power sensors. Directional power sensors are used in in-service power measurement. Terminating power sensors are used in out-of-service power measurement.

Table 23 External power sensor type

Part No.	Description	Frequency Range	Power Range
JD731B	Directional Power Sensor	300-3800 MHz	Average: +21.76 to +51.76 dBm (0.15 to 150 W) Peak: +36.02 to +56.02 dBm (4 to 400 W)
JD732B	Terminating Power Sensor	20-3800 MHz	Average: -30 to +20 dBm
JD733A	Directional Power Sensor	150-3500 MHz	Average/Peak: +20 to +47 dBm (0.1 to 50 W)
JD734B	Terminating Power Sensor	20-3800 MHz	Peak: -30 to +20 dBm
JD736B	Terminating Power Sensor	20-3800 MHz	Average/Peak: -30 to +20 dBm


Terminating power sensor connection

Procedure

1 Connect an external power sensor to the USB Host port of the JD700B series and to the RF output port of BTS.

The JD700B series automatically detects and initializes the power sensor connected to the instrument. Connecting an external power sensor is mandatory.

Table 24 Terminating power sensor connection

Directional power sensor connection

Procedure

1 Connect an external power sensor to the **USB Host** port of the JD700B series and to the RF output port of BTS as shown in Figure 419.

The JD700B series automatically detects and initializes the power sensor connected to the

instrument. Connecting an external power sensor is mandatory.

Figure 419 Directional power sensor connection

Selecting measurement mode

Procedure

- 1 Press the MODE hard key.
- 2 Select More (1/2) > Power Meter > External RF Power Meter.

Setting frequency

You need to set the frequency to be measured depending on your connected external power sensor.

Procedure

- 1 Press the FREQ/DIST hard key.
- 2 Press the Frequency soft key.
- **3** Enter a value by using the numeric keys. You can also use the rotary knob.
- 4 Select the unit: GHz, MHz, kHz, or Hz.

Setting amplitude

- 1 Press the AMP/SCALE hard key.
- 2 Toggle the **Display** soft key and select the display method: **Relative** or **Absolute**.
- 3 If the Relative is selected, press the Set Reference soft key to set the current value as the reference.
- 4 To specify the display range, complete the following steps:
 - a Press the **Display Maximum** soft key to set the maximum value for the power meter.
 - **b** Enter a value by using the numeric keys. You can also use the rotary knob.
 - c Press the dBm soft key.
 - d Press the **Display Minimum** soft key to set the minimum value for the power meter.
 - Enter a value by using the numeric keys. You can also use the rotary knob.
 - f Press the dBm soft key.

- **5** Optional. To enable the external offset, complete the following steps:
 - a Toggle the External Offset soft key and select On.
 - **b** Enter a value between 0 and 60 by using the numeric keys.
 - c Press the dB soft key.

Making a measurement

Procedure

- 1 Press the **MEASURE** hot key.
- 2 Depending your connected power sensor, do one of the following:

For JD736B, select the power range option: Average Power, Peak Power, or Pulse Power.

For JD734B. select Peak Power.

For JD732B, select Average Power.

For JD731B, select the power range option: Forward Avg Power, Reverse Avg Power,

Forward Peak Power, Pulse Power, or VSWR.

For JD733A, select the power range option: Forward Avg Power, Reverse Avg Power,

Forward Peak Power, or VSWR.

- 3 Press the **MEASURE SETUP** hot key.
- 4 Press the **Resolution** soft key, and then select the resolution option from the following choices:
 - 0: Displays the reading with no zero decimal place
 - 1: Displays the reading with one decimal place
 - 2: Displays the reading with two decimal places
- 5 To set a threshold and view the results with Pass/Fail indication, complete the following steps:
 - a Press the LIMIT hot key.
 - b Toggle the **Limit** soft key between **On** and **Off** to enable or disable the Pass/Fail indication.
 - c Press the **High Limit** soft key, and then enter a threshold value.
 - d Press the dBm unit soft key.
 - e Press the Low Limit soft key, and then enter a threshold value.
 - f Press the dBm unit soft key.
- 6 Optional. Go to **SAVE/LOAD** > **Save**, and then select the save option from the choices available for your measurement mode. See "Using save" on page 34 for more information.

Measurement example

You can measure and understand a trend of a system output in operation where output power constantly varies depending on the amount of calls being processed by the BTS or Repeater. In addition, the Log graph benefits you to easily examine the discontinuance of output power caused by the transmission problems or defective connection.

Figure 420 External power measurement of pulse power

Performing optical power measurements

The optical power measurement is available in conjunction with MP-series power sensor, which measures optical power via a USB connection.

Connecting a power meter

Connecting an external optical power meter is mandatory for power measurements in the Optical Power Meter mode. There are two optical power meters (sensors) those can be connected to the instrument via USB. See "JD700B Series Common Options" on page 768 for the optional power meters.

- 1 Connect a MP-series optical power sensor to the USB Host port of the JD700B series as shown in Figure 421.
- The OPS indicator appears in the system status bar.
- **2** Connect the optical cable from the output port of BTS to the power meter.

Figure 421 Optical power sensor connection

Selecting measurement mode

Procedure

- 1 Press the **MODE** hard key.
- 2 Select More (1/2) > Power Meter > Optical Power Meter. The Optical Power Meter screen appears.

Setting measurement parameters

Procedure

- 1 Press the MEASURE SETUP hot key.
- 2 To select your desired wavelength for testing, do one of the following:

To let your instrument detect the wavelength automatically, toggle the **Wavelength** soft key and select **Auto**.

To select a wavelength from the wavelength list, complete the following steps:

- a Toggle the Wavelength soft key and select Manual.
- b Press the **Stdwave** soft key. The wavelength list box appears.
- c Select the wavelength you want from the list, and then tap the Apply button.
- 3 Optional. To edit the wavelength list, complete the following steps:
 - Press the Stored Wavelength soft key.
 The Stored Wavelength dialog box appears.
 - b Do the following:

To add a new wavelength, enter a value between 780 and 1650 in the input box, and then tap the **Add** button.

To edit an existing wavelength, highlight a wavelength in the list, enter a new value between 780 and 1650 in the input box, and then tap the **Edit** button.

To delete an existing wavelength from the list, highlight a wavelength in the list, and then tap the **Delete** button.

c Tap the **Apply** button to save your changes.

Making a power measurement

- After setting the parameters, read the absolute measurement value in dBm on the screen. Figure 422 is an example of the measurement screen. To view a relative power, see "Reading a relative power" on page 721.
- 2 To view the result in mW, complete the following steps:
 - Press the AMP/SCALE hard key.
 - **b** Press the **Units** soft key, and then select **mW**.
- 3 To set a threshold and view the result with Pass/Fail indication, complete the following steps:
 - Press the LIMIT hot key.
 - b Toggle the Threshold soft key between On and Off to enable or disable the Pass/Fail indication.
 - c Press the Threshold soft key, and then enter a value.
 - d Press the dBm unit soft key.
 - e Toggle the Alarm soft key between On and Off to enable or disable alarming.
- 4 Optional. Go to **SAVE/LOAD** > **Save**, and then select the save option from the choices available for your measurement mode. See "Using save" on page 34 for more information.

Figure 422 optical power measurement

NOTE

If the Wavelength is set to Auto, it displays "Auto" for the modulation frequency. It it is set to Manual, the instrument displays a detected modulation frequency.

Reading a relative power

To view a relative power in dB, you can set a reference value automatically or manually.

Procedure

- Press the AMP/SCALE hard key.
- 2 Toggle the **Display** soft key and select **Relative**.
- 3 Do one of the following:

To let the instrument set the last measurement as a reference, complete the following steps:

- a Toggle the Relative Reference soft key and select Last.
- b Press the Reference Last soft key.

NOTE

To set or release reference, you can also press and hold the physical round button on the connected MP-series power meter for a few seconds until you hear a beep.

To set the reference manually, complete the following steps:

- Toggle the Relative Reference soft key and select Manual.
- b Press the Reference Manual soft key.
- Enter a value manually as you desire, and then press the Enter soft key.

Holding a measurement

- 1 To hold the measurement, press the HOLD hard key. Measurement is paused and the text "Hold" appears.
- 2 To resume the measurement, press the **HOLD** hard key again. Measurement is resumed and the text "**Hold**" disappears.

Chapter 20 Performing Fiber Inspection

This chapter provides instructions for using the fiber testing function with a P5000i fiberscope. Topics discussed in this chapter are as follows:

	Introduction	723
	Display overview	723
-	Connecting a fiber microscope	723
-	Selecting measurement mode	724
-	Configuring test parameters	724
	Performing fiber inspection	725

Introduction

Inspection of fiber optic connections is essential for the optimal performance and longevity of fiber optic connectivity. Throughout their lives, fiber connectors must be inspected, analyzed, and cleaned to maintain an acceptable level of functionality. The JD700B series makes it fast and easy to troubleshoot and certify that every connection at a cell site is optimized for a lifetime of performance.

The JD700B series supports the handheld fiber microscope P5000i that can capture video images from the sensor and analyzes the images for fiber end face defects and contamination with reliable PASS/FAIL results to guarantee the performance of your optical connections.

Display overview

Figure 423 provides descriptions for each segment of the measurement screen.

System settings, global positioning information, and indicators

Measurement mode

Test settings

Model P5000 Profile MM (IIC-61300-3-35)
Serial Number (1-2.0.1049 Profile Standard Tigs (with BAF1))

Fall Cone A Cone D Coverlay Screen menus

Magnification

Measurement results

Figure 423 Fiber inspection screen

Connecting a fiber microscope

Connecting an optional fiber microscope P5000i is mandatory for fiber inspection and analysis. See "JD700B Series Common Options" on page 768 for available options.

Procedure

1 Connect your fiber microscope P5000i to the USB Host port of the JD700B series. The instrument detects the connected microscope automatically and displays the icon.

Selecting measurement mode

Procedure

- 1 Press the **MODE** hard key.
- 2 Select More (1/2) > Fiber Inspection.

Configuring test parameters

Selecting profile and tip

You can select analysis profiles and inspection tips from the list.

Procedure

- 1 Press the MEASURE SETUP hot key.
- 2 Press the Profile & Tip soft key. The profile and tip pane appears.
- 3 To select one of the pre-configured analysis profiles that match the PASS/FAIL criteria in the IEC visual inspection standard, complete the following steps:
 - Tap the drop-down list button for the Profile.
 - **b** Select the profile that you want to use, from the following choices:

MM (IEC-61300-3-35)

Ribbon, MM (IEC-61300-3-35)

Ribbon, SM APC (IEC-61300-3-35)

SM APC (IEC-61300-3-35)

SM PC (IEC-61300-3-35)

SM UPC (IEC-61300-3-35)

NOTE

All of the profiles are factory set and cannot be edited or removed.

- 4 To select the inspection tip (optical settings) that you want to use, complete the following steps:
 - Tap the drop-down list button for the **Tip**.
 - **b** Select one of the tips available to your selected profile, from the following choices:

Standard Tips (with BAP1) and Simplex Long Reach (-L) Tips

Ribbon Tips and Ribbon Tips - Long Reach

NOTE

This setting allows you to select the best optical settings for the type of inspection tip that is attached to your microscope probe.

5 Tap the **Apply** button or press the **Apply** soft key to save and return to the previous state.

Setting preferences

You can set your preferences of auto center and QuickCapture button function. The QuickCapture button is the small grey round button on the side of the microscope.

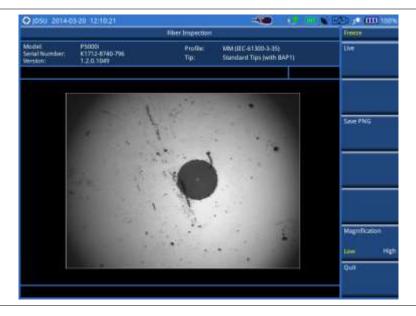
Procedure

1 To set the function of the QuickCapture button on the side of the P5000i, toggle the **Test Button**

soft key and select the option from the following choices:

Test: Sets the capture button to function as Test. Pressing the Quickcapture button analyzes fiber image as like the **Test** soft key on your JD700B series.

Freeze: Sets the capture button to function as Freeze. Pressing the Quickcapture button captures fiber image as like the **Freeze** soft key on your JD700B series.


2 To turn the auto center feature on or off, toggle the Auto Center soft key between On and Off and select the option you want to set. Default setting is On. It automatically displays the center of the fiber when viewing at high magnification.

Performing fiber inspection

Capturing fiber image

- 1 Connect the fiber to be inspected to the tip of your microscope P5000i. The live image of the fiber is displayed on the screen. See the user manual of your fiber microscope for details on using the P5000i.
- 2 Focus the image by rotating the Focus Control on the P5000i until the image is in focus.
- Toggle the Magnification soft key between Low and High and select the option you want to use. You can also press the Magnification Control button on either side of the P5000i.
- 4 Press the **Freeze** soft key to capture the properly focused image. The text "Capturing..." appears. See Figure 424 for an example of captured image.
- 5 Optional. To save the captured image as a file (.png), complete the following steps:
 - a Tap the **Save PNG** soft key. The Save window appears with the on-screen key.
 - b Type a file name in the File Name field.
 - c Select a folder where you want to save the file, if desired.
 - d Press the Save soft key.
- 6 Press the Live soft key to return to the live image screen or press the Quit soft key to exit.

Figure 424 Captured fiber image

Testing a fiber

- 1 Connect the fiber to be inspected to the tip of your microscope P5000i. The live image of the fiber is displayed on the screen. See the user manual of your fiber microscope for details on using the P5000i.
- 2 Focus the image by rotating the Focus Control on the P5000i until the image is in focus.
- Toggle the Magnification soft key between Low and High and select the option you want to use. You can also press the Magnification Control button on either side of the P5000i.
- 4 Press the **Test** soft key to start fiber analysis.
 The text "Analyzing..." appears. See Figure 425 for an example of fiber analysis results.
- 5 Once the test is completed, check the result displayed on the screen with the following information:
 - Image overlay of the zone locations, defects, and scratches
 - PASS or FAIL result
 - Specific test result for each zone
- **6** To show or hide image overlays, press the **Overlay** soft key. Each time this key is pressed, the selection changes.
- **7** Optional. To save the fiber inspection result with specific details as a report (.pdf), complete the following steps:
 - Tap the Save PDF soft key. The Save window appears with the on-screen key.
 - **b** Type a file name in the **File Name** field.
 - c Select a folder where you want to save the file, if desired.
 - d Press the Save soft key.
 The information input window appears.
 - e Type in information as required.
 - f Tap the **Apply** button or press the **Apply** soft key to save and return to the previous state. See Figure 426 for an example of generated report.
- 8 Press the Live soft key to return to the live image screen or press the Quit soft key to exit the fiber inspection.

Figure 425 Analyzed fiber image and fiber inspection result

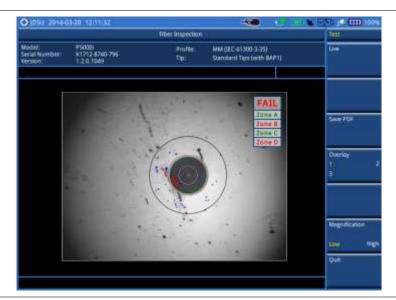


Figure 426 Fiber inspection report

Chapter 21 Using EMF Analyzer

This chapter provides instructions for using the EMF Analyzer function (option 050). Topics discussed in this chapter are as follows:

Introduction	.729
Display overview	.729
Connecting an isotropic antenna	.729
Selecting measurement mode	.730
Configuring test parameters	.730
Conducting EMF spectrum measurements	.734
Recording and replaying EMF logging data	.736

Introduction

Base stations emit electro-magnetic fields (EMF) of high frequency, which varies between wireless technologies and countries. As personal exposure to high frequency fields from base stations can provoke health effect, the International Commission on Non-Ionizing Radiation Protection (ICNIRP) has provided general guidelines on limitations regarding high frequency exposure. Using the EMF Analyzer in JD700B series with an isotropic antenna connected, you can now measure the level of EMF onsite in the field in order to verify if the level of emission from of your base station is compliant with the guidelines.

The JD700B series is the solution to perform following measurement and analysis:

- EMF Spectrum
- EMF Replayer

Display overview

Figure 427 provides overview of each segment of the measurement screen.

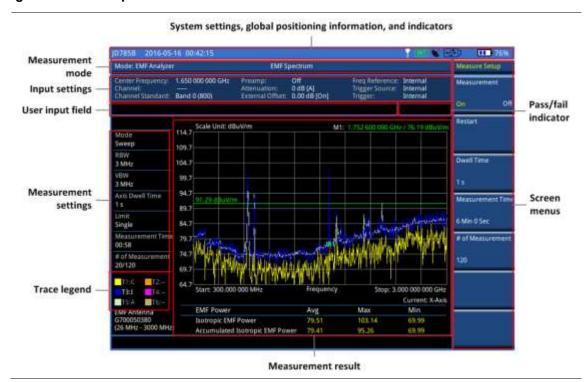


Figure 427 EMF Spectrum measurement screen

Connecting an isotropic antenna

In the EMF Analyzer mode, connecting an isotropic antenna is mandatory and the part number is G700050380. Using this isotropic antenna, you can make three-dimensional measurements.

- 1 Connect the RF Type-N connector of the isotropic antenna to the RF In port of the instrument.
- 2 Connect the USB plug of the isotropic antenna to the USB Host port of the JD700B series. The device icon appears in the system status bar on the screen.

Figure 428 Connection using an isotropic antenna

CAUTION

The maximum power for the **Spectrum Analyzer RF In** port is +25 dBm (0.316 W) for JD780B series and +20 dBm (0.1 W) for JD740B series.

Selecting measurement mode

Procedure

- 1 Press the MODE hard key.
- 2 Press the More (1/2) soft key and then the EMF Analyzer soft key. This menu is activated only after you have not installed the license on your CellAdvisor.
- 3 Press the MEASURE hot key, and then select the measurement mode from the following choices:

EMF Spectrum

EMF Replayer

Configuring test parameters

Setting frequency

You need to set the frequency range to be measured with either the center frequency/span or the start/stop frequencies. You can also set the frequency with the channel number and span.

Procedure

To set the center frequency and span:

- 1 Press the FREQ/DIST hard key.
- 2 Toggle the Unit soft key and select Freq.
- 3 To set the center frequency, complete the following steps:
 - Press the Center Frequency soft key.

- **b** Enter a value by using the numeric keys. You can also use the rotary knob or the arrow keys.
- Select the unit from the choices: GHz, MHz, kHz, and Hz.
- **4** To set the span frequency, complete the following steps:
 - Press the Span soft key.
 - **b** Enter a value by using the numeric keys. You can also use the rotary knob or the arrow keys.
 - c Select the unit from the choices: GHz, MHz, kHz, and Hz.

To set the start and stop frequencies:

- 1 Press the FREQ/DIST hard key.
- 2 Toggle the Unit soft key and select Freq.
- 3 To set the start frequency, complete the following steps:
 - Press the Start Frequency soft key.
 - **b** Enter a value by using the numeric keys. You can also use the rotary knob or the arrow keys.
 - Select the unit from the choices: GHz, MHz, kHz, and Hz.
- **4** To set the stop frequency, complete the following steps:
 - Press the Stop Frequency soft key.
 - **b** Enter a value by using the numeric keys. You can also use the rotary knob or the arrow keys.
 - Select the unit from the choices: GHz, MHz, kHz, and Hz.
- **5** Optional. To define the amount of frequency increment for the rotary knob:
 - a Press the Frequency Step soft key, if the Freq is selected.
 - **b** Enter a value by using the numeric keys.
 - Press the unit: GHz, MHz, kHz, or Hz.

To set the channel number and span:

- 1 Press the FREQ/DIST hard key.
- 2 Toggle the Unit soft key and select Channel.
- 3 To select the standard channel, complete the following steps:
 - Press the Channel Std soft key. The standard channel window appears.
 See "Appendix C Band, frequency & channel standard" on page 745 for more information.
 - b Highlight the band to be measured by using the rotary knob, the arrow keys, or the Page Up/Page Down soft keys.
 - Press the Select soft key or the rotary knob to confirm the selection.
- 4 Toggle the Link soft key to select the sweep direction and select Fwd (forward) or Rev (reverse) as you desire.
- 5 To set the channel number, complete the following steps:
 - Press the Channel Number soft key.
 - **b** Enter a value by using the numeric keys.
 - Press the Enter soft key or ENTER hard key to complete the entry. The instrument automatically displays the corresponding center frequency value for the selected channel number.
- **6** To set the span frequency, complete the following steps:
 - Press the Span soft key.
 - **b** Enter a value by using the numeric keys. You can also use the rotary knob or the arrow keys.
 - Select the unit from the choices: GHz, MHz, kHz, and Hz.
- **7** Optional. To define the amount of channel increment for the rotary knob:
 - a Press the Channel Step soft key, if the Channel is selected.
 - **b** Enter a value by using the numeric keys.
 - c Press the Enter soft key.

Setting amplitude

Reference level and attenuation

You can set the reference and attenuation levels automatically or manually to optimize the display of the traces measured, as you desire.

Procedure

To automatically set the reference and attenuation level:

- 1 Press the AMP/SCALE hard key.
- 2 Press the Auto Scale soft key. Each time you press this key, both of the Y-axis scale and input attenuation level change to be optimized with some margin.

To set the reference or attenuation level manually:

- 1 Press the AMP/SCALE hard key.
- 2 To set the maximum reference level on the Y-axis manually, complete the following steps:
 - a Press the Reference Level soft key.
 - **b** Enter a value by using the numeric keys or the rotary knob.
 - Press your desired unit soft key from the available choices, which vary depending on your selection of the unit in the **Units** setting.
- 3 To set the input attenuation level, select one from the following choices:

To set the input attenuator's level automatically, select **Attenuation > Auto**.

NOTE

It is recommended that you set the **Attenuation** to **Auto** in most situations so that the level of the input attenuator can be set automatically according to your input signal level.

To set the input attenuation manually up to 55 dB for JD780B series or 50 dB for JD740B series to optimize S/N, complete the following steps:

- a Select Attenuation > Manual.
- **b** Press the **Attenuation Value** soft key to set the level.
- Enter a value in fives by using the numeric keys.
- d Press the dB soft key or the ENTER hard key.

To change the scale unit:

- 1 Select More (1/2) > Units.
- Select the unit of the display scale: dBμV/m, dBmV/m, dBV/m, V/m, Watt/m², dBm/m², dBW/m², A/m, dBA/m, and Watt/cm².

The scale unit on the screen changes accordingly.

Pre-amplifier

You can turn on the internal pre-amplifier to correct and compensate for the gain of the preamplifier so that amplitude readings show the values at the input connector.

Procedure

- 1 Press the AMP/SCALE hard key.
- 2 Toggle the **Preamp** soft key and select **On** or **Off** as needed.

NOTE

You can turn on the Preamp when the input attenuation range is from 0 dB to 10 dB. If the attenuation value is manually set to greater than 10 dB, the instrument will automatically turn off the pre-amplifier to display low-level signal properly on the chart.

External offset

You can turn on the External Offset and manually set the external offset value.

Procedure

To set the external offset:

- 1 Press the AMP/SCALE hard key.
- 2 Toggle the External Offset soft key and select On.
- 3 Enter a value by using the numeric keys.
- 4 Press the dB soft key to complete the entry.

To turn the external offset off:

- 1 Press the AMP/SCALE hard key.
- 2 Toggle the External Offset soft key and select Off.

Scale per division

You can use the **Scale/Div** feature available for the spectrum measurement screen. It represents the value of one division on the horizontal scale. The default setting is 10 dB per division and the maximum value can be set up to 20 dB.

Procedure

To set the scale per division:

- 1 Press the AMP/SCALE hard key.
- 2 Select More (1/2) > Scale/Div.
- 3 Enter a value between 1 and 20 by using the numeric keys.
- 4 Press the dB soft key to complete the entry.

Setting bandwidth

You can set the Resolution Bandwidth (RBW) and Video Bandwidth (VBW) manually or automatically. Selecting **Auto** changes the value to correspond to your frequency span setting for RBW and VBW.

Procedure

To automatically set the RBW and VBW:

- 1 Press the BW/AVG hard key.
- 2 Toggle the RBW soft key and select Auto.
- 3 Toggle the VBW soft key and select Auto. The RBW or VBW value on the screen changes accordingly based on the span.

To manually set the RBW or VBW:

- 1 Press the BW/AVG hard key.
- 2 Press the RBW soft key.
- 3 Enter a value in 1-3 sequence by using the numeric keys.
- 4 Select the unit from the choices: MHz, kHz, and Hz. The RBW setting automatically changes to Manual.
- 5 Press the VBW soft key.
- 6 Enter a value by using the numeric keys.
- 7 Select the unit from the choices: MHz, kHz, and Hz. The VBW setting automatically changes to Manual.

The RBW or VBW value on the screen changes accordingly.

Conducting EMF spectrum measurements

After you have configured test parameters as described in the "Configuring test parameters" on page 730, you can start your EMF measurements. If you log your measurement, you can play back using the EMF Replayer. For more information on saving logging data, see "Logging EMF spectrum data" on page 736.

Procedure

- 1 Press the MEASURE SETUP hot key.
- 2 To specify the amount of measurement time that you want the instrument to stay for on each axis:
 - a Press the Dwell Time soft key.
 - **b** Enter a value in seconds between one and 60.
 - Press the unit soft key or the ENTER hard key.
- To specify the amount of measurement time that you want the instrument to stay for on all three axes in order to display current and accumulated EMF power:
 - a Press the Measurement Time soft key.
 - **b** Enter a value in minutes or in seconds. You can set this up to 30 minutes.
 - Select the unit from the choices: Minute and Second.

NOTE

The Isotropic EMF Power is the current or the latest average power measured with three axes for the specified dwell time for the axis while the Accumulated Isotropic EMF Power is the average, maximum, and minimum power taken from the number (n) times of measurements.

- **4** To specify the number of EMF measurements that you want to make:
 - a Press the # of Measurement soft key.
 - **b** Enter a value. Depending on your settings for Dwell Time and Measurement Time, you can set this up to 600.
 - c Press the Enter soft key or the ENTER hard key.

NOTE

The dwell time, measurement time, and number of measurement are correlated based on the equation of "# of Measurement = Measurement Time / (Dwell Time x 3)". For example, if you set the Dwell Time to 60 seconds and the Measurement Time to 30 minutes, you can enter "10" for the # of Measurement".

- 5 To start the measurement, toggle the **Measurement** soft key and select **On**. The instrument displays measurement results on the screen. Figure 429 is an example.
- 6 To hold the display, press the **HOLD** hot key.
- 7 To release the display, press the HOLD hot key again.
- 8 To stop the measurement, toggle the **Measurement** soft key and select **Off**.
- 9 To clear current display and start new measurement, press the Restart soft key.

Figure 429 EMF spectrum measurement with EMF analyzer

Setting trace

You can display up to six traces on the measurement chart simultaneously.

Procedure

- Press the TRACE/DISPLAY hard key.
- 2 Press the Select Trace soft key, and then select the trace number from the following choices:
 - T1: Current EMF Trace
 - T2: EMF Trace of X-axis
 - T3: Isotropic EMF Trace
 - T4: EMF Trace of Y-axis
 - T5: Accumulated Isotropic EMF Trace
 - T6: EMF Trace of Z-axis

The legend shape of the selected trace changes from square to round to indicate that the trace is the active one now.

3 Toggle the Trace View soft key to On to show the selected trace on the display or to Off to hide it from the display.

Setting limit

You can set three different limits to analyze the results, as you desire.

Procedure

To set the display line:

- 1 Press the *LIMIT* hot key.
- 2 Toggle the Display Line soft key to On. The straight horizontal line appears to be used as a visual reference only.
- 3 Press the Display Line soft key, and then enter a value that you want to set as a reference.
- 4 Select your desired unit soft key from the available choices, which vary depending on your selection of the unit in the **Units** setting in Amp/Scale.

To set the multiple segment line:

- 1 Press the LIMIT hot key.
- 2 Press the Multi Segment Line soft key for Pass/Fail indication.
- 3 Toggle the Limit soft key between Upper and Lower to select the one to be displayed.
- 4 Set the number of segments for the selected upper or lower limit line, up to 50 segments.
 - a Press the # of Line soft key.
 - **b** Enter a value between 1 and 50 by using the numeric keys.
 - c Press the Enter soft key.
- 5 Press the **Autoset** soft key to let the instrument set the limit for each segment and display the line.
- **6** Optional. To move the limit line, complete the following steps:
 - a Select Limit Up/Down or Limit Left/Right.
 - b Turn the rotary knob to move the line as desired. You can also manually enter a value.
- **7** Optional. To edit the segment properties, complete the following steps:
 - a Press the Edit Limit soft key.
 - **b** Press the **Move** soft key and then turn the rotary knob to select the segment to edit.
 - **c** Select the menu option, from the following choices:

To hide the line for the selected segment, toggle the Line soft key and select Off.

To add a new point, press the Add Point soft key.

To delete the selected point, press the **Delete Point** soft key.

To change the position, press the **Frequency** or **Amplitude** soft key, and then turn the rotary knob to change the value as desired.

8 Optional. Go to SAVE/LOAD > Save, and then select Limit to save the limit settings. See "Using save" on page 34 for more information.

To set the ICNIRP limit:

- 1 Press the *LIMIT* hot key.
- 2 Toggle the ICNIRP Limit soft key to **On** to show a reference line for the set span frequency range based on the ICNIRP guidelines or to **Off** to hide the line from the display.

Recording and replaying EMF logging data

Logging EMF spectrum data

You can record EMF spectrum measurement as a logging file in <code>.grr</code> file type so that you can play it back in the spectrogram chart view for data analysis.

Procedure

- 1 Press the SAVE/LOAD hot key.
- 2 Select the Save soft key.
- 3 Select the **Save Logging Data** soft key. The on-screen keyboard appears.
- 4 Type the name of the file in the File Name field.

NOTE

In is recommended that you use an external USB memory drive to save logging data in order to have enough free space.

- 5 Press the Save soft key to start logging. The "Recording" appears on the screen.
- 6 Press the ESC hard key to stop logging data and complete saving.

Replaying EMF spectrum data

If you have recorded logging data in the EMF Spectrum mode, you can load the saved data in the EMF Replayer mode and view them in the spectrogram chart for your analysis.

Loading a saved logging file

Procedure

- 1 In the EMF Analyzer mode, press the **MEASURE** hot key.
- 2 Press the EMF Replayer soft key. The file explorer window appears.
- 3 Navigate to the .grr file that you have saved in the EMF Spectrum mode.

NOTE

In the File Information pane, you can find the properties of the file that you want to open. If the selected logging data have been saved in a measurement mode other than EMF Spectrum, the instrument will display an error message at the bottom of the window.

4 Press the **Load** soft key.

The EMF Replayer window appears with the upper spectrogram chart and the lower spectrum chart. The spectrum chart displays two traces: isotropic trace and isotropic average trace.

Changing play options

Procedure

- 1 Press the **MEASURE** hot key.
- 2 Toggle the Replay Direction soft key between FWD and REV to change play direction to forward or reverse.
- 3 Press the Replay Speed soft key, and then select the speed option: x1, x2, x3, and x4.
- 4 Press the Play soft key to start playing the recorded logging data.
- **5** Press the **Pause** soft key to pause or stop playing the recorded logging data.
- 6 To move to a particular failure position directly and play from there, complete the following steps:
 - Press the Jump to Fail Index soft key.
 - **b** Enter a value by using the numeric keys.
 - c Press the Enter soft key.

NOTE

If you connected a USB drive, do not remove it while playing. Doing so may freeze the USB port, which will require you to restart the instrument to get a USB drive recognized again.

Changing amplitude settings

You can change the reference level, scale per division, and units to optimize the display of the recorded data while replaying, as you desire.

- 1 Press the AMP/SCALE hard key.
- 2 To set the maximum reference level on the Y-axis, complete the following steps:
 - Press the Reference Level soft key.
 - **b** Enter a value by using the numeric keys or the rotary knob with 10 dB increments.
 - Press your desired unit soft key from the choices, which vary depending on your selection of the unit in the **Units** setting.

3 To change the scale unit, select **Units** and then select the unit of the display scale from the choices: dBμV/m, dBmV/m, dBV/m, V/m, Watt/m^2, dBm/m^2, dBW/m^2, A/m, dBA/m, and Watt/cm^2.

The scale unit on the screen changes accordingly.

Topics discussed in this chapter are as follows:

	Appendix A – Product general information	.740
	Appendix B – Cable list	.744
-	Appendix C – Band, frequency & channel standard	.745
-	Appendix D – VSWR-Return loss conversion table	.748
-	Appendix E – Cyclic prefix table	.749
-	Appendix F – Motorola CDMA/EV-DO LMF	.750
-	Appendix G – Bluetooth connection	.752
-	Appendix H – Device driver installation	.755
-	Appendix I – Ordering information	.756
-	Appendix J – RoHS information	.771
-	Appendix K – On-screen keyboard	.773
	Appendix L – Supported map display parameters	.776

Appendix A – Product general information

JD780B series

	JD785B/JD786B	JD788B	Supplemental Information
Inputs and Outputs			
RF In Connector Impedance Damage Level	Type-N female 50 Ω >+33 dBm, ±50 V DC	Type-N female 50 Ω >+33 dBm, ±50 V DC	Spectrum Analyzer Nominal Nominal
Reflection/RF Out Connector Impedance Damage Level RF In Connector Impedance Damage Level External Trigger, GPS	Type-N female 50 Ω >+40 dBm, ± 50 V DC Type-N female 50 Ω >+25 dBm, ± 50 V DC	Type-N female 50 Ω >+40 dBm, ±50 V DC N/A N/A N/A	Cable and Antenna Analyzer Nominal Cable and Antenna Analyzer Nominal Nominal
Connector Impedance	SMA female 50 Ω	SMA female 50 Ω	Nominal
External Ref Connector Impedance Input Frequency Input Range	SMA female 50 Ω 10, 13, 15 MHz -5 to +5 dBm	SMA female 50 Ω 10, 13, 15 MHz -5 to +5 dBm	Nominal
USB Host USB Client	Type A, 1 port Type B, 1 port	Type A, 1 port Type B, 1 port	
LAN	RJ45, 10/100 Base-T	RJ45, 10/100 Base-T	
SFP/SFP+	MSA compliant	MSA compliant	In optical hardware option
Audio Jack	3.5 mm headphone jack	3.5 mm headphone jack	
External Power	5.5 mm barrel connector	5.5 mm barrel connector	
Speaker	Built-in speaker	Built-in speaker	
Display			
Туре	Resistive touch screen	Resistive touch screen	
Size	8"	8"	LCD backlight, transflective LCD
Resolution	800 x 600	800 x 600	with anti-glare coating

	JD785B/JD786B	JD788B	Supplemental Information	
Power				
External DC Input Power Consumption	18 V DC 42 W	18 V DC 42 W	54 W maximum when charging battery	
Battery				
Operating Time Charge Time Storage Temperature	10.8 V, 7800 mA-h > 3 hours (Typical) 2.5 hours (80 %) 5 hours (100 %) 0 to 25°C (32 to 77°F)	10.8 V, 7800 mA-h > 3 hours (Typical) 2.5 hours (80 %) 5 hours (100 %) 0 to 25°C (32 to 77°F)	Lithium Ion In balance mode In case of a fully discharged battery The battery pack should be stored in an environment with low humidity. Extended exposure to temperature above 45°C could degrade battery	
			performance and life.	
D				
Data Storage Internal	Maximum 500 MB	Maximum 500 MB		
External	Limited to the size of USB flash drive	Limited to the size of USB flash drive	Supports USB 2.0 compatible memory devices	
Environmental				
Operating Temperature				
AC Power	0 to 40°C	0 to 40°C	With no derating	
Battery	(32 to 104°F) 0 to 40°C (32 to 104°F)	(32 to 104°F) 0 to 40°C (32 to 104°F)	At charging	
	-10 to 55 °C	-10 to 55 °C	At discharging	
Maximum Humidity	(14 to 131 °F) 95% RH	(14 to 131 °F) 95% RH	Non-condensing	
Shock and Vibration	MIL-PRF-28800F Class 2	MIL-PRF-28800F Class 2	Non-condensing	
Storage Temperature	-30 to 71°C (-22 to 160°F)	-30 to 71°C (-22 to 160°F)	With the battery pack removed	
EMC				
	EN 61326-1:2013 CISPR11:2009 Class A	EN 61326-1:2013 CISPR11:2009 Class A	Complies with European EMC	
Safety	EN 64040 4 2040	EN 64040 4 2040	Consultance the Fr. 1975	
	EN 61010-1:2010 UL 61010-1:2012 & CAN/CSA C22.2 No. 61010-1-12	EN 61010-1:2010 UL 61010-4:2012 & CAN/CSA C22.2 No. 61010-1-12	Complies with European LVD Complies with TUV NRTL	
Size and Weight (Standard				
Weight	<4.6 kg (10.1 lb.)	<4.2 kg (9.3 lb.)	With battery	
Size	295 x 195 x 82 (mm) 11.6 x 7.7 x 3.2 (Inch)	295 x 195 x 82 (mm) 11.6 x 7.7 x 3.2 (Inch)	Approximately (W x H x D)	
Warranty				
	3 years	3 years		
Calibration Cycle				
	1 year	1 year		

JD740B series

	JD745B/JD746B	JD748B	Supplemental Information			
Inputs and Outputs						
RF In Connector Impedance Damage Level	Type-N female 50 Ω >+40 dBm, ±50 V DC	Type-N female 50 Ω >+40 dBm, ±50 V DC	Spectrum Analyzer Nominal Nominal			
Reflection/RF Out Connector Impedance Damage Level RF In Connector Impedance Damage Level	Type-N female 50Ω >+37 dBm, $\pm 50 \text{ V DC}$ Type-N female 50Ω >+25 dBm, $\pm 50 \text{ V DC}$	Type-N female 50 Ω >+37 dBm, ±50 V DC N/A N/A N/A	Cable and Antenna Analyzer Nominal Cable and Antenna Analyzer Nominal Nominal			
External Trigger, GPS Connector Impedance	SMA female 50 Ω	SMA female 50 Ω	Nominal			
External Ref Connector Impedance Input Frequency Input Range	SMA female 50 Ω 10, 13, 15 MHz -5 to +5 dBm	SMA female 50 Ω 10, 13, 15 MHz -5 to +5 dBm	Nominal			
USB USB Host USB Client	Type A, 1 port Type B, 1 port	Type A, 1 port Type B, 1 port				
LAN	RJ45, 10/100 Base-T	RJ45, 10/100 Base-T				
SFP/SFP+	MSA compliant	MSA compliant	In optical hardware option			
Audio Jack	3.5 mm headphone jack	3.5 mm headphone jack				
External Power	5.5 mm barrel connector	5.5 mm barrel connector				
Speaker	Built-in speaker	Built-in speaker				
Туре	Resistive touch	Resistive touch				
Size	screen 8"	screen 8"	LCD backlight, transflective LCD			
Resolution	800 x 600	800 x 600	with anti-glare coating			

	JD745B/JD746B	JD748B	Supplemental Information		
Power					
External DC Input Power Consumption	18 V DC 42 W	18 V DC 42 W	54 W maximum when charging battery		
Battery					
Operating Time Charge Time Storage Temperature	10.8 V, 7800 mA-h > 3 hours (Typical) 2.5 hours (80 %) 5 hours (100 %) 0 to 25°C (32 to 77°F)	10.8 V, 7800 mA-h > 3 hours (Typical) 2.5 hours (80 %) 5 hours (100 %) 0 to 25°C (32 to 77°F)	Lithium Ion In balance mode In case of a fully discharged battery The battery pack should be stored in an environment with low humidity. Extended exposure to temperature above 45°C could degrade battery performance and life.		
Data Storage					
Internal External	Maximum 500 MB Limited to the size of USB flash drive	Maximum 500 MB Limited to the size of USB flash drive	Supports USB 2.0 compatible memory devices		
Environmental					
Operating Temperature AC Power Battery Maximum Humidity Shock and Vibration Storage Temperature	0 to 40°C (32 to 104°F) 0 to 40°C (32 to 104°F) -10 to 55 °C (14 to 131°F) 95% RH MIL-PRF-28800F Class 2 -30 to 71°C (-22 to 160°F)	0 to 40°C (32 to 104°F) 0 to 40°C (32 to 104°F) -10 to 55 °C (14 to 131°F) 95% RH MIL-PRF-28800F Class 2 -30 to 71°C (-22 to 160°F)	With no derating At charging At discharging Non-condensing With the battery pack removed		
EMC					
	IEC/EN 61326-1:2013 CISPR11:2009 Class A	IEC/EN 61326-1:2013 CISPR11:2009 Class A	Complies with European EMC		
Safety	EN 64040 4 5515	EN 64040 4 5545			
	EN 61010-1:2010 UL 61010-1:2012 & CAN/CSA C22.2 No. 61010-1-12	EN 61010-1:2010 UL 61010-4:2012 & CAN/CSA C22.2 No. 61010-1-12	Complies with European LVD Complies with TUV NRTL		
Size and Weight (Standard					
Weight	<4.17 kg (9.19 lb.)	<3.77 kg (8.31 lb.)	With battery		
Size	295 x 195 x 82 (mm) 11.6 x 7.7 x 3.2 (Inch)	295 x 195 x 82 (mm) 11.6 x 7.7 x 3.2 (Inch)	Approximately (W x H x D)		
Warranty					
	3 years	3 years			
Calibration Cycle					
	1 year	1 year			

Appendix B – Cable list

Cable Type	Relative Propagation Velocity (V¦)	Nominal Attenuation dB/m @ 1000 MHz
FSJ1-50A	0.84	0.197
FSJ250	0.83	0.134
FSJ4-50B	0.81	0.119
HCC 12-50J	0.915	0.092
HCC 158-50J	0.95	0.023
HCC 300-50J	0.96	0.014
HCC 312-50J	0.96	0.013
HCC 78-50J	0.915	0.042
HF 4-1/8" Cu2Y	0.97	0.01
HF 5" Cu2Y	0.96	0.007
HF 6-1/8"Cu2Y	0.97	0.006
HJ4.5-50	0.92	0.054
HJ4-50	0.914	0.087
HJ5-50		0.042
	0.916	
HJ7-50A	0.921	0.023
LDF12-50	0.88	0.022
LDF4-50A	0.88	0.077
LDF5-50A	0.89	0.043
LDF6-50	0.89	0.032
LDFF7-50A	0.88	0.027
LMR100	0.8	0.792
LMR1200	0.88	0.044
LMR1700	0.89	0.033
LMR200	0.83	0.344
LMR240	0.84	0.262
LMR400	0.85	0.135
LMR500	0.86	0.109
LMR600	0.87	0.087
LMR900	0.87	0.056
RG142	0.69	0.443
RG17, 17A	0.659	0.18
RG174	0.66	0.984
RG178B	0.69	1.509
RG187, 188	0.69	1.017
RG213/U	0.66	0.292
RG214	0.659	0.292
RG223	0.659	0.165
RG55, 55A, 55B	0.659	0.541
RG58, 58B	0.659	1.574
RG58A, 58C	0.659	0.787
RG8, 8A, 10, 10A	0.659	0.262
RG9, 9A	0.659	0.289
HFSC-12D(1/2")	0.81	0.112
HFC-12D(1/2")	0.88	0.072
HFC-22D(7/8")	0.88	0.041
HFC-33D(1_1/4")	0.88	0.0294
HFC-42D(1_5/8")	0.87	0.0243
RFCX-12D(1/2")	0.88	0.088
RFCX-22D(7/8")	0.88	0.049
RFCX-33D(1_1/4")	0.88	0.038
RFCX-42D(1_5/8")	0.87	0.028
RFCL-22D(7/8")	0.88	0.044
RFCL-33D(1_1/4")	0.88	0.034
RFCL-42D(1_5/8")	0.87	0.0315

Appendix C – Band, frequency & channel standard

	Uplink			Downlink			
Standard	Start Freq (MHz)	Stop Freq (MHz)	Valid Channels	Start Freq (MHz)	Stop Freq (MHz)	Valid Channels	
GSM							
GSM 450	450.40	457.60	259≤n≤293	460.40	467.60	259≤n≤293	
GSM 480	478.80	486.00	306≤n≤340	488.80	496.00	306≤n≤340	
GSM 850	824.00	849.00	128≤n≤251	869.00	894.00	128≤n≤251	
P-GSM 900	890.00	915.00	1≤n≤124	935.00	960.00	1≤n≤124	
1 23111 300	050.00	313.00	0≤n≤124	333.00	300.00	0≤n≤124	
E-GSM 900	880.00	915.00	975≤n≤1023	925.00	960.00	975≤n≤1023	
			0≤n≤124			0≤n≤124	
R-GSM 900	876.00	915.00	955≤n≤1023	921.00	960.00	955≤n≤1023	
R-GSM 900 (China)	885.00	889.00	999≤n≤1019	930.00	934.00	999≤n≤1019	
DCS 1800							
	1710.00	1785.00	512≤n≤885	1805.00	1880.00	512≤n≤885	
PCS 1900	1850.00	1910.00	512≤n≤810	1930.00	1990.00	512≤n≤810	
CDMA	1	I	4 4 4700	I	I	4 4 4 700	
Band 0 (800)	824.00	849.00	1≤n≤799	869.00	894.00	1≤n≤799	
<u> </u>			991≤n≤1023			991≤n≤1023	
Band 1 (NA PCS)	1850.00	1910.00	0≤n≤1199	1930.00	1990.00	0≤n≤1199	
Band 2 (TACS)	872.0125	914.9875	0≤n≤1000	917.0125	959.9875	0≤n≤1000	
build 2 (IACS)	072.0123	314.3073	1329≤n≤2047	317.0123	333.3073	1329≤n≤2047	
			1≤n≤799			1≤n≤799	
Donal 2 (ITACC)	007.0135	024 0075	801≤n≤1039	022.0425	0.00 0075	801≤n≤1039	
Band 3 (JTACS)	887.0125	924.9875	1041≤n≤1199	832.0125	869.9875	1041≤n≤1199	
			1201≤n≤1600			1201≤n≤1600	
Band 4 (KR PCS)	1750.00	1780.00	0≤n≤599	1840.00	1870.00	0≤n≤599	
2000 (000 00)			1≤n≤300			1≤n≤300	
			539≤n≤871	-		539≤n≤871	
Band 5 (450)	411.675	483.480	1039≤n≤1473	421.6750	493.4800	1039≤n≤1473	
				-			
Part C (2100)	1020.00	1000.00	1792≤n≤2016	2100.00	2170.00	1792≤n≤2016	
Band 6 (2100)	1920.00	1980.00	0≤n≤1199	2100.00	2170.00	0≤n≤1199	
Band 7 (700)	776.00	794.00	0≤n≤359	746.00	764.00	0≤n≤359	
Band 8 (1800)	1710.00	1784.95	0≤n≤1499	1805.00	1879.95	0≤n≤1499	
Band 9 (900)	880.00	914.95	0≤n≤699	925.00	959.95	0≤n≤699	
Band 10 (2nd 800)	806.000	900.975	0≤n≤719	851.000	939.975	0≤n≤719	
WCDMA			720≤n≤919			720≤n≤919	
Band Global	1						
Band 1 (2100-General)	1920.0	1980.0	9612≤n≤9888	2110.0	2170.0	10562≤n≤10838	
	1920.0	1960.0		2110.0	2170.0		
Band 2 (1900-General)	1850.0	1910.0	9262≤n≤9538	1930.0	1990.0	9662≤n≤9938	
Band 2 (1900-Additional)	47400	4700.0	12≤n≤287	1005.0	1000.0	412≤n≤687	
Band 3 (1800-General)	1710.0	1780.0	937≤n≤1288	1805.0	1880.0	1162≤n≤1513	
Band 4 (1700-General)	1710.0	1775.0	1312≤n≤1513	2110.0	2155.0	1537≤n≤1738	
Band 4 (1700-Additional)			1662≤n≤1862			1887≤n≤2087	
Band 5 (850-General)	824.0	849.0	4132≤n≤4233	869.0	894.0	4357≤n≤4458	
Band 5 (850-Additional)	024.0	045.0	782≤n≤862	003.0	054.0	1007≤n≤1087	
Band 6 (800-General)	920.0	940.0	4162≤n≤4188	975.0	005.0	4387≤n≤4413	
Band 6 (800-Additional)	830.0	840.0	812≤n≤837	875.0	885.0	1037≤n≤1062	
Band 7 (2600-General)	2500.0	2570.0	2012≤n≤2338	2620.0	2500.0	2237≤n≤2563	
Band 7 (2600-Additional)	2500.0	2570.0	2362≤n≤2687	2620.0	2690.0	2587≤n≤2912	
Band 8 (900-General)	880.0	915.0	2712≤n≤2863	925.0	960.0	2937≤n≤3088	
Band 9 (1700-General)	1749.9	1784.9	8762≤n≤8912	1844.9	1879.9	9237≤n≤9387	
Band 10 (1700-General)	17 13.3	1701.5	2887≤n≤3163	1011.5	1075.5	3112≤n≤3388	
Band 10 (1700-Additional)	1710.0	1770.0	3187≤n≤3462	2110.0	2170.0	3412≤n≤3687	
Band 10 (1700-Additional) Band 11 (1500-General)	1427.0	1447.9		1475.0	1405.0	i e	
<u> </u>	1427.9	1447.9	3487≤n≤3562	1475.9	1495.9	3712≤n≤3787	
Band 12 (700-General)	699.0	716.0	3617≤n≤3678	729.0	746.0	3842≤n≤3903	
Band 12 (700-Additional)			3707≤n≤3767			3932≤n≤3992	
Band 13 (700-General)	777.0	787.0	3792≤n≤3818	746.0	756.0	4017≤n≤4043	
Band 13 (700-Additional)			3842≤n≤3867			4067≤n≤4092	
Band 14 (700-General)	788.0	798.0	3892≤n≤3918	758.0	768.0	4117≤n≤4143	
Band 14 (700-Additional)	766.0	736.0	3942≤n≤3967	736.0	708.0	4167≤n≤4192	
Band 19 (800-General)	920.0	945.0	312≤n≤363	975.0	200.0	712≤n≤763	
Band 19 (800-Additional)	830.0	845.0	387≤n≤437	875.0	890.0	787≤n≤837	
Band 20 (800-General)	832.0	862.0	4287≤n≤4413	791.0	821.0	4512≤n≤4638	
Band 21 (1500-General)	1447.9	1462.9	462≤n≤512	1495.9	1510.9	862≤n≤912	

Band 22 (3500-General)	3410.0	3490.0	4437≤n≤4813	3510.0	3590.0	4662≤n≤5038
Band 25 (1900-General)			4887≤n≤5188			5112≤n≤5413
Band 25 (1900-Additional)	1850.0	1915.0	5212≤n≤5512	1930.0	1995.0	5437≤n≤5737
Band 26 (800-General)	014.0	040.0	5537≤n≤5688	050.0	004.0	5762≤n≤5913
Band 26 (800-Additional)	814.0	849.0	5712≤n≤5862	859.0	894.0	5937≤n≤6087
LTE-FDD						
Band Global						
Band 1 (2100)	1920.0	1980.0	18000≤n≤18599	2110.0	2170.0	0≤n≤599
Band 2 (1900)	1850.0	1910.0	18600≤n≤19199	1930.0	1990.0	600≤n≤1199
Band 3 (1800) Band 4 (1700)	1710.0 1710.0	1785.0 1755.0	19200≤n≤19949 19950≤n≤20399	1805.0 2110.0	1880.0 2155.0	1200≤n≤1949 1950≤n≤2399
Band 5 (850)	824.0	849.0	20400≤n≤20649	869.0	894.0	2400≤n≤2649
Band 7 (2600)	2500.0	2570.0	20750≤n≤21449	2620.0	2690.0	2750≤n≤3449
Band 8 (900)	880.0	915.0	21450≤n≤21799	925.0	960.0	3450≤n≤3799
Band 9 (1700)	1749.9	1784.9	21800≤n≤22149	1844.9	1879.9	3800≤n≤4149
Band 10 (1700)	1710.0	1770.0	22150≤n≤22749	2110.0	2170.0	4150≤n≤4749
Band 11 (1500)	1427.9	1447.9	22750≤n≤22949	1475.9	1495.9	4750≤n≤4949
Band 12 (700)	699.0	716.0	23010≤n≤23179	729.0	746.0	5010≤n≤5179
Band 13 (700)	777.0	787.0	23180≤n≤23279	746.0	756.0	5180≤n≤5279
Band 14 (700)	788.0	798.0	23280≤n≤23379	758.0	768.0	5280≤n≤5379
Band 17 (700)	704.0	716.0	23730≤n≤23849	734.0	746.0	5730≤n≤5849
Band 18 (800) Band 19 (800)	815.0 830.0	830.0 845.0	23850≤n≤23999	860.0 875.0	875.0 890.0	5850≤n≤5999
Band 20 (800)	832.0	862.0	24000≤n≤24149 24150≤n≤24449	791.0	821.0	6000≤n≤6149 6150≤n≤6449
Band 21 (1500)	1447.9	1462.9	24450≤n≤24599	1495.9	1510.9	6450≤n≤6599
Band 22 (3500)	3410.0	3490.0	24600≤n≤25399	3510.0	3590.0	6600≤n≤7399
Band 23 (2100)	2000.0	2020.0	25500≤n≤25699	2180.0	2200.0	7500≤n≤7699
Band 24 (1500)	1626.5	1660.5	25700≤n≤26039	1525.0	1559.0	7700≤n≤8039
Band 25 (1900)	1850.0	1915.0	26040≤n≤26689	1930.0	1995.0	8040≤n≤8689
Band 26 (800)	814.0	849.0	26690≤n≤27039	859.0	894.0	8690≤n≤9039
LTE-TDD						
Band Global						
Band 33 (1900)	1900.0	1920.0	36000≤n≤36199			
Band 34 (2100) Band 35 (1850)	2010.0 1850.0	2025.0 1910.0	36200≤n≤36349 36350≤n≤36949			
Band 36 (1930)	1930.0	1990.0	36950≤n≤37549			
Band 37 (1910)	1910.0	1930.0	37550≤n≤37749			
Band 38 (2570)	2570.0	2620.0	37750≤n≤38249			
Band 39 (1880)	1880.0	1920.0	38250≤n≤38649			
Band 40 (2300)	2300.0	2400.0	38650≤n≤39649			
Band 41 (2496)	2496.0	2690.0	39650≤n≤41589			
Band 42 (3400)	3400.0	3600.0	41590≤n≤43589			
Band 43 (3600)	3600.0	3800.0	43590≤n≤45589			
TD-SCDMA	4705.0	1005.0	04:402			
FBN 0	1785.0 1900.0	1805.0 1920.0	0≤n≤92			
FBN 2	1900.0	1920.0	0≤n≤92 0≤n≤255			
FBN 3	1920.0	1980.0	0≤n≤36			
FBN 4	1980.0	2010.0	0≤n≤142			
FBN 5	2010.0	2025.0	0≤n≤67			
FBN 6	2100.0	2170.0	0≤n≤255			
FBN 7	2100.0	2170.0	0≤n≤36			
FBN 8	2170.0	2220.0	0≤n≤242			
WiMAX	2452 555	2450.055				
ProfR1 (1.25 2150)	2150.625	2159.375	0≤n≤7			
ProfR2 (1.25 2305)	2305.625	2320.625 2375.625	0≤n≤12 13≤n≤24			
ProfR3 (1.25 2361) ProfR4 (1.25 2500)	2361.875 2500.625	23/5.625	13≤n≤24 0≤n≤150			
ProfR5 (1.25 3400)	3400.625	3700.625	0≤n≤130 0≤n≤240			
ProfR6 (3.5 2598)	2524.750	2591.250	0≤n≤38	2598.750	2665.250	0≤n≤38
ProfR7 (3.5 3461)	3411.750	3443.250	0≤n≤18	3461.750	3493.250	0≤n≤18
ProfR8 (3.5 3551)	3501.750	3598.000	0≤n≤55	3551.750	3648.000	0≤n≤55
ProfR9 (3.5 3651)	3601.750	3698.000	0≤n≤55	3651.750	3748.000	0≤n≤55
ProfR10 (3.5 3751)	3701.750	3798.000	0≤n≤55	3751.750	3848.000	0≤n≤55
ProfR11 (7 2600)	2526.500	2589.500	0≤n≤36	2600.50	2663.50	0≤n≤36
ProfR12 (7 3463)	2413.500	3441.500	0≤n≤16	3463.50	3491.50	0≤n≤16
ProfR13 (7 3553)	3503.500	3596.250	0≤n≤53	3553.50	3646.25	0≤n≤53
ProfR14 (7 3653) ProfR15 (7 3753)	3603.500 3703.500	3696.250 3796.250	0≤n≤53 0≤n≤53	3653.50 3753.50	3746.25 3846.25	0≤n≤53 0≤n≤53
LIUINT3 (1.2122)	3703.300	3/90.230	U2I1203	3/33.30	5840.25	021123

ProfR26 (10 5275)	5275.000	5335.000	55≤n≤67
ProfR27 (10 5740)	5740.000	5830.000	148≤n≤166
ProfR28 (10 5735)	5735.000	5845.000	147≤n≤169
ProfR29 (8.75 2304)	2304.375	2395.625	0≤n≤730

Appendix D – VSWR-Return loss conversion table

This information is for the Cable and Antenna Analyzer mode of the JD785B/JD745B Base Station Analyzer and the JD786B/JD746B RF Analyzer.

- Return Loss=20log₁₀(VSWR+1/VSWR-1) (dB)
- VSWR=(10^{R.L./20}+1/10^{R.L./20}-1)

VSWR	Return Loss (dB)	Trans. Loss (dB)	Volt. Refl Coeff	Power Trans (%)	Power Refl (%)	VSWR	Return Loss (dB)	Trans. Loss (dB)	Volt. Refl Coeff	Power Trans (%)	Power Refl (%)
1.00	-	0.000	0.00	100.0	0.0	1.64	12.3	0.263	0.24	94.1	5.9
1.01	46.1	0.000	0.00	100.0	0.0	1.66	12.1	0.276	0.25	93.8	6.2
1.02	40.1	0.000	0.01	100.0	0.0	1.68	11.9	0.289	0.25	93.6	6.4
1.03	36.6	0.001	0.01	100.0	0.0	1.70	11.7	0.302	0.26	93.3	6.7
1.04	34.2	0.002	0.02	100.0	0.0	1.72	11.5	0.315	0.26	93.0	7.0
1.05	32.3	0.003	0.02	99.9	0.1	1.74	11.4	0.329	0.27	92.7	7.3
1.06	30.7	0.004	0.03	99.9	0.1	1.76	11.2	0.342	0.28	92.4	7.6
1.07	29.4	0.005	0.03	99.9	0.1	1.78	11.0	0.356	0.28	92.1	7.9
1.08	28.3	0.006	0.04	99.9	0.1	1.80	10.9	0.370	0.29	91.8	8.2
1.09	27.3	0.008	0.04	99.8	0.2	1.82	10.7	0.384	0.29	91.5	8.5
1.10	26.4	0.010	0.05	99.8	0.2	1.84	10.6	0.398	0.30	91.3	8.7
1.11	25.7	0.012	0.05	99.7	0.3	1.86	10.4	0.412	0.30	91.0	9.0
1.12	24.9	0.014	0.06	99.7	0.3	1.88	10.3	0.426	0.31	90.7	9.3
1.13	24.3	0.016	0.06	99.6	0.4	1.90	10.2	0.440	0.31	90.4	9.6
1.14	23.7	0.019	0.07	99.6	0.4	1.92	10.0	0.454	0.32	90.1	9.9
1.15	23.1	0.021	0.07	99.5	0.5	1.94	9.9	0.468	0.32	89.8	10.2
1.16	22.6	0.024	0.07	99.5	0.5	1.96	9.8	0.483	0.32	89.5	10.5
1.17	22.1	0.027	0.08	99.4	0.6	1.98	9.7	0.497	0.33	89.2	10.8
1.18	21.7	0.030	0.08	99.3	0.7	2.00	9.5	0.512	0.33	88.9	11.1
1.19	21.2	0.033	0.09	99.2	0.8	2.50	7.4	0.881	0.43	81.6	18.4
1.20	20.8	0.036	0.09	99.2	0.8	3.00	6.0	1.249	0.50	75.0	25.0
1.21	20.4	0.039	0.10	99.1	0.9	3.50	5.1	1.603	0.56	69.1	30.9
1.22	20.1	0.043	0.10	99.0	1.0	4.00	4.4	1.938	0.60	64.0	36.0
1.23	19.7	0.046	0.10	98.9	1.1	4.50	3.9	2.255	0.64	59.5	40.5
1.24	19.4	0.050	0.11	98.9	1.1	5.00	3.5	2.553	0.67	55.6	44.4
1.25	19.1	0.054	0.11	98.8	1.2	5.50	3.2	2.834	0.69	52.1	47.9
1.26	18.8	0.058	0.12	98.7	1.3	6.00	2.9	3.100	0.71	49.0	51.0
1.27	18.5	0.062	0.12	98.6	1.4	6.50	2.7	3.351	0.73	46.2	53.8
1.28	18.2	0.066	0.12	98.5	1.5	7.00	2.5	3.590	0.75	43.7	56.3
1.29	17.9	0.070	0.13	98.4	1.6	7.50	2.3	3.817	0.76	41.5	58.5
1.30	17.7	0.075	0.13	98.3	1.7	8.00	2.2	4.033	0.78	39.5	60.5
1.32	17.2	0.083	0.14	98.1	1.9	8.50	2.1	4.240	0.79	37.7	62.3
1.34	16.8	0.093	0.15	97.9	2.1	9.00	1.9	4.437	0.80	36.0	64.0
1.36	16.3	0.102	0.15	97.7	2.3	9.50	1.8	4.626	0.81	34.5	65.5
1.38	15.9	0.112	0.16	97.5	2.5	10.00	1.7	4.807	0.82	33.1	66.9
1.40	15.8	0.122	0.17	97.2	2.8	11.00	1.6	5.149	0.83	30.6	69.4
1.42	15.2	0.133	0.17	97.0	3.0	12.00	1.5	5.466	0.85	28.4	71.6
1.44	14.9	0.144	0.18	96.7	3.3	13.00	1.3	5.762	0.86	26.5	73.5
1.46	14.6	0.155	0.19	96.5	3.5	14.00	1.2	6.040	0.87	24.9	75.1
1.48	14.3	0.166	0.19	96.3	3.7	15.00	1.2	6.301	0.88	23.4	76.6
1.50	14.0	0.177	0.20	96.0	4.0	16.00	1.1	6.547	0.88	22.1	77.9
1.52	13.7	0.189	0.21	95.7	4.3	17.00	1.0	6.780	0.89	21.0	79.0
1.54	13.4	0.201	0.21	95.5	4.5	18.00	1.0	7.002	0.89	19.9	80.1
1.56	13.2	0.213	0.22	95.2	4.8	19.00	0.9	7.212	0.90	19.0	81.0
1.58	13.0	0.225	0.22	94.9	5.1	20.00	0.9	7.413	0.90	18.1	81.9
1.60	12.7	0.238	0.23	94.7	5.3	25.00	0.7	8.299	0.92	14.8	85.2
1.62	12.5	0.250	0.24	94.4	5.6	30.00	0.6	9.035	0.94	12.5	87.5

Appendix E – Cyclic prefix table

This information is for the LTE – FDD Signal Analyzer mode and the LTE – TDD Signal Analyzer mode of the JD785B/JD745B Base Station Analyzer and the JD788B/JD748B Signal Analyzer. Following table shows OFDM parameter details by different bandwidth.

Bandwidth	Configuration (Downlink)		Cyclic Prefix Length	
Danawiath			TS	μs
20 MHz	Normal CP	Δf=15 kHz	160 for =0 144 for =1,2,,6	5.208 4.6875
	Extended CP	Δf=15 kHz	512 for =0,1,,5	16.667
		Δf=7.5 kHz	1024 for =0,1,2	33.333
15 MHz	Normal CP	Δf=15 kHz	120 for =0 108 for =1,2,,6	5.208 4.6875
	Extended CP	Δf=15 kHz	384 for =0,1,,5	16.667
		Δf=7.5 kHz	768 for =0,1,2	33.333
10 MHz	Normal CP	Δf=15 kHz	80 for =0 72 for =1,2,,6	5.208 4.6875
	Extended CP	Δf=15 kHz	256 for =0,1,,5	16.667
		Δf=7.5 kHz	512 for =0,1,2	33.333
5 MHz	Normal CP	Δf=15 kHz	40 for =0 36 for =1,2,,6	5.208 4.6875
	Extended CP	Δf=15 kHz	128 for =0,1,,5	16.667
		Δf=7.5 kHz	248 for =0,1,2	33.333
3 MHz	Normal CP	Δf=15 kHz	20 for =0 18 for =1,2,,6	5.208 4.6875
	Extended CP	Δf=15 kHz	64 for =0,1,,5	16.667
		Δf=7.5 kHz	128 for =0,1,2	33.333
1.4 MHz	Normal CP	Δf=15 kHz	10 for =0 9 for =1,2,,6	5.208 4.6875
	Extended CP	Δf=15 kHz	32 for /=0,1,,5	16.667
		Δf=7.5 kHz	64 for =0,1,2	33.333

Appendix F – Motorola CDMA/EV-DO LMF

Motorola's CDMA/EV-DO base stations (BTS) are optimized with the assistance of Local Maintenance Facility (LMF), a Motorola's software tool that interfaces with the cell site and the instrument. The optimization process identifies the accumulated loss (or gain) for all receiving and transmitting paths at the cell site and stores that value in the system's database.

Using JD700B series LMF interface

An emulation interface to LMF has been implemented in Viavi's base station analyzer (JD785B/ JD745B) in order to perform BTS optimization procedures. The scope of this emulation is to do maintenance tests of TX Calibration and TX Audit required in routine maintenance practices with or without the use of an external power sensor. Using the external power sensor, you can get highly accurate measurement results.

Setting up for a LMF test

Procedure

1 To connect your instrument both with BTS and PC, do one of the following:

Internal power sensor: Connect the Motorola CDMA/EV-DO BTS with the Spectrum Analyzer RF In 50 Ω port of JD785B/JD745B and connect the WinLMF running PC with JD785B/JD745B via a hub as illustrated in the **Figure 430**.

External power sensor: Connect an external power sensor to the USB Host port of JD785B/JD745B and to the BTS and connect the WinLMF running PC with JD785B/JD745B via a hub as illustrated in the **Figure 431**.

Figure 430 Using internal power sensor

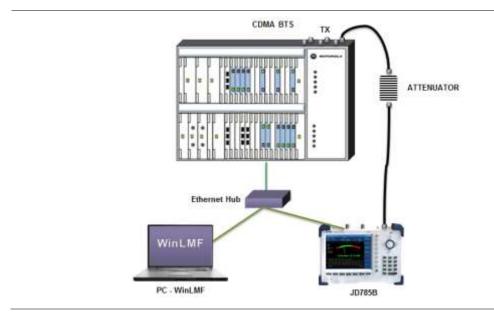



Figure 431 Using external power sensor

Performing a LMF test

- 1 Press the **SYSTEM** hot key.
- 2 To set the IP address, complete the following steps:
 - a Select System Configuration > Ethernet Config > IPv4.
 - **b** Toggle the **Mode** soft key and select **Static**.
 - Press the Field > IP Address soft key.
 - d Set the IP address as "192.167.10.1".
 - Select Remote Interface > LAN > LMF.
- **4** To set up the LMF settings, complete the following steps:
 - Press the LMF Settings soft key.
 - **b** Select the power measurement and BTS option from the following choices:
 - External PM 800 MHz Band for external measurement on cellular basestation
 External PM 1900 MHz Band for external measurement on PCS basestation
 Internal PM 800 MHz Band for internal measurement on celluar basestation
 Internal PM 1900 MHz Band for internal measurement on PCS basestation
- **5** To select the measurement mode, complete the following steps:
 - a Press the MODE hard key.
 - **b** Press the **Power Meter** soft key.
 - c Select Internal RF Power Meter or External RF Power Meter depending on your LMF settings. The measurement result is displayed on the screen.

Appendix G - Bluetooth connection

JD700B series' Bluetooth mode is used for communication between the instrument and your computer with JDRemote or a storage device in order to use the following services if needed.

- Bluetooth Personal Area Network (PAN) profile service for JDRemote.
- Bluetooth File Transfer Profile (FTP) or Object Push Profile (OPP) service for file transfer from the instrument to a Bluetooth storage device.

The Bluetooth Connectivity option includes a pair of Bluetooth USB Parani-UD100 Adapters and 5 dBi Dipole Antennas as well as the BlueSoleil application software.

Installing and setting up Bluetooth software

The BlueSoleil application must be installed in your computer prior to making a Bluetooth connection. After installing the software, you must disable DHCP Server option in order to use the PAN service properly.

Procedure

Insert the provided CD-ROM into your computer and install the software as instructed. The BlueSoleil Space shortcut icon appears on the desktop.

NOTE

For more information on installation, refer to the Quick Start Guide or the User Guide provided with the adapter.

- 2 Double-click the BlueSoleil Space shortcut icon on your computer desktop to launch the application.
 - The BlueSoleil program window appears.
- 3 Right-click the My Device icon (the orange ball) in the center of the window, and then click Properties > Services tab.
 - The My Device Properties window appears.
- 4 Select the **Bluetooth Personal Area Network** from the list, and then click the **Properties** button. The Bluetooth Personal Area Network Properties window appears.
- 5 Click the **Options** tab, and then uncheck the **Enable DHCP Server** option.

NOTE

You must uncheck it to disable this option as the Enable DHCP Server option is checked by default.

- 6 Click the **OK** button.
 - The Bluetooth Personal Area Network Properties window dismisses.
- 7 Click the **OK** button.
 - The My Device Properties window dismisses.

Making Bluetooth connection

The JD700B series detects a connected Parani-UD100 USB Bluetooth Adapter automatically.

- 1 Connect the 5 dBi Dipole Antenna to the Parani-UD100 Bluetooth USB Adapter: one for the computer and the other for JD700B series.
- 2 Plug in the Bluetooth adapters to the USB port of the computer and the instrument. The instrument detects the connected adapter and turns the Bluetooth mode on automatically.

The Bluetooth icon appears in the status bar at the top of the instrument screen.

- 3 Double-click the BlueSoleil Space icon on the computer desktop to launch the application if not opened already.
 - The BlueSoleil program window appears.
- 4 Double-click the **My Device** icon (orange ball) in the center of the application window to search the JD700B series.
 - You can view an added icon around the orange ball labeled with the detected JD700B series' BD address or model and serial numbers.
- 5 Right-click the device icon for the JD700B series, and then click the Pair. The Bluetooth Passkey window appears.
- **6** Enter **0000** in the Passkey box, and then click the **OK** button. The word "Paired" appears on the window. The instrument also turns the Bluetooth Mode on automatically and displays the paired device and service information on the screen.
- 7 Double-click the device icon for the JD700B series to search services.
- 8 Right-click the icon for the JD700B series, and then select either the Connect Bluetooth Personal Area Network or the Connect Bluetooth File Transfer.

NOTE

Select one of these services as needed. If the Connect Bluetooth Personal Area Network is selected, a fixed IP address (192.168.10.10) is assigned for JD700B series and this address must be typed into the TCP/IP setting on JDViewer or JDRemote. See "Setting up communication in application" on page 753 for more information.

Setting up communication in application

If the Connect Bluetooth Personal Area Network service is selected on BlueSoleil, you need to configure communication setting on the application JDViewer or JDRemote by entering the fixed IP address for the instrument.

JDViewer setup

Procedure

- 1 Launch the JDViewer application.
- 2 Go to **Settings > Communication**. The Settings dialog box appears.
- 3 Click the drop-down list in the Instrument pane, and then select the instrument series to be communicated.
- 4 In the Connection Method pane, select the TCP/IP, and then enter 192.168.10.10 without dots.
- 5 Click **OK** to finish the communication setup.
- **6** Go to **Load > Connect** to make a connection between the instrument and JDViewer. JD700B series and JDViewer become ready for communication.

JDRemote setup

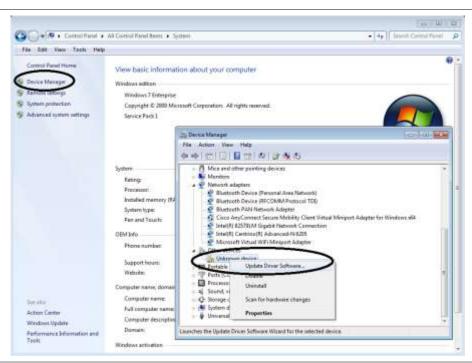
- Launch the JDRemote application.
 The Select Model dialog box appears.
- 2 Select the 740A/B, 780A/B Series, and then click the OK button.
- **3** Right-click on the JDRemote window, and then click the **Communication**. The Communication dialog box appears.
- 4 Select the TCP/IP, and then enter 192.168.10.10 without dots.
- **5** Click **OK** to finish the communication setup.
- **6** Right-click on the JDRemote window, and then click the **Connect**.

This enables communication between the instrument and JDRemote.

- **7** Right-click on the JDRemote window, and then click the **Start**. JD700B series and JDRemote become ready for communication.
- 8 Optional. To adjust the image quality, complete the following steps:
 - a Right-click on the JDRemote.
 - b Click the Quality.
 - Select the image quality option among High, Medium, or Low. You can improve refresh rate, if experiencing low-quality signal, by adjusting the image quality in JDRemote.

Turning Bluetooth mode on/off manually

JD700B series turns the Bluetooth Mode on automatically if connected. You can also turn it on and off manually.


- 1 Press the SYSTEM hot key.
- 2 Press the System Configuration > Remote Interface > Bluetooth soft key. The Bluetooth screen appears with the device information.
- 3 Toggle the Bluetooth soft key between On and Off to turn it on and off. Connecting or disconnecting the adapter also turns the mode on or off automatically.

Appendix H – Device driver installation

JD700B series can be controlled from the application software JDViewer or JDRemote installed on your computer. You must install driver software for the instrument on to the computer if USB Client connection is used for communication.

- 1 Go to Control Panel > System > Device Manager. The Device Manager window appears.
- 2 Right-click the Unknown Device under the Other Devices, and then click the Update Driver Software.
 - The Update Driver Software Unknown Device window appears as shown in Figure 432 below.
- 3 Select the Browse my computer for driver software, and then click the Browse button to search for the location where the driver software is. The Browse For Folder window appears.
- 4 Search for the **JDRemote** folder, and then select the driver folder for the installed OS. For example, OSDisk (C:) > Program Files (x86) > JDRemote > Driver > Win7 > 64bit.
- 5 Click the **OK** button. The Browse For Folder window dismisses.
- 6 Click the Next button to start installation. If the Windows Security window appears, select the Install this driver software anyway. Installing driver software starts.
- 7 Click the **Close** button at the end of the installation.

Figure 432 Device manager screen

Appendix I – Ordering information

The Warranty Period for Viavi Solutions Accessories shall apply to the all standard and optional accessories listed below. The warranty period varies by product and is generally one (1) year unless otherwise specified.

JD785B Base Station Analyzer

JD785B

9 kHz to 8 GHz Spectrum Analyzer

5 MHz to 6 GHz Cable and Antenna Analyzer ¹

10 MHz to 8 GHz RF Power Meter Internal mode

10 101112 (0 8 GHZ	Kr Powei Wietei	internal mode
Options		
NOTE: Upgrade option	ns for the JD785B use the designation JD785BU before the re	spective last three-digit option number.
JD785B001	2-Port Transmission Measurements ²	
JD785B002	Bias Tee	(Requires option 01)
JD785B003	High Power CW Signal Generator	
JD785B008	Optical Hardware ³	
JD785B010	GPS Receiver and Antenna	
JD785B011	Interference Analyzer 4,5	
JD785B012	Channel Scanner	
JD785B013	Bluetooth Connectivity	
JD785B014	LTE-FDD RAN Performance Indicator	
JD785B015	LTE-TDD RAN Performance Indicator	
JD785B016	Wi-Fi Connectivity	
JD785B020	cdmaOne/cdma2000 Signal Analyzer	
JD785B021	EV-DO Signal Analyzer	(Requires option 20)
JD785B022	GSM/GPRS/EDGE Signal Analyzer	
JD785B023	WCDMA/HSPA+ Signal Analyzer	
JD785B025	TD-SCDMA Signal Analyzer	
JD785B026	Mobile WiMAX Signal Analyzer	
JD785B028	LTE-FDD Signal Analyzer	
JD785B029	LTE-TDD Signal Analyzer	
JD785B030	LTE Advanced-FDD Signal Analyzer	(Requires option 28)
JD785B031	LTE Advanced-TDD Signal Analyzer	(Requires option 29)
JD785B032	LTE-FDD 256 QAM Demodulator	(Requires options 28 and 30)
JD785B033	LTE-TDD 256 QAM Demodulator	(Requires options 29 and 31)
JD785B040	cdmaOne/cdma2000 OTA Analyzer ⁵	(Requires option 10)
JD785B041	EV-DO OTA Analyzer ⁵	(Requires option 10)
JD785B042	GSM/GPRS/EDGE OTA Analyzer 5	(Requires option 10)
JD785B043	WCDMA/HSPA+ OTA Analyzer ⁵	(Requires option 10)
JD785B045	TD-SCDMA OTA Analyzer ⁵	(Requires option 10)
JD785B046	Mobile WiMAX OTA Analyzer ⁵	(Requires option 10)
JD785B048	LTE-FDD OTA Analyzer ⁵	(Requires option 10)
JD785B049	LTE-TDD OTA Analyzer ⁵	(Requires option 10)
JD785B050	EMF Analyzer 8	
JD785B060	RFoCPRI 614M & 1.2G Interference Analyzer ⁶	(Requires option 08)
JD785B061	RFoCPRI 2.4G Interference Analyzer ⁶	(Requires option 08)
JD785B062	RFoCPRI 3.1G Interference Analyzer ⁶	(Requires option 08)
JD785B063	RFoCPRI 4.9G Interference Analyzer ⁶	(Requires option 08)
JD785B064	RFoCPRI 6.1G Interference Analyzer ⁶	(Requires option 08)
JD785B065	RFoCPRI 9.8G Interference Analyzer ⁶	(Requires option 08)
JD785B068	RFoCPRI GSM Interference Analyzer ⁶	(Requires option 08)
JD785B070	RFoOBSAI 768M Interference Analyzer ⁶	(Requires option 08)
JD785B071	RFoOBSAI 1.5G Interference Analyzer ⁶	(Requires option 08)
JD785B072	RFoOBSAI 3.1G Interference Analyzer ⁶	(Requires option 08)
JD785B073	RFoOBSAI 6.1G Interference Analyzer ⁶	(Requires option 08)
JD785B081	RFoCPRI LTE-FDD Signal Generator ⁶	(Requires options 08, 60-65)

JD785B082	RFoCPRI LTE-TDD Signal Generator ⁶	(Requires options 08, 60-65)
JD785B083	RFoCPRI LTE-FDD Multi Carrier Signal Generator ⁶	(Requires options 08, 60-65)
JD785B084	RFoCPRI LTE-TDD Multi Carrier Signal Generator ⁶	(Requires options 08, 60-65)
JD785B086	RFoOBSAI LTE-FDD Signal Generator ⁶	(Requires options 08, 70-73)
JD785B091	RFoCPRI LTE-FDD Signal Analyzer ⁶	(Requires options 08, 60-65)
JD785B092	RFoCPRI LTE-TDD Signal Analyzer ⁶	(Requires options 08, 60-65)
JD785B096	RFoOBSAI LTE-FDD Signal Analyzer ⁶	(Requires options 08, 70-73)
JD785B101	Alcatel-Lucent BBU Emulation ⁶	(Requires options 08)
JD785B200	Calibration Service for Asia, North America	(Requires options 00)
JD785B200 JD785B201	Calibration Service for Asia, North America Calibration Service for Latin America, EMEA	
	·	
JD785B250	Warranty extension of 1 year for Asia, North America	
JD785B251	Warranty extension of 1 year for Latin America, EMEA	
JD780B001-FL	2 Port Transmission Measurements	
JD780B010-FL	GPS receiver and antenna	
JD780B011-FL	Interference Analyzer	
JD780B012-FL	Channel Scanner	
JD780B013-FL	Bluetooth connectivity	
JD780B014-FL	LTE-FDD RAN performance	
JD780B015-FL	LTE-TDD RAN performance	
JD780B016-FL	Wi-Fi connectivity	
JD780B020-FL	cdmaOne/cdma2000 Analyzer	
JD780B021-FL	EV-DO Analyzer	
JD780B022-FL	GSM/GPRS/EDGE Analyzer	
JD780B023-FL	WCDMA/HSPA+ analyzer	
JD780B025-FL	TD-SCDMA Analyzer	
JD780B026-FL	Mobile WiMAX Analyzer	
JD780B028-FL	LTE - FDD Analyzer	
JD780B029-FL	LTE - TDD Analyzer	
JD780B030-FL	LTE Advanced - FDD Analyzer	
JD780B031-FL	LTE Advanced - TDD Analyzer	
JD780B032-FL	LTE-FDD 256 QAM Demodulator	
JD780B033-FL	LTE-TDD 256 QAM Demodulator	
JD780B040-FL	GSM/GPRS/EDGE OTA	
JD780B041-FL	WCDMA/HSPA+ OTA	
JD780B041 FL	TD-SCDMA OTA	
JD780B042 FL	Mobile WiMAX OTA	
JD780B045-FL	LTE - FDD OTA	
JD780B045-FL JD780B046-FL	LTE - TDD OTA	
JD780B046-FL JD780B048-FL		
	cdmaOne/cdma2000 OTA	
JD780B049-FL	EV-DO OTA	
JD780B050-FL	EMF Analyzer	
JD780B060-FL	RFoCPRI 2.4G interference analyzer	
JD780B061-FL	RFoCPRI 3.1G interference analyzer	
JD780B062-FL	RFoCPRI 4.9G interference analyzer	
JD780B063-FL	RFoCPRI 6.1G interference analyzer	
JD780B064-FL	RFoCPRI 9.8G interference analyzer	
JD780B065-FL	RFoCPRI 614M & 1.2G interference analyzer	
JD780B068-FL	RFoCPRI GSM interference analyzer	
JD780B070-FL	RFoOBSAI 768M interference analyzer	
JD780B071-FL	RFoOBSAI 1.5G interference analyzer	
JD780B072-FL	RFoOBSAI 3.1G interference analyzer	
JD780B073-FL	RFoOBSAI 6.1G interference analyzer	
JD780B081-FL	RFoCPRI LTE-FDD signal generator	
JD780B082-FL	RFoCPRI LTE-TDD signal generator	
JD780B083-FL	RFoCPRI LTE-FDD multi carrier signal generator	
JD780B084-FL	RFOCPRI LTE-TDD multi carrier signal generator	
JD780B086-FL	RFoOBSAI LTE-FDD signal generator	
JD780B091-FL	RFoCPRI LTE-FDD signal analyzer	
	Ç ,	

JD780B092-FL RFoCPRI LTE-TDD signal analyzer JD780B096-FL RFoOBSAI LTE-FDD signal analyzer

JD780B101-FL ALU BBU emulation

Stand	lard	Accessories

JD70050008 USB Wi-Fi Dongle ⁷
JD70050326 AC/DC Power Adapter for JD700B Series ⁷

G710550335 Cross LAN Cable (1.5 m) 7 GC73050515 USB A to B Cable (1.8 m) 7 GC72450518 > 1 G Byte USB Memory 7

G710550325 Rechargeable Lithium Ion Battery ⁷

G710550323 Automotive Cigarette Lighter 12 V DC Adapter ⁷

G710550316 Stylus Pen ⁷

JD700B361 JD700B Series User's Guide and Application Software – CD

¹Requires calibration kit ²Requires dual port calibration kit ³Requires RFoCPRI or RFoOBSAI options ⁴Highly recommended adding JD785B010 ⁵Highly recommended adding G70005035x and/or G70005036x ⁶Requires proper SFP/SFP+ transceiver and optical tap. ⁷Standard accessories can be purchased separately. ⁸Requires G700050380

JD786B RF Analyzer

JD786B

9 kHz to 8 GHz Spectrum Analyzer

5 MHz to 6 GHz Cable and Antenna Analyzer ¹

10 MHz to 8 GHz RF Power Meter Internal mode

Options

NOTE: Upgrade options for the JD786B use the designation JD786BU before the respective last three-digit option number.

JD786B001 2-Port Transmission Measurements ²

JD786B002 Bias Tee (Requires option 01)

JD786B003 High Power CW Signal Generator

JD786B008 Optical Hardware ³
JD786B010 GPS Receiver and Antenna
JD786B011 Interference Analyzer ^{4,5}
JD786B012 Channel Scanner
JD786B013 Bluetooth Connectivity

JD786B013 Bluetooth Connect JD786B016 Wi-Fi Connectivity JD786B050 EMF Analyzer 8

RFoCPRI 614M & 1.2G Interference Analyzer 6 (Requires option 08) JD786B060 JD786B061 RFoCPRI 2.4G Interference Analyzer ⁶ (Requires option 08) JD786B062 RFoCPRI 3.1G Interference Analyzer ⁶ (Requires option 08) RFoCPRI 4.9G Interference Analyzer 6 JD786B063 (Requires option 08) JD786B064 RFoCPRI 6.1G Interference Analyzer ⁶ (Requires option 08) JD786B065 RFoCPRI 9.8G Interference Analyzer ⁶ (Requires option 08) JD786B068 RFoCPRI GSM Interference Analyzer ⁶ (Requires option 08) RFoOBSAI 768M Interference Analyzer ⁶ JD786B070 (Requires option 08) JD786B071 RFoOBSAI 1.5G Interference Analyzer 6 (Requires option 08) JD786B072 RFoOBSAI 3.1G Interference Analyzer ⁶ (Requires option 08) RFoOBSAI 6.1G Interference Analyzer ⁶ (Requires option 08) JD786B073 JD786B081

JD786B081 RFoCPRI LTE-FDD Signal Generator ⁶ (Requires options 08, 60-65)
JD786B082 RFoCPRI LTE-FDD Signal Generator ⁶ (Requires options 08, 60-65)
JD786B083 RFoCPRI LTE-FDD Multi Carrier Signal Generator ⁶ (Requires options 08, 60-65)
JD786B084 RFoCPRI LTE-TDD Multi Carrier Signal Generator ⁶ (Requires options 08, 60-65)
JD786B086 RFoOBSAI LTE-FDD Signal Generator ⁶ (Requires options 08, 70-73)

JD786B101 JD786B200 JD786B201 JD786B250 JD786B251 JD780B001-FL JD780B010-FL JD780B012-FL JD780B013-FL JD780B016-FL JD780B060-FL JD780B060-FL JD780B063-FL JD780B063-FL JD780B064-FL JD780B065-FL JD780B065-FL JD780B071-FL JD780B071-FL JD780B071-FL JD780B071-FL JD780B071-FL JD780B081-FL JD780B081-FL JD780B081-FL JD780B081-FL JD780B081-FL JD780B083-FL JD780B084-FL JD780B084-FL JD780B084-FL JD780B084-FL JD780B084-FL JD780B084-FL JD780B086-FL JD780B08101-FL	Alcatel-Lucent BBU Emulation ⁶ Calibration Service for Asia, North America Calibration Service for Latin America, EMEA Warranty extension of 1 year for Asia, North America Warranty extension of 1 year for Latin America, EMEA 2 Port Transmission Measurements GPS receiver and antenna Interference Analyzer Channel Scanner Bluetooth connectivity Wi-Fi connectivity EMF Analyzer RFoCPRI 2.4G interference analyzer RFoCPRI 3.1G interference analyzer RFoCPRI 4.9G interference analyzer RFoCPRI 6.1G interference analyzer RFoCPRI 6.1M & 1.2G interference analyzer RFoCPRI GSM interference analyzer RFoCPRI LTE-FDD signal generator RFoCPRI LTE-FDD multi carrier signal generator RFoCPRI LTE-TDD multi carrier signal generator RFoCPRI LTE-TDD signal generator RFoCPRI LTE-TDD signal generator RFoCPRI LTE-TDD signal generator RFoCPRI LTE-TDD signal generator	(Requires options 08)

Accessories

JD70050008	USB Wi-Fi Dongle ⁷
JD70050326	AC/DC Power Adapter for JD700B Series ⁷
G710550335	Cross LAN Cable (1.5 m) ⁷
GC73050515	USB A to B Cable (1.8 m) 7
GC72450518	> 1 G Byte USB Memory ⁷
G710550325	Rechargeable Lithium Ion Battery ⁷
G710550323	Automotive Cigarette Lighter 12 V DC Adapter ⁷
G710550316	Stylus Pen ⁷
JD700B361	JD700B Series User's Guide and Application Software – CD

¹ Requires calibration kit ² Requires dual port calibration kit ³ Requires RFoCPRI or RFoOBSAI options ⁴ Highly recommended adding JD786B010 ⁵ Highly recommended adding G70005035x and/or G70005036x ⁶ Requires proper SFP/SFP+ transceiver and optical tap ⁷ Standard accessories can be purchased separately. ⁸ Requires G700050380

Internal mode

JD788B Signal Analyzer

JD788B

9 kHz to 8 GHz Spectrum Analyzer
10 MHz to 8 GHz RF Power Meter

Options

NOTE: Upgrade options for the JD788B use the designation JD788BU before the respective last three-digit option number.

JD788B001	2-Port Transmission Measurements ¹	(Requires option 07)
JD788B003	High Power CW Signal Generator	(Requires option 07)
JD788B007	Signal Generator Hardware	
JD788B008	Optical Hardware ²	
JD788B009	20 MHz Demodulation Hardware	
JD788B010	GPS Receiver and Antenna	
JD788B011	Interference Analyzer ^{3,4}	
JD788B012	Channel Scanner	
JD788B013	Bluetooth Connectivity	
JD788B014	LTE-FDD RAN Performance Indicator	
JD788B015	LTE-TDD RAN Performance Indicator	
JD786B016	Wi-Fi Connectivity	
JD788B020	cdmaOne/cdma2000 Signal Analyzer	(Requires option 09)
JD788B021	EV-DO Signal Analyzer	(Requires options 09 and 20)
JD788B022	GSM/GPRS/EDGE Signal Analyzer	(Requires option 09)
JD788B023	WCDMA/HSPA+ Signal Analyzer	(Requires option 09)
JD788B025	TD-SCDMA Signal Analyzer	(Requires option 09)
JD788B026	Mobile WiMAX Signal Analyzer	(Requires option 09)
JD788B028	LTE-FDD Signal Analyzer	(Requires option 09)
JD788B029	LTE-TDD Signal Analyzer	(Requires option 09)
JD788B030	LTE Advanced-FDD Signal Analyzer	(Requires options 09 and 28)
JD788B031	LTE Advanced-TDD Signal Analyzer	(Requires options 09 and 29)
JD788B032	LTE-FDD 256 QAM Demodulator	(Requires options 09, 28 and 30)
JD788B033	LTE-TDD 256 QAM Demodulator	(Requires options 09, 29 and 31)
JD788B040	cdmaOne/cdma2000 OTA Analyzer ⁴	(Requires options 09 and 10)
JD788B041	EV-DO OTA Analyzer ⁴	(Requires options 09 and 10)
JD788B042	GSM/GPRS/EDGE OTA Analyzer ⁴	(Requires options 09 and 10)
JD788B043	WCDMA/HSPA+ OTA Analyzer ⁴	(Requires options 09 and 10)
JD788B045	TD-SCDMA OTA Analyzer ⁴	(Requires options 09 and 10)
JD788B046	Mobile WiMAX OTA Analyzer ⁴	(Requires options 09 and 10)
JD788B048	LTE-FDD OTA Analyzer ⁴	(Requires options 09 and 10)
JD788B049	LTE-TDD OTA Analyzer ⁴	(Requires options 09 and 10)
JD788B050	EMF Analyzer ⁷	(
JD788B060	RFoCPRI 614M & 1.2G Interference Analyzer ⁵	(Requires option 08)
JD788B061	RFoCPRI 2.4G Interference Analyzer ⁵	(Requires option 08)
JD788B062	RFoCPRI 3.1G Interference Analyzer ⁵	(Requires option 08)
JD788B063	RFoCPRI 4.9G Interference Analyzer ⁵	(Requires option 08)
JD788B064	RFoCPRI 6.1G Interference Analyzer ⁵	(Requires option 08)
JD788B065	RFoCPRI 9.8G Interference Analyzer ⁵	(Requires option 08)
JD788B068	RFoCPRI GSM Interference Analyzer ⁵	(Requires option 08)
JD788B070	RFoOBSAI 768M Interference Analyzer ⁵	(Requires option 08)
JD788B071	RFoOBSAI 1.5G Interference Analyzer ⁵	(Requires option 08)
JD788B072	RFoOBSAI 3.1G Interference Analyzer ⁵	(Requires option 08)
JD788B073	RFoOBSAI 6.1G Interference Analyzer ⁵	(Requires option 08)
JD788B081	RFoCPRI LTE-FDD Signal Generator ⁵	(Requires options 08, 60-65)
JD788B082	RFoCPRI LTE-TDD Signal Generator ⁵	(Requires options 08, 60-65)
JD788B083	RFoCPRI LTE-FDD Multi Carrier Signal Generator ⁵	(Requires options 08, 60-65)
JD788B084	RFoCPRI LTE-TDD Multi Carrier Signal Generator ⁵	(Requires options 08, 60-65)
JD788B086	RFoOBSAI LTE-FDD Signal Generator ⁵	(Requires options 08, 70-73)
JD788B091	RFoCPRI LTE-FDD Signal Analyzer ⁵	(Requires options 08, 60-65)
JD788B092	RFoCPRI LTE-TDD Signal Analyzer ⁵	(Requires options 08, 60-65)
JD788B096	RFoOBSAI LTE-FDD Signal Analyzer ⁵	(Requires options 08, 70-73)
JD788B101	Alcatel-Lucent BBU Emulation 5	(Requires options 08)
JD788B200	Calibration Service for Asia, North America	,
JD788B201	Calibration Service for Latin America, EMEA	
JD788B250	Warranty extension of 1 year for Asia, North America	a
JD788B251	Warranty extension of 1 year for Latin America, EM	
JD780B001-FL	2 Port Transmission Measurements	

JD780B010-FL	GPS receiver and antenna
JD780B011-FL	Interference Analyzer
JD780B012-FL	Channel Scanner
JD780B013-FL	Bluetooth connectivity
JD780B014-FL	LTE-FDD RAN performance
JD780B015-FL	LTE-TDD RAN performance
JD780B016-FL	Wi-Fi connectivity
JD780B020-FL	cdmaOne/cdma2000 Analyzer
JD780B021-FL	EV-DO Analyzer
JD780B022-FL	GSM/GPRS/EDGE Analyzer
JD780B023-FL	WCDMA/HSPA+ analyzer
JD780B025-FL	TD-SCDMA Analyzer
JD780B026-FL	Mobile WiMAX Analyzer
JD780B028-FL	LTE - FDD Analyzer
JD780B029-FL	LTE - TDD Analyzer
JD780B030-FL	LTE Advanced - FDD Analyzer
JD780B031-FL	LTE Advanced - TDD Analyzer
JD780B032-FL	LTE-FDD 256 QAM Demodulator
JD780B033-FL	LTE-TDD 256 QAM Demodulator
JD780B040-FL	GSM/GPRS/EDGE OTA
JD780B041-FL	WCDMA/HSPA+ OTA
JD780B042-FL	TD-SCDMA OTA
JD780B043-FL	Mobile WiMAX OTA
JD780B045-FL	LTE - FDD OTA
JD780B046-FL	LTE - TDD OTA
JD780B048-FL	cdmaOne/cdma2000 OTA
JD780B049-FL	EV-DO OTA
JD780B050-FL	EMF Analyzer
JD780B050-FL	RFoCPRI 2.4G interference analyzer
JD780B060-FL	RFoCPRI 3.1G interference analyzer
JD780B061-FL	RFoCPRI 4.9G interference analyzer
JD780B062-FL JD780B063-FL	RFoCPRI 6.1G interference analyzer
JD780B064-FL	
	RFoCPRI 9.8G interference analyzer RFoCPRI 614M & 1.2G interference analyzer
JD780B065-FL	•
JD780B068-FL	RFoCPRI GSM interference analyzer
JD780B070-FL	RFoOBSAI 768M interference analyzer
JD780B071-FL	RFoOBSAI 1.5G interference analyzer
JD780B072-FL	RFoOBSAI 3.1G interference analyzer
JD780B073-FL	RFoOBSAI 6.1G interference analyzer
JD780B081-FL	RFoCPRI LTE-FDD signal generator
JD780B082-FL	RFoCPRI LTE-TDD signal generator
JD780B083-FL	RFoCPRI LTE-FDD multi carrier signal generator
JD780B084-FL	RFoCPRI LTE-TDD multi carrier signal generator
JD780B086-FL	RFoOBSAI LTE-FDD signal generator
JD780B091-FL	RFoCPRI LTE-FDD signal analyzer
JD780B092-FL	RFoCPRI LTE-TDD signal analyzer
JD780B096-FL	RFoOBSAI LTE-FDD signal analyzer
JD780B101-FL	ALU BBU emulation

Standard Accessories

JD700	50008	USB Wi-Fi Dongle ⁶
JD700	50326	AC/DC Power Adapter for JD700B Series ⁶
G7105	550335	Cross LAN Cable (1.5 m) ⁶
GC730	050515	USB A to B Cable (1.8 m) 6
GC724	450518	> 1 G Byte USB Memory ⁶
G7105	550325	Rechargeable Lithium Ion Battery ⁶
G7105	550323	Automotive Cigarette Lighter 12 V DC Adapter ⁶
G7105	550316	Stylus Pen ⁶

761

JD700B361 JD700B Series User's Guide and Application Software – CD

¹ Requires dual port calibration kit
 ² Requires RFoCPRI or RFoOBSAI options
 ³ Highly recommended adding JD788B010
 ⁴ Highly recommended adding G70005035x and/or G70005036x
 ⁵ Requires proper SFP/SFP+ transceiver and optical pad
 ⁶ Standard accessories can be purchased separately.
 ⁷ Requires G700050380

(Requires option 08)

JD745B Base Station Analyzer

JD745B

100 kHz to 4 GHz Spectrum Analyzer

5 MHz to 4 GHz Cable and Antenna Analyzer ¹

5 141112 to 1 G112	Cable and threeling that year	
10 MHz to 4 GHz	RF Power Meter	Internal mode
Options		
NOTE: Upgrade option	ns for the JD745B use the designation JD745BU before	the respective last three-digit option number.
JD745B001	2-Port Transmission Measurements ²	
JD745B002	Bias Tee	(Requires option 01)
JD745B003	CW Signal Generator	
JD745B008	Optical Hardware ³	
JD745B010	GPS Receiver and Antenna	
JD745B011	Interference Analyzer 4,5	
JD745B012	Channel Scanner	
JD745B013	Bluetooth Connectivity	
JD745B014	LTE-FDD RAN Performance Indicator	
JD745B015	LTE-TDD RAN Performance Indicator	
JD745B016	Wi-Fi Connectivity	
JD745B020	cdmaOne/cdma2000 Signal Analyzer	
JD745B021	EV-DO Signal Analyzer	(Requires option 20)
JD745B022	GSM/GPRS/EDGE Signal Analyzer	
JD745B023	WCDMA/HSPA+ Signal Analyzer	
JD745B025	TD-SCDMA Signal Analyzer	
JD745B026	Mobile WiMAX Signal Analyzer	
JD745B028	LTE-FDD Signal Analyzer	
JD745B029	LTE-TDD Signal Analyzer	
JD745B030	LTE Advanced-FDD Signal Analyzer	(Requires option 28)
JD745B031	LTE Advanced-TDD Signal Analyzer	(Requires option 29)
JD745B032	LTE-FDD 256Q AM Demodulator	(Requires options 28 and 30)
JD745B033	LTE-TDD 256Q AM Demodulator	(Requires options 29 and 31)
JD745B040	cdmaOne/cdma2000 OTA Analyzer ⁵	(Requires option 10)
JD745B041	EV-DO OTA Analyzer ⁵	(Requires option 10)
JD745B042	GSM/GPRS/EDGE OTA Analyzer ⁵	(Requires option 10)
JD745B043	WCDMA/HSPA+ OTA Analyzer ⁵	(Requires option 10)
JD745B045	TD-SCDMA OTA Analyzer ⁵	(Requires option 10)
JD745B046	Mobile WiMAX OTA Analyzer ⁵	(Requires option 10)
JD745B048	LTE-FDD OTA Analyzer 5	(Requires option 10)
JD745B049	LTE-TDD OTA Analyzer 5	(Requires option 10)
ID74ED0E0	ENAE A L O	•

JD745B050

JD745B060

JD745B061

JD745B062

JD745B063

JD745B064

JD745B065

JD745B068

JD745B070

EMF Analyzer 8

RFoCPRI 614M & 1.2G Interference Analyzer ⁶

RFoCPRI 2.4G Interference Analyzer ⁶

RFoCPRI 3.1G Interference Analyzer ⁶

RFoCPRI 4.9G Interference Analyzer ⁶

RFoCPRI 6.1G Interference Analyzer ⁶

RFoCPRI 9.8G Interference Analyzer ⁶

RFoCPRI GSM Interference Analyzer ⁶

RFoOBSAI 768M Interference Analyzer ⁶

107450074	DE 000114 E01 + 1 - 6	(5 :
JD745B071	RFoOBSAI 1.5G Interference Analyzer ⁶	(Requires option 08)
JD745B072	RFoOBSAI 3.1G Interference Analyzer ⁶	(Requires option 08)
JD745B073	RFoOBSAI 6.1G Interference Analyzer ⁶	(Requires option 08)
JD745B081	RFoCPRI LTE-FDD Signal Generator ⁶	(Requires options 08, 60-65)
JD745B082	RFoCPRI LTE-TDD Signal Generator ⁶	(Requires options 08, 60-65)
JD745B083	RFoCPRI LTE-FDD Multi Carrier Signal Generator ⁶	(Requires options 08, 60-65)
JD745B084	RFoCPRI LTE-TDD Multi Carrier Signal Generator ⁶	(Requires options 08, 60-65)
JD745B086	RFoOBSAI LTE-FDD Signal Generator ⁶	(Requires options 08, 70-73)
JD745B091	RFoCPRI LTE-FDD Signal Analyzer ⁶	(Requires options 08, 60-65)
JD745B092	RFoCPRI LTE-TDD Signal Analyzer ⁶	(Requires options 08, 60-65)
JD745B096	RFoOBSAI LTE-FDD Signal Analyzer ⁶	(Requires options 08, 70-73)
JD745B101	Alcatel-Lucent BBU Emulation ⁶	(Requires options 08)
JD788B200	Calibration Service for Asia, North America	
JD788B201	Calibration Service for Latin America, EMEA	
JD788B250	Warranty extension of 1 year for Asia, North Ame	rica
JD788B251	Warranty extension of 1 year for Latin America, E	MEA
JD780B001-FL	2 Port Transmission Measurements	
JD780B010-FL	GPS receiver and antenna	
JD780B011-FL	Interference Analyzer	
JD780B012-FL	Channel Scanner	
JD780B013-FL	Bluetooth connectivity	
JD780B014-FL	LTE-FDD RAN performance	
JD780B015-FL	LTE-TDD RAN performance	
JD780B016-FL	Wi-Fi connectivity	
JD780B020-FL	cdmaOne/cdma2000 Analyzer	
JD780B021-FL	EV-DO Analyzer	
JD780B022-FL	GSM/GPRS/EDGE Analyzer	
JD780B023-FL	WCDMA/HSPA+ analyzer	
JD780B025-FL	TD-SCDMA Analyzer	
JD780B026-FL	Mobile WiMAX Analyzer	
JD780B028-FL	LTE - FDD Analyzer	
JD780B029-FL	LTE - TDD Analyzer	
JD780B030-FL	LTE Advanced - FDD Analyzer	
JD780B031-FL	LTE Advanced - TDD Analyzer	
JD780B032-FL	LTE-FDD 256 QAM Demodulator	
JD780B033-FL	LTE-TDD 256 QAM Demodulator	
JD780B040-FL	GSM/GPRS/EDGE OTA	
JD780B041-FL	WCDMA/HSPA+ OTA	
JD780B042-FL	TD-SCDMA OTA	
JD780B043-FL	Mobile WiMAX OTA	
JD780B045-FL	LTE - FDD OTA	
JD780B046-FL	LTE - TDD OTA	
JD780B048-FL	cdmaOne/cdma2000 OTA	
JD780B049-FL	EV-DO OTA	
JD780B050-FL	EMF Analyzer	
JD780B060-FL	RFoCPRI 2.4G interference analyzer	
JD780B061-FL	RFoCPRI 3.1G interference analyzer	
JD780B062-FL	RFoCPRI 4.9G interference analyzer	
JD780B063-FL	RFoCPRI 6.1G interference analyzer	
JD780B064-FL	RFoCPRI 9.8G interference analyzer	
JD780B065-FL	RFoCPRI 614M & 1.2G interference analyzer	
JD780B068-FL	RFoCPRI GSM interference analyzer	
JD780B070-FL	RFoOBSAI 768M interference analyzer	
JD780B071-FL	RFoOBSAI 1.5G interference analyzer	
JD780B072-FL	RFoOBSAI 3.1G interference analyzer	
JD780B073-FL	RFoOBSAI 6.1G interference analyzer	
JD780B081-FL	RFoCPRI LTE-FDD signal generator	
JD780B082-FL	RFoCPRI LTE-TDD signal generator	

JD780B083-FL	RFoCPRI LTE-FDD multi carrier signal generator
JD780B084-FL	RFoCPRI LTE-TDD multi carrier signal generator
JD780B086-FL	RFoOBSAI LTE-FDD signal generator
JD780B091-FL	RFoCPRI LTE-FDD signal analyzer
JD780B092-FL	RFoCPRI LTE-TDD signal analyzer
JD780B096-FL	RFoOBSAI LTE-FDD signal analyzer
JD780B101-FL	ALU BBU emulation

Standard Accessories	
JD70050008	USB Wi-Fi Dongle ⁷
JD70050326	AC/DC Power Adapter for JD700B Series ⁷
G710550335	Cross LAN Cable (1.5 m) ⁷
GC73050515	USB A to B Cable (1.8 m) ⁷
GC72450518	> 1 G Byte USB Memory ⁷
G710550325	Rechargeable Lithium Ion Battery ⁷
G710550323	Automotive Cigarette Lighter 12 V DC Adapter ⁷
G710550316	Stylus Pen ⁷
JD700B361	JD700B Series User's Guide and Application Software – CD

¹Requires calibration kit ²Requires dual port calibration kit ³Requires RFoCPRI or RFoOBSAI options ⁴Highly recommended adding JD745B010 ⁵Highly recommended adding G70005035x and/or G70005036x ⁶Requires proper SFP/SFP+ transceiver and optical tap. ⁷Standard accessories can be purchased separately. ⁸Requires G700050380

JD746B RF Analyzer

_		
JD746B		

100 kHz to 4 GHz Spectrum Analyzer

5 MHz to 4 GHz Cable and Antenna Analyzer ¹

3 141112 (0 1 0112	easie and Antenna Analyzer	
10 MHz to 4 GHz	RF Power Meter	Internal mode
Options		
NOTE: Upgrade option	ns for the JD746B use the designation JD746BU before the re	espective last three-digit option number.
JD746B001	2-Port Transmission Measurements ²	
JD746B002	Bias Tee	(Requires option 01)
JD746B003	CW Signal Generator	
JD746B008	Optical Hardware ³	
JD746B010	GPS Receiver and Antenna	
JD746B011	Interference Analyzer ^{4,5}	
JD746B012	Channel Scanner	
JD746B013	Bluetooth Connectivity	
JD746B016	Wi-Fi Connectivity	
JD746B050	EMF Analyzer 8	
JD746B060	RFoCPRI 614M & 1.2G Interference Analyzer 6	(Requires option 08)
JD746B061	RFoCPRI 2.4G Interference Analyzer ⁶	(Requires option 08)
JD746B062	RFoCPRI 3.1G Interference Analyzer ⁶	(Requires option 08)
JD746B063	RFoCPRI 4.9G Interference Analyzer ⁶	(Requires option 08)
JD746B064	RFoCPRI 6.1G Interference Analyzer ⁶	(Requires option 08)
JD746B065	RFoCPRI 9.8G Interference Analyzer ⁶	(Requires option 08)
JD746B068	RFoCPRI GSM Interference Analyzer ⁶	(Requires option 08)
JD746B070	RFoOBSAI 768M Interference Analyzer ⁶	(Requires option 08)
JD746B071	RFoOBSAI 1.5G Interference Analyzer ⁶	(Requires option 08)
JD746B072	RFoOBSAI 3.1G Interference Analyzer ⁶	(Requires option 08)
JD746B073	RFoOBSAI 6.1G Interference Analyzer ⁶	(Requires option 08)

JD746B081 JD746B082 JD746B083	RFoCPRI LTE-FDD Signal Generator ⁶ RFoCPRI LTE-TDD Signal Generator ⁶ RFoCPRI LTE-FDD Multi Carrier Signal Generator ⁶	(Requires options 08, 60-65) (Requires options 08, 60-65) (Requires options 08, 60-65)
JD746B084	RFoCPRI LTE-TDD Multi Carrier Signal Generator ⁶	(Requires options 08, 60-65)
JD746B086	RFoOBSAI LTE-FDD Signal Generator ⁶	(Requires options 08, 70-73)
JD746B101	Alcatel-Lucent BBU Emulation ⁶	(Requires options 08)
JD786B200	Calibration Service for Asia, North America	
JD786B201	Calibration Service for Latin America, EMEA	
JD786B250	Warranty extension of 1 year for Asia, North America	ca
JD786B251	Warranty extension of 1 year for Latin America, EM	EA
JD780B001-FL	2 Port Transmission Measurements	
JD780B010-FL	GPS receiver and antenna	
JD780B011-FL	Interference Analyzer	
JD780B012-FL	Channel Scanner	
JD780B013-FL	Bluetooth connectivity	
JD780B016-FL	Wi-Fi connectivity	
JD780B050-FL	EMF Analyzer	
JD780B060-FL	RFoCPRI 2.4G interference analyzer	
JD780B061-FL	RFoCPRI 3.1G interference analyzer	
JD780B062-FL	RFoCPRI 4.9G interference analyzer	
JD780B063-FL	RFoCPRI 6.1G interference analyzer	
JD780B064-FL	RFoCPRI 9.8G interference analyzer	
JD780B065-FL	RFoCPRI 614M & 1.2G interference analyzer	
JD780B068-FL	RFoCPRI GSM interference analyzer	
JD780B070-FL	RFoOBSAI 768M interference analyzer	
JD780B071-FL	RFoOBSAI 1.5G interference analyzer	
JD780B072-FL	RFoOBSAI 3.1G interference analyzer	
JD780B073-FL	RFoOBSAI 6.1G interference analyzer	
JD780B081-FL	RFoCPRI LTE-FDD signal generator	
JD780B082-FL	RFoCPRI LTE-TDD signal generator	
JD780B083-FL	RFoCPRI LTE-FDD multi carrier signal generator	
JD780B084-FL	RFoCPRI LTE-TDD multi carrier signal generator	
JD780B086-FL	RFoOBSAI LTE-FDD signal generator	
JD780B101-FL	ALU BBU emulation	

Standard Accessories

JD70050008	USB Wi-Fi Dongle ⁷
JD70050326	AC/DC Power Adapter for JD700B Series 7
G710550335	Cross LAN Cable (1.5 m) ⁷
GC73050515	USB A to B Cable (1.8 m) 7
GC72450518	> 1 G Byte USB Memory ⁷
G710550325	Rechargeable Lithium Ion Battery ⁷
G710550323	Automotive Cigarette Lighter 12 V DC Adapter 7
G710550316	Stylus Pen ⁷
JD700B361	JD700B Series User's Guide and Application Software – CD

¹ Requires calibration kit ² Requires dual port calibration kit ³ Requires RFoCPRI or RFoOBSAI options ⁴ Highly recommended adding JD746B010 ⁵ Highly recommended adding G70005035x and/or G70005036x ⁶ Requires proper SFP/SFP+ transceiver and optical tap ⁷ Standard accessories can be purchased separately. ⁸ Requires G700050380

JD748B Signal Analyzer

JD748B	
100 kHz to 4 GHz	Spectrum Analyzer

10 MHz to 4 GHz RF Power Meter Internal mode

Options	a faultha ID740D was the designation ID740DII hafana	the managerative least those adjets emition
	s for the JD748B use the designation JD748BU before	the respective last three-digit option
number. JD748B001	2-Port Transmission Measurements ¹	(Requires option 07)
JD748B001 JD748B003	CW Signal Generator	(Requires option 07)
JD748B003 JD748B007	Signal Generator Signal Generator Hardware	(Requires option 07)
JD748B007 JD748B008	Optical Hardware ²	
JD748B009	20 MHz Demodulation Hardware	
JD748B010	GPS Receiver and Antenna	
JD748B010 JD748B011	Interference Analyzer ^{3,4}	
JD748B011 JD748B012	Channel Scanner	
JD748B012 JD748B013	Bluetooth Connectivity	
JD748B014	LTE-FDD RAN Performance Indicator	
JD748B015	LTE-TDD RAN Performance Indicator	
JD748B016	Wi-Fi Connectivity	
JD748B020	cdmaOne/cdma2000 Signal Analyzer	(Requires option 09)
JD748B021	EV-DO Signal Analyzer	(Requires options 09 and 20)
JD748B022	GSM/GPRS/EDGE Signal Analyzer	(Requires option 09)
JD748B023	WCDMA/HSPA+ Signal Analyzer	(Requires option 09)
JD748B025	TD-SCDMA Signal Analyzer	(Requires option 09)
JD748B026	Mobile WiMAX Signal Analyzer	(Requires option 09)
JD748B028	LTE-FDD Signal Analyzer	(Requires option 09)
JD748B029	LTE-TDD Signal Analyzer	(Requires option 09)
JD748B030	LTE Advanced-FDD Signal Analyzer	(Requires options 09 and 28)
JD748B031	LTE Advanced-TDD Signal Analyzer	(Requires options 09 and 29)
JD748B032	LTE-FDD 256 QAM Demodulator	(Requires options 09, 28 and 30)
JD748B033	LTE-TDD 256 QAM Demodulator	(Requires options 09, 29 and 31)
JD748B040	cdmaOne/cdma2000 OTA Analyzer ⁴	(Requires options 09 and 10)
JD748B041	EV-DO OTA Analyzer ⁴	(Requires options 09 and 10)
JD748B042	GSM/GPRS/EDGE OTA Analyzer ⁴	(Requires options 09 and 10)
JD748B043	WCDMA/HSPA+ OTA Analyzer ⁴	(Requires options 09 and 10)
JD748B045	TD-SCDMA OTA Analyzer ⁴	(Requires options 09 and 10)
JD748B046	Mobile WiMAX OTA Analyzer ⁴	(Requires options 09 and 10)
JD748B048	LTE-FDD OTA Analyzer ⁴	(Requires options 09 and 10)
JD748B049	LTE-TDD OTA Analyzer ⁴	(Requires options 09 and 10)
JD748B050	EMF Analyzer ⁷	(nequires options as and 10)
JD748B060	RFoCPRI 614M & 1.2G Interference Analyzer ⁵	(Requires option 08)
JD748B061	RFoCPRI 2.4G Interference Analyzer ⁵	(Requires option 08)
JD748B062	RFoCPRI 3.1G Interference Analyzer ⁵	(Requires option 08)
JD748B063	RFoCPRI 4.9G Interference Analyzer ⁵	(Requires option 08)
JD748B064	RFoCPRI 6.1G Interference Analyzer ⁵	(Requires option 08)
JD748B065	RFoCPRI 9.8G Interference Analyzer ⁵	(Requires option 08)
JD748B068	RFoCPRI GSM Interference Analyzer ⁵	(Requires option 08)
JD748B070	RFoOBSAI 768M Interference Analyzer ⁵	(Requires option 08)
JD748B071	RFoOBSAI 1.5G Interference Analyzer ⁵	(Requires option 08)
JD748B072	RFoOBSAI 3.1G Interference Analyzer ⁵	(Requires option 08)
JD748B073	RFoOBSAI 6.1G Interference Analyzer ⁵	(Requires option 08)
JD748B081	RFoCPRI LTE-FDD Signal Generator ⁵	(Requires options 08, 60-65)
JD748B082	RFoCPRI LTE-TDD Signal Generator ⁶	(Requires options 08, 60-65)
JD748B083	RFoCPRI LTE-FDD Multi Carrier Signal Generator ⁵	(Requires options 08, 60-65)
JD748B084	RFoCPRI LTE-TDD Multi Carrier Signal Generator ⁶	(Requires options 08, 60-65)
JD748B086	RFoOBSAI LTE-FDD Signal Generator ⁶	(Requires options 08, 70-73)
JD748B091	RFoCPRI LTE-FDD Signal Analyzer ⁵	(Requires options 08, 60-65)
JD748B092	RFoCPRI LTE-TDD Signal Analyzer ⁶	(Requires options 08, 60-65)
JD748B096	RFoOBSAI LTE-FDD Signal Analyzer ⁶	(Requires options 08, 70-73)
JD788B101	Alcatel-Lucent BBU Emulation ⁶	(Requires options 08)
-		(1 1

JD788B200	Calibration Service for Asia, North America
JD788B201	Calibration Service for Latin America, EMEA
JD788B250	Warranty extension of 1 year for Asia, North America
JD788B251	Warranty extension of 1 year for Latin America, EMEA
JD780B001-FL	2 Port Transmission Measurements
JD780B010-FL	GPS receiver and antenna
JD780B011-FL	Interference Analyzer
JD780B012-FL	Channel Scanner
JD780B013-FL	Bluetooth connectivity
JD780B014-FL	LTE-FDD RAN performance
JD780B015-FL	LTE-TDD RAN performance
JD780B016-FL	Wi-Fi connectivity
JD780B020-FL	cdmaOne/cdma2000 Analyzer
JD780B021-FL	EV-DO Analyzer
JD780B022-FL	GSM/GPRS/EDGE Analyzer
JD780B023-FL	WCDMA/HSPA+ analyzer
JD780B025-FL	TD-SCDMA Analyzer
JD780B026-FL	Mobile WiMAX Analyzer
JD780B028-FL	LTE - FDD Analyzer
JD780B029-FL	LTE - TDD Analyzer
JD780B030-FL	LTE Advanced - FDD Analyzer
JD780B031-FL	LTE Advanced - TDD Analyzer
JD780B032-FL	LTE-FDD 256 QAM Demodulator
JD780B033-FL	LTE-TDD 256 QAM Demodulator
JD780B040-FL	GSM/GPRS/EDGE OTA
JD780B041-FL	WCDMA/HSPA+ OTA
JD780B042-FL	TD-SCDMA OTA
JD780B043-FL	Mobile WiMAX OTA
JD780B045-FL	LTE - FDD OTA
JD780B046-FL	LTE - TDD OTA
JD780B048-FL	cdmaOne/cdma2000 OTA
JD780B049-FL	EV-DO OTA
JD780B050-FL	EMF Aalyzer
JD780B060-FL	RFoCPRI 2.4G interference analyzer
JD780B061-FL	RFoCPRI 3.1G interference analyzer
JD780B062-FL	RFoCPRI 4.9G interference analyzer
JD780B063-FL	RFoCPRI 6.1G interference analyzer
JD780B064-FL	RFoCPRI 9.8G interference analyzer
JD780B065-FL	RFoCPRI 614M & 1.2G interference analyzer
JD780B070-FL	RFoOBSAI 768M interference analyzer
JD780B071-FL	RFoOBSAI 1.5G interference analyzer
JD780B072-FL	RFoOBSAI 3.1G interference analyzer
JD780B073-FL	RFoOBSAI 6.1G interference analyzer
JD780B081-FL	RFoCPRI LTE-FDD signal generator
JD780B082-FL	RFoCPRI LTE-TDD signal generator
JD780B083-FL	RFoCPRI LTE-FDD multi carrier signal generator
JD780B084-FL	RFoCPRILITE-TDD multi carrier signal generator
JD780B086-FL	RFoOBSAI LTE-FDD signal generator
JD780B091-FL	RFoCPRI LTE-FDD signal analyzer
JD780B092-FL	RFoCPRILITE-TDD signal analyzer
JD780B096-FL	RFoOBSAI LTE-FDD signal analyzer
JD780B101-FL	ALU BBU emulation
Standard Accessories	
JD70050008	USB Wi-Fi Dongle ⁶
JD70050326	AC/DC Power Adapter for JD700B Series ⁶
G710550335	Cross LAN Cable (1.5 m) ⁶
GC73050515	USB A to B Cable (1.8 m) ⁶

GC72450518	> 1 G Byte USB Memory ⁶
G710550325	Rechargeable Lithium Ion Battery ⁶
G710550323	Automotive Cigarette Lighter 12 V DC Adapter ⁶
G710550316	Stylus Pen ⁶
JD700B361	JD700B Series User's Guide and Application Software – CD

¹ Requires dual port calibration kit
 ² Requires RFoCPRI or RFoOBSAI options
 ³ Highly recommended adding JD748B010
 ⁴ Highly recommended adding G70005035x and/or G70005036x
 ⁵ Requires proper SFP/SFP+ transceiver and optical pad
 ⁶ Standard accessories can be purchased separately.
 ⁷ Requires G700050380

JD700B Series Common Options

Optional RF Power Sensors		
JD731B	Directional Power Sensor, Peak and Average power 300 to 3800 MHz	
JD732B	Terminating Power Sensor, Average Power 20 to 3800 MHz	
JD733A	Directional Power Sensor, Peak and Average power 150 to 3500 MHz	
JD734B	Terminating Power Sensor, Peak power 20 to 3800 MHz	
JD736B	Terminating Power Sensor, Dual (Average/Peak) power 20 to 3800 MHz	

Optional Optical Power Meters		
MP-60A	USB Optical Power Meter, with software, 2.5 mm and 1.25 mm interfaces, 30" USB extender, carrying pouch	
MP-80A	USB Optical Power Meter-High Power, with software, 2.5 mm and 1.25 mm interfaces, 30" USB extender, carrying pouch	

Optional Fiber Mic	croscope Kits
FBP-SD101	FBP-P5000i Digital Probe, FiberChekPRO SW, Case, and 4 Tips
FBP-MTS-101	FBP-P5000i Digital Probe, FiberChekPRO SW, Case, and 7 Tips
FIT-SD103	FBP-P5000i Digital Probe, MP-60A USB Power Meter, FiberChekPRO SW, Case, Tips and Adapters
FIT-SD103-C	FBP-P5000i Digital Probe, MP-60A USB Power Meter, FiberChekPRO SW, Case, Tips and Adapters
FIT-SD113	FBP-P5000i Digital Probe, MP-80A USB Power Meter, FiberChekPRO SW, Case, Tips and Adapters

Optional RF Cables	
G710050530	RF Cable DC to 8 GHz Type-N(m) to Type-N(m), 1.0 m
G710050531	RF Cable DC to 8 GHz Type-N(m) to Type-N(f), 1.5 m
G710050532	RF Cable DC to 8 GHz Type-N(m) to Type-N(f), 3.0 m
G710050533	RF Cable DC to 18 GHz Type-N(m) to SMA(m), 1.5 m
G710050534	RF Cable DC to 18 GHz Type-N(m) to QMA(m), 1.5 m
G710050535	RF Cable DC to 18 GHz Type-N(m) to SMB(m),1.5 m
G710050536	RF Cable DC to 6 GHz Type-N(m) to DIN(f), 1.5 m
G710050537	RF Cable DC to 4 GHz Type-N(m) to 1.0/2.3 (m), 1.5 m
G700050540	Phase-Stable RF Cable w Grip DC to 6 GHz Type-N(m) to Type-N(f), 1.5 m
G700050541	Phase-Stable RF Cable w Grip DC to 6 GHz Type-N(m) to DIN(f), 1.5 m

Optional Optic Ca	ables
G700050401	SM/LC T-Jumper and 1.5 m fiber cable
G700050402	MM/LC T-Jumper and 1.5 m fiber cable

Optional Antennas	
G700050353	RF Omni Antenna Type-N(m), 806 MHz to 896 MHz
G700050354	RF Omni Antenna Type-N(m), 870 MHz to 960 MHz
G700050355	RF Omni Antenna Type-N(m), 1.71 GHz to 2.17 GHz
G700050356	RF Omni Antenna Type-N(m), 720 MHz to 800 MHz
G700050357	RF Omni Antenna Type-N(m), 2.3 GHz to 2.7 GHz
G700050363	RF Yagi Antenna Type-N(f), 1.75 GHz to 2.39 GHz, 9.8 dBd
G700050364	RF Yagi Antenna Type-N(f), 806 MHz to 896 MHz, 10.2 dBd
G700050365	RF Yagi Antenna Type-N(f), 866 MHz to 960 MHz, 10.2 dBd
G700050366	RF Log-periodic Antenna SMA(f), 700 MHz to 4 GHz, 1.85 dBd
G700050367	RF Log-periodic Antenna SMA(f), 700 MHz to 6 GHz, 2.85 dBd
G700050380	Isotropic Antenna Type-N(m), 70 MHz to 3 GHz

Optional RF Adapter	'S
G700050571	Adapter Type-N(m) to DIN(f), DC to 7.5 GHz, 50 Ω
G700050572	Adapter DIN(m) to DIN(m), DC to 7.5 GHz, 50 Ω
G700050573	Adapter Type-N(m) to SMA(f) DC to 18 GHz, 50 Ω
G700050574	Adapter Type-N(m) to BNC(f), DC to 4 GHz, 50 Ω
G700050575	Adapter Type-N(f) to Type-N(f), DC to 18 GHz, 50 Ω
G700050576	Adapter Type-N(m) to DIN(m), DC to7.5 GHz, 50 Ω
G700050577	Adapter Type-N(f) to DIN(f), DC to 7.5 GHz, 50 Ω
G700050578	Adapter Type-N(f) to DIN(m), DC to 7.5 GHz, 50 Ω
G700050579	Adapter DIN(f) to DIN(f), DC to 7.5 GHz, 50 Ω
G700050580	Adapter Type-N(m) to Type-N(m), DC to 11 GHz, 50 Ω
G700050581	Adapter N(m) to QMA(f), DC to 6.0 GHz, 50 Ω
G700050582	Adapter N(m) to QMA(m), DC to 6.0 GHz, 50 Ω
G700050583	Adapter N(m) to 4.1/9.5 MINI DIN (f), DC to 6.0 GHz, 50 Ω
G700050584	Adapter N(m) to 4.1/9.5 MINI DIN (m), DC to 6.0 GHz, 50 Ω
G700050585	Adapter N(m) to 4.3-10 (f), DC to 6.0 GHz, 50 ohm
G700050586	Adapter N(m) to 4.3-10 (m), DC to 6.0 GHz, 50 ohm

StrataSync Subscription	
SS-CA-BSA-AM-01	StrataSync for CellAdvisor BSA - Asset Management-1 Yr.
SS-CA-BSA-TDM-01	StrataSync for CellAdvisor BSA - Test Data Management-1 Yr.
SS-CA-RFA-AM-01	StrataSync for CellAdvisor RFA - Asset Management-1 Yr.
SS-CA-RFA-TDM-01	StrataSync for CellAdvisor RFA - Test Data Management-1 Yr.
SS-CA-SA-AM-01	StrataSync for CellAdvisor SA - Asset Management-1 Yr.
SS-CA-SA-TDM-01	StrataSync for CellAdvisor SA - Test Data Management-1 Yr.

Optional Miscellane	OUIS
G710050581	Attenuator 40 dB, 100 W, DC to 4 GHz (Unidirectional)
G710050585	RF Directional Coupler, 700 to 4000 MHz, 30 dB, 50 W
0, 1000000	Input/Output; Type-N(m) to Type-N(f), Tap Off; Type-N(f) ¹
G710050586	RF combiner, 700 to 4000 MHz, Type-N(f) to Type-N(m) ¹
G710050587	4x1 RF combiner, 700 to 4000 MHz, Type-N(f) to Type-N(m) ²
G700050601	Bandpass filter 696 MHz to 716 MHz, N(m) to N(f), 50 ohm
G700050602	Bandpass filter 776 MHz to 788 MHz, N(m) to N(f), 50 ohm
G700050603	Bandpass filter 806 MHz to 849 MHz, N(m) to N(f), 50 ohm
G700050604	Bandpass filter 1710 MHz to 1755 MHz, N(m) to N(f), 50 ohm
G700050605	Bandpass filter 1850 MHz to 1910 MHz, N(m) to N(f), 50 ohm
JD74050341	Soft carrying case
JD71050342	Hard Carrying Case
JD70050342	Hard Carrying Case with wheels
JD70050343	CellAdvisor Backpack Carrying Case
JD70050006	USB Bluetooth Dongle and 5 dBi Dipole Antenna

Appendix

JD70050007	AntennaAdvisor Handle ³
JD71050351	GPS Antenna for JD740 and JD780 Series
G710550324	External Battery Charger
JD700B362	JD700B Series User's Guide – Printed Version

 $^1\mathrm{Highly}$ recommended for LTE testing $^2\mathrm{Highly}$ recommended for LTE Advanced testing $^3\mathrm{Requires}$ G700050366 or G700050367 RF Log-Periodic Antenna

Appendix J - RoHS information

This appendix describes the RoHS (Restriction of Hazardous Substances) information, which is a mandatory requirement from China. The RoHS directive consists in the restriction on the use of certain hazardous substances in electrical or electronic equipment sold or used in the European Union, after July 1, 2006. These substances are: lead, mercury, cadmium, hexavalent chromium, polybrominated biphenyls, and polybrominated diphenyl ethers.

JD780B series

Concerned products: JD785B, JD786B, JD788B

"中国 RoHS" 《电子信息产品污染控制管理办法》(信息产业部,第 39 号)

附录 (Additional Information required for the Chinese Market only)

本附录按照"中国 RoHS"的要求说明了有关电子信息产品环保使用期限的情况,并列出了产品中含有的有毒、有害物质的种类和所在部件。本附录适用于产品主体和所有配件。

产品系列: JD780B

(Product Family)

环保使用期限:

本标识标注于产品主体之上。表明该产品或其配件含有有毒、有害物质(详情见下表)。

其中的数字代表在正常操作条件下至少在产品生产日期之后数年内该产品或其配件内含有的有毒、有害物质不会变异或泄漏。该期限不适用于诸如电池等易耗品。

有关正常操作条件。请参见产品用户手册。

产品生产日期请参见产品的原始校准证书。

有毒、有害物质的类型和所在部件

	<u>有毒、有害物质和元素</u>					
元器件 (Component)	铅(Pb)	汞 (Hg)	镉(Cd)	六价铬(CR ⁵⁺)	多溴联苯(PBB)	多溴二苯醛 (PBDE)
<u>产品主体</u> (Main Product)						
印刷电路板组件 (PCB Assemblies) 内部配线	X	0	0	0	0	0
内部配线 (Internal wiring) 显示器	0	0	0	0	O	0
(Display)	О	0	0	0	O	0
键盘 (Keypad)	0	0	0	0	O	0
电池 (Batteries)	0	0	0	0	О	0
电工零件 (Electro-mechanical parts) 金属外壳零件和紧扣件	0	0	0	0	О	0
金属外壳零件和紧扣件 (Metal case parts and fixings) 塑料外壳零件	0	0	0	0	О	0
型料外壳等件 (Plastic case parts) 标签和胶带	О	0	0	0	O	0
(Labels and tapes)	О	0	0	0	O	0
配件 (Accessories)						
外接电缆和道配器 (External cables and adapters)	X	0	0	О	x	X
USB 记忆 (USB Memory)	X	0	0	0	0	0
手册和其它印刷材料 (Handbooks and other printed material)	0	0	0	0	0	0
包装箱和缚带 (Carrying case and strap)	0	0	0	0	0	0
(Carrying case and strap) 其它配件 (Other accessories)	X	0	0	0	X	X
AC/DC 电源道配器 (AC/DC Power Adapters)	0	0	0	0	0	0

O:代表该部分中所有均质材料含有的该有毒、有害物质含量低于 SJ/T11363-2006 标准的限值。

X: 代表该部分中所有均质材料含有的该有毒、有害物质含量高于 SJ/T11363-2006 标准的限值。

JD740B series

Concerned products: JD745B, JD746B, JD748B

"中国 RoHS" 《电子信息产品污染控制管理办法》(信息产业部,第 39 号)

附录 (Additional Information required for the Chinese Market only)

本附录按照"中国 RoHS"的要求说明了有关电子信息产品环保使用期限的情况,并列出了产品中含有的有毒、有害物质的种类和所在部件。本附录适用于产品主体和所有配件。

<u>产品系列: JD740B</u>

Denduct Comity

环保使用期限:

本标识标注于产品主体之上,表明该产品或其配件含有有毒、有害物质(详情见下表)。 其中的数字代表在正常操作条件下至少在产品生产日期之后数年内该产品或其配件内含有的有毒、有害物质不会变异或泄漏。该期限不适用于诸如电池等易耗品。

有关正常操作条件, 请参见产品用户手册。

产品生产日期请参见产品的原始校准证书。

有毒、有害物质的类型和所在部件

	<u>有毒、有害物质和元素</u>					
元器件 (Component)	铅(Pb)	汞 (Hg)	镉(Cd)	六价铬(CR ^{S*})	多溴联苯(PBB)	多溴二苯醛 (PBDE)
产品主体 (Main Product)						
印刷电路板组件 (PCB Assemblies)	X	0	0	0	0	0
内部配线 (Internal wiring) 显示器	0	0	0	О	0	0
(Display)	0	0	0	О	0	0
键盘 (Keypad)	0	0	0	0	0	0
电池 (Batterles)	0	0	0	0	0	0
电工零件 (Electro-mechanical parts)	0	0	0	О	0	0
金属外壳零件和紧扣件 (Metal case parts and fixings) 塑料外壳零件	0	0	0	0	0	0
塑料外壳零件 (Plastic case parts) 标签和胶带	0	0	0	0	0	0
标签和胶带 (Labels and tapes)	0	0	0	О	0	0
配件 (Accessories)						
外接电缆和适配器 (External cables and adapters)	x	0	0	0	х	х
USB 记忆 (USB Memory)	x	0	0	0	0	0
手册和其它印刷材料 (Handbooks and other printed material)	0	0	0	0	0	0
包披箱和缚带	0	0	0	0	0	0
(Carrying case and strap) 其它配件 (Other accessories)	X	0	0	0	Х	Х
AC/ DC 电源道配器 (AC/DC Power Adapters)	0	0	0	0	0	0

O: 代表该部分中所有均质材料含有的该有毒、有害物质含量低于 SJ/T11363-2006 标准的限值。

X: 代表该部分中所有均质材料含有的该有毒、有害物质含量高于 SJ/T11363-2006 标准的限值。

Appendix K - On-screen keyboard

You can use the on-screen keyboard to type in texts, file names, and folder names.

Adding or deleting letters

Procedure

- 1 Tap keys on the on-screen keyboard. As you type, each letter is displayed in the name field. If you want to change the letter case between uppercase and lowercase, tap the **Caps** key.
- 2 To delete a letter, tap the Back key on the keyboard or press the backspace key on the keypad.
- To move the cursor along the name field, tap the < or > key, turn the rotary knob, or touch in between letters in the name field.
- 4 To delete all the letters displayed in the name field, tap the Clear key on the on-screen keyboard.

Figure 433 On-screen keyboard

Editing or adding a custom keyword

You can edit and delete a keyword or add a new one, as you desire.

Procedure

- 1 Tap the Edit Keywords bar on the on-screen keyboard. The edit keywords keyboard appears.
- **2** To edit a keyword, select the keyword box and then change the letters.
- **3** To delete a keyword, select the keyword box and then tap the **Clear** key.
- **4** To add a keyword, select a blank keyword box and then type in a keyword.
- 5 Tap the **Save** key on the keyboard to save and continue saving.

Figure 434 Edit keywords keyboard

Appending a keyword

You can append a factory-stored or custom-defined keyword, as you want.

Procedure

- 1 Tap the Append Keywords bar on the on-screen keyboard. The append keywords window appears.
- 2 To append a keyword, complete the following steps:
 - Select the keyword tag button to view available keywords for the tag.
 - Select one keyword, from the following choices for each keyword tag:

Keyword tag	Keyword (tag value)
Site-ID*	SiteA, SiteB, and SiteC
Sector*	Alpha, Beta, and Gamma
Technology*	GSM900, WCDMA850, and LTE180
Test Type*	RL, VSWR, DTF-RL, DTF-VSWR, and CL
Termination*	Open, Load, and Antenna
Custom	Any keywords you have added

- **c** To delete the keyword you have added to the keyword field, tap the **Delete** button.
- d To clear the keyword field, tap the Clear button.
- 3 Optional. You can edit any of the custom keyword tags or tag values by tapping the Edit Tags Values or Edit Tags button, but not the factory keyword tags marked with the asterisk (*).

NOTE

You must keep the keywords marked with the asterisk (*) intact as the StrataSync server uses them when transferring data.

- 4 Select the **Separator** option from the choices: hyphen [-], underscore [_], and **None**.
- 5 Select the **As a filename** option between **On** and **Off**. If you select **Off**, the keyword will not be placed in a file name, but in the trace/PNG file information.
- 6 Tap the Save and Exit button to save and exit or the Keyboard button to return to the keyboard.

Figure 435 Append keywords window

Appendix L – Supported map display parameters

Your CellAdvisor instrument provides the RAN Performance Indicator feature in the LTE signal analyzer mode. Setting map display parameters that your instrument supports is important to have test results as you desire as the instrument supports RANAdvisor's map display parameters with limitations. Following table will help you select parameters properly by showing what are supported.

Parameter Category	Parameter Name	Support	Parameter Category	Parameter Name	Support
LTE Cell	Cell Name		LTE	N1 RSRP Rx(1) (dBm)	
Info	Cell Identity		Serving	N1 RSRP (dBm)	
Parameters	Physical Cell ID		and	N1 RSRQ (dB)	
	Tracking Area Code		Neighbor	N2 PCI	
	MCC		Parameters	N2 RSRP Rx(0) (dBm)	
	MNC		(continued)	N2 RSRP Rx(1) (dBm)	
	DL E-ARFCN			N2 RSRP (dBm)	
	UL E-ARFCN			N2 RSRQ (dB)	
	DL Bandwidth			N3 PCI	
	UL Bandwidth			N3 RSRP Rx(0) (dBm)	
	Band Indicator			N3 RSRP Rx(1) (dBm)	
	Allowed Access			N3 RSRP (dBm)	
	RLC Tx Throughput	YES		N3 RSRQ (dB)	
	RLC Rx Throughput	YES		N4 PCI	
	MAC Tx Throughput	YES		N4 RSRP Rx(0) (dBm)	
	MAX Rx Throughput	YES		N4 RSRP Rx(1) (dBm)	
	LTE Mode			N4 RSRP (dBm)	
	LTE TDD SF Assignment			N4 RSRQ (dB)	
	LTE TDD Special SF Patterns			N5 PCI	
	CQI CW0	YES		N5 RSRP Rx(0) (dBm)	
	CQI CW1	YES		N5 RSRP Rx(1) (dBm)	
LTE ML1	RSSI RX (0) (dBm)	YES		N5 RSRP (dBm)	
Serving Cell	RSSI RX (1) (dBm)	YES		N5 RSRQ (dB)	
Measurement	RSSI (dBm)	YES		N6 PCI	
	RSRP Rx(0) (dBm)	YES		N6 RSRP Rx(0) (dBm)	
	RSRP Rx(0) (dBm)	YES		N6 RSRP Rx(1) (dBm)	
	RSRP (dBm)	YES		N6 RSRP (dBm)	
	RSRQ Rx(0) (dBm)	YES	LTE Demod	PDSCH RNTI ID	
	RSRQ RX(1) (dBm)	YES	Config	PDSCH RNTI Type	
	RSRQ (dB)	YES	Parameters	eNodeB Tx Antennas	
	SINR Rx(0) (dB)	YES		eNodeB Rx Antennas	
	SINR Rx(1) (dB)	YES		Transmission Mode	
	PUSCH Tx (dBm)	YES		Spatial Rank	
	PUCCH Tx (dBm)	YES		RB Alloc for Slot 0 (%)	
	SRS Tx (dBm)	YES		RB Alloc for Slot 1 (%)	
LTE	Serving E-ARFCN	YES		Freq Selective PMI	
Serving and Neighbor Parameters	Serving Physical Cell-ID	YES		PMI Index	
	Serving RSRP (dBm)	YES		Stream 0 TBS (bits)	
	Serving RSRQ (dB)	YES		Stream 0 Modulation	YES
	Detected Cells PCI			Traffic to Pilot Block Ratio	
	Neighbor Cell Count			Stream 1 TBS (bits)	
	N1 PCI			Stream 1 Modulation	
	N1 RSRP Rx(0) (dBm)			PB	

Document No. 22079955 Rev. 14.0, August 2017 English

Viavi Solutions

North America: 1.844.GO VIAVI / 1.844.468.4284

Latin America: +52 55 5543 6644

EMEA: +49 7121 862273

APAC: +1 512 201 6534

All Other Regions: viavisolutions.com/contacts